| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers. |
| * |
| * (C) Copyright 2014, 2015 Linaro Ltd. |
| * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> |
| * |
| * CPPC describes a few methods for controlling CPU performance using |
| * information from a per CPU table called CPC. This table is described in |
| * the ACPI v5.0+ specification. The table consists of a list of |
| * registers which may be memory mapped or hardware registers and also may |
| * include some static integer values. |
| * |
| * CPU performance is on an abstract continuous scale as against a discretized |
| * P-state scale which is tied to CPU frequency only. In brief, the basic |
| * operation involves: |
| * |
| * - OS makes a CPU performance request. (Can provide min and max bounds) |
| * |
| * - Platform (such as BMC) is free to optimize request within requested bounds |
| * depending on power/thermal budgets etc. |
| * |
| * - Platform conveys its decision back to OS |
| * |
| * The communication between OS and platform occurs through another medium |
| * called (PCC) Platform Communication Channel. This is a generic mailbox like |
| * mechanism which includes doorbell semantics to indicate register updates. |
| * See drivers/mailbox/pcc.c for details on PCC. |
| * |
| * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and |
| * above specifications. |
| */ |
| |
| #define pr_fmt(fmt) "ACPI CPPC: " fmt |
| |
| #include <linux/cpufreq.h> |
| #include <linux/delay.h> |
| #include <linux/iopoll.h> |
| #include <linux/ktime.h> |
| #include <linux/rwsem.h> |
| #include <linux/wait.h> |
| |
| #include <acpi/cppc_acpi.h> |
| |
| struct cppc_pcc_data { |
| struct mbox_chan *pcc_channel; |
| void __iomem *pcc_comm_addr; |
| bool pcc_channel_acquired; |
| unsigned int deadline_us; |
| unsigned int pcc_mpar, pcc_mrtt, pcc_nominal; |
| |
| bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */ |
| bool platform_owns_pcc; /* Ownership of PCC subspace */ |
| unsigned int pcc_write_cnt; /* Running count of PCC write commands */ |
| |
| /* |
| * Lock to provide controlled access to the PCC channel. |
| * |
| * For performance critical usecases(currently cppc_set_perf) |
| * We need to take read_lock and check if channel belongs to OSPM |
| * before reading or writing to PCC subspace |
| * We need to take write_lock before transferring the channel |
| * ownership to the platform via a Doorbell |
| * This allows us to batch a number of CPPC requests if they happen |
| * to originate in about the same time |
| * |
| * For non-performance critical usecases(init) |
| * Take write_lock for all purposes which gives exclusive access |
| */ |
| struct rw_semaphore pcc_lock; |
| |
| /* Wait queue for CPUs whose requests were batched */ |
| wait_queue_head_t pcc_write_wait_q; |
| ktime_t last_cmd_cmpl_time; |
| ktime_t last_mpar_reset; |
| int mpar_count; |
| int refcount; |
| }; |
| |
| /* Array to represent the PCC channel per subspace ID */ |
| static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES]; |
| /* The cpu_pcc_subspace_idx contains per CPU subspace ID */ |
| static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx); |
| |
| /* |
| * The cpc_desc structure contains the ACPI register details |
| * as described in the per CPU _CPC tables. The details |
| * include the type of register (e.g. PCC, System IO, FFH etc.) |
| * and destination addresses which lets us READ/WRITE CPU performance |
| * information using the appropriate I/O methods. |
| */ |
| static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr); |
| |
| /* pcc mapped address + header size + offset within PCC subspace */ |
| #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \ |
| 0x8 + (offs)) |
| |
| /* Check if a CPC register is in PCC */ |
| #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \ |
| (cpc)->cpc_entry.reg.space_id == \ |
| ACPI_ADR_SPACE_PLATFORM_COMM) |
| |
| /* Evalutes to True if reg is a NULL register descriptor */ |
| #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \ |
| (reg)->address == 0 && \ |
| (reg)->bit_width == 0 && \ |
| (reg)->bit_offset == 0 && \ |
| (reg)->access_width == 0) |
| |
| /* Evalutes to True if an optional cpc field is supported */ |
| #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \ |
| !!(cpc)->cpc_entry.int_value : \ |
| !IS_NULL_REG(&(cpc)->cpc_entry.reg)) |
| /* |
| * Arbitrary Retries in case the remote processor is slow to respond |
| * to PCC commands. Keeping it high enough to cover emulators where |
| * the processors run painfully slow. |
| */ |
| #define NUM_RETRIES 500ULL |
| |
| #define define_one_cppc_ro(_name) \ |
| static struct kobj_attribute _name = \ |
| __ATTR(_name, 0444, show_##_name, NULL) |
| |
| #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj) |
| |
| #define show_cppc_data(access_fn, struct_name, member_name) \ |
| static ssize_t show_##member_name(struct kobject *kobj, \ |
| struct kobj_attribute *attr, char *buf) \ |
| { \ |
| struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \ |
| struct struct_name st_name = {0}; \ |
| int ret; \ |
| \ |
| ret = access_fn(cpc_ptr->cpu_id, &st_name); \ |
| if (ret) \ |
| return ret; \ |
| \ |
| return scnprintf(buf, PAGE_SIZE, "%llu\n", \ |
| (u64)st_name.member_name); \ |
| } \ |
| define_one_cppc_ro(member_name) |
| |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf); |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf); |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf); |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf); |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq); |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq); |
| |
| show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf); |
| show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time); |
| |
| static ssize_t show_feedback_ctrs(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); |
| struct cppc_perf_fb_ctrs fb_ctrs = {0}; |
| int ret; |
| |
| ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs); |
| if (ret) |
| return ret; |
| |
| return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n", |
| fb_ctrs.reference, fb_ctrs.delivered); |
| } |
| define_one_cppc_ro(feedback_ctrs); |
| |
| static struct attribute *cppc_attrs[] = { |
| &feedback_ctrs.attr, |
| &reference_perf.attr, |
| &wraparound_time.attr, |
| &highest_perf.attr, |
| &lowest_perf.attr, |
| &lowest_nonlinear_perf.attr, |
| &nominal_perf.attr, |
| &nominal_freq.attr, |
| &lowest_freq.attr, |
| NULL |
| }; |
| |
| static struct kobj_type cppc_ktype = { |
| .sysfs_ops = &kobj_sysfs_ops, |
| .default_attrs = cppc_attrs, |
| }; |
| |
| static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit) |
| { |
| int ret, status; |
| struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; |
| struct acpi_pcct_shared_memory __iomem *generic_comm_base = |
| pcc_ss_data->pcc_comm_addr; |
| |
| if (!pcc_ss_data->platform_owns_pcc) |
| return 0; |
| |
| /* |
| * Poll PCC status register every 3us(delay_us) for maximum of |
| * deadline_us(timeout_us) until PCC command complete bit is set(cond) |
| */ |
| ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status, |
| status & PCC_CMD_COMPLETE_MASK, 3, |
| pcc_ss_data->deadline_us); |
| |
| if (likely(!ret)) { |
| pcc_ss_data->platform_owns_pcc = false; |
| if (chk_err_bit && (status & PCC_ERROR_MASK)) |
| ret = -EIO; |
| } |
| |
| if (unlikely(ret)) |
| pr_err("PCC check channel failed for ss: %d. ret=%d\n", |
| pcc_ss_id, ret); |
| |
| return ret; |
| } |
| |
| /* |
| * This function transfers the ownership of the PCC to the platform |
| * So it must be called while holding write_lock(pcc_lock) |
| */ |
| static int send_pcc_cmd(int pcc_ss_id, u16 cmd) |
| { |
| int ret = -EIO, i; |
| struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id]; |
| struct acpi_pcct_shared_memory *generic_comm_base = |
| (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr; |
| unsigned int time_delta; |
| |
| /* |
| * For CMD_WRITE we know for a fact the caller should have checked |
| * the channel before writing to PCC space |
| */ |
| if (cmd == CMD_READ) { |
| /* |
| * If there are pending cpc_writes, then we stole the channel |
| * before write completion, so first send a WRITE command to |
| * platform |
| */ |
| if (pcc_ss_data->pending_pcc_write_cmd) |
| send_pcc_cmd(pcc_ss_id, CMD_WRITE); |
| |
| ret = check_pcc_chan(pcc_ss_id, false); |
| if (ret) |
| goto end; |
| } else /* CMD_WRITE */ |
| pcc_ss_data->pending_pcc_write_cmd = FALSE; |
| |
| /* |
| * Handle the Minimum Request Turnaround Time(MRTT) |
| * "The minimum amount of time that OSPM must wait after the completion |
| * of a command before issuing the next command, in microseconds" |
| */ |
| if (pcc_ss_data->pcc_mrtt) { |
| time_delta = ktime_us_delta(ktime_get(), |
| pcc_ss_data->last_cmd_cmpl_time); |
| if (pcc_ss_data->pcc_mrtt > time_delta) |
| udelay(pcc_ss_data->pcc_mrtt - time_delta); |
| } |
| |
| /* |
| * Handle the non-zero Maximum Periodic Access Rate(MPAR) |
| * "The maximum number of periodic requests that the subspace channel can |
| * support, reported in commands per minute. 0 indicates no limitation." |
| * |
| * This parameter should be ideally zero or large enough so that it can |
| * handle maximum number of requests that all the cores in the system can |
| * collectively generate. If it is not, we will follow the spec and just |
| * not send the request to the platform after hitting the MPAR limit in |
| * any 60s window |
| */ |
| if (pcc_ss_data->pcc_mpar) { |
| if (pcc_ss_data->mpar_count == 0) { |
| time_delta = ktime_ms_delta(ktime_get(), |
| pcc_ss_data->last_mpar_reset); |
| if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) { |
| pr_debug("PCC cmd for subspace %d not sent due to MPAR limit", |
| pcc_ss_id); |
| ret = -EIO; |
| goto end; |
| } |
| pcc_ss_data->last_mpar_reset = ktime_get(); |
| pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar; |
| } |
| pcc_ss_data->mpar_count--; |
| } |
| |
| /* Write to the shared comm region. */ |
| writew_relaxed(cmd, &generic_comm_base->command); |
| |
| /* Flip CMD COMPLETE bit */ |
| writew_relaxed(0, &generic_comm_base->status); |
| |
| pcc_ss_data->platform_owns_pcc = true; |
| |
| /* Ring doorbell */ |
| ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd); |
| if (ret < 0) { |
| pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n", |
| pcc_ss_id, cmd, ret); |
| goto end; |
| } |
| |
| /* wait for completion and check for PCC errro bit */ |
| ret = check_pcc_chan(pcc_ss_id, true); |
| |
| if (pcc_ss_data->pcc_mrtt) |
| pcc_ss_data->last_cmd_cmpl_time = ktime_get(); |
| |
| if (pcc_ss_data->pcc_channel->mbox->txdone_irq) |
| mbox_chan_txdone(pcc_ss_data->pcc_channel, ret); |
| else |
| mbox_client_txdone(pcc_ss_data->pcc_channel, ret); |
| |
| end: |
| if (cmd == CMD_WRITE) { |
| if (unlikely(ret)) { |
| for_each_possible_cpu(i) { |
| struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i); |
| if (!desc) |
| continue; |
| |
| if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt) |
| desc->write_cmd_status = ret; |
| } |
| } |
| pcc_ss_data->pcc_write_cnt++; |
| wake_up_all(&pcc_ss_data->pcc_write_wait_q); |
| } |
| |
| return ret; |
| } |
| |
| static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret) |
| { |
| if (ret < 0) |
| pr_debug("TX did not complete: CMD sent:%x, ret:%d\n", |
| *(u16 *)msg, ret); |
| else |
| pr_debug("TX completed. CMD sent:%x, ret:%d\n", |
| *(u16 *)msg, ret); |
| } |
| |
| struct mbox_client cppc_mbox_cl = { |
| .tx_done = cppc_chan_tx_done, |
| .knows_txdone = true, |
| }; |
| |
| static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle) |
| { |
| int result = -EFAULT; |
| acpi_status status = AE_OK; |
| struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; |
| struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; |
| struct acpi_buffer state = {0, NULL}; |
| union acpi_object *psd = NULL; |
| struct acpi_psd_package *pdomain; |
| |
| status = acpi_evaluate_object_typed(handle, "_PSD", NULL, |
| &buffer, ACPI_TYPE_PACKAGE); |
| if (status == AE_NOT_FOUND) /* _PSD is optional */ |
| return 0; |
| if (ACPI_FAILURE(status)) |
| return -ENODEV; |
| |
| psd = buffer.pointer; |
| if (!psd || psd->package.count != 1) { |
| pr_debug("Invalid _PSD data\n"); |
| goto end; |
| } |
| |
| pdomain = &(cpc_ptr->domain_info); |
| |
| state.length = sizeof(struct acpi_psd_package); |
| state.pointer = pdomain; |
| |
| status = acpi_extract_package(&(psd->package.elements[0]), |
| &format, &state); |
| if (ACPI_FAILURE(status)) { |
| pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id); |
| goto end; |
| } |
| |
| if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { |
| pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id); |
| goto end; |
| } |
| |
| if (pdomain->revision != ACPI_PSD_REV0_REVISION) { |
| pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id); |
| goto end; |
| } |
| |
| if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && |
| pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && |
| pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { |
| pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id); |
| goto end; |
| } |
| |
| result = 0; |
| end: |
| kfree(buffer.pointer); |
| return result; |
| } |
| |
| /** |
| * acpi_get_psd_map - Map the CPUs in a common freq domain. |
| * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info. |
| * |
| * Return: 0 for success or negative value for err. |
| */ |
| int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data) |
| { |
| int count_target; |
| int retval = 0; |
| unsigned int i, j; |
| cpumask_var_t covered_cpus; |
| struct cppc_cpudata *pr, *match_pr; |
| struct acpi_psd_package *pdomain; |
| struct acpi_psd_package *match_pdomain; |
| struct cpc_desc *cpc_ptr, *match_cpc_ptr; |
| |
| if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| /* |
| * Now that we have _PSD data from all CPUs, let's setup P-state |
| * domain info. |
| */ |
| for_each_possible_cpu(i) { |
| pr = all_cpu_data[i]; |
| if (!pr) |
| continue; |
| |
| if (cpumask_test_cpu(i, covered_cpus)) |
| continue; |
| |
| cpc_ptr = per_cpu(cpc_desc_ptr, i); |
| if (!cpc_ptr) { |
| retval = -EFAULT; |
| goto err_ret; |
| } |
| |
| pdomain = &(cpc_ptr->domain_info); |
| cpumask_set_cpu(i, pr->shared_cpu_map); |
| cpumask_set_cpu(i, covered_cpus); |
| if (pdomain->num_processors <= 1) |
| continue; |
| |
| /* Validate the Domain info */ |
| count_target = pdomain->num_processors; |
| if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) |
| pr->shared_type = CPUFREQ_SHARED_TYPE_ALL; |
| else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) |
| pr->shared_type = CPUFREQ_SHARED_TYPE_HW; |
| else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) |
| pr->shared_type = CPUFREQ_SHARED_TYPE_ANY; |
| |
| for_each_possible_cpu(j) { |
| if (i == j) |
| continue; |
| |
| match_cpc_ptr = per_cpu(cpc_desc_ptr, j); |
| if (!match_cpc_ptr) { |
| retval = -EFAULT; |
| goto err_ret; |
| } |
| |
| match_pdomain = &(match_cpc_ptr->domain_info); |
| if (match_pdomain->domain != pdomain->domain) |
| continue; |
| |
| /* Here i and j are in the same domain */ |
| if (match_pdomain->num_processors != count_target) { |
| retval = -EFAULT; |
| goto err_ret; |
| } |
| |
| if (pdomain->coord_type != match_pdomain->coord_type) { |
| retval = -EFAULT; |
| goto err_ret; |
| } |
| |
| cpumask_set_cpu(j, covered_cpus); |
| cpumask_set_cpu(j, pr->shared_cpu_map); |
| } |
| |
| for_each_possible_cpu(j) { |
| if (i == j) |
| continue; |
| |
| match_pr = all_cpu_data[j]; |
| if (!match_pr) |
| continue; |
| |
| match_cpc_ptr = per_cpu(cpc_desc_ptr, j); |
| if (!match_cpc_ptr) { |
| retval = -EFAULT; |
| goto err_ret; |
| } |
| |
| match_pdomain = &(match_cpc_ptr->domain_info); |
| if (match_pdomain->domain != pdomain->domain) |
| continue; |
| |
| match_pr->shared_type = pr->shared_type; |
| cpumask_copy(match_pr->shared_cpu_map, |
| pr->shared_cpu_map); |
| } |
| } |
| |
| err_ret: |
| for_each_possible_cpu(i) { |
| pr = all_cpu_data[i]; |
| if (!pr) |
| continue; |
| |
| /* Assume no coordination on any error parsing domain info */ |
| if (retval) { |
| cpumask_clear(pr->shared_cpu_map); |
| cpumask_set_cpu(i, pr->shared_cpu_map); |
| pr->shared_type = CPUFREQ_SHARED_TYPE_ALL; |
| } |
| } |
| |
| free_cpumask_var(covered_cpus); |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(acpi_get_psd_map); |
| |
| static int register_pcc_channel(int pcc_ss_idx) |
| { |
| struct acpi_pcct_hw_reduced *cppc_ss; |
| u64 usecs_lat; |
| |
| if (pcc_ss_idx >= 0) { |
| pcc_data[pcc_ss_idx]->pcc_channel = |
| pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx); |
| |
| if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) { |
| pr_err("Failed to find PCC channel for subspace %d\n", |
| pcc_ss_idx); |
| return -ENODEV; |
| } |
| |
| /* |
| * The PCC mailbox controller driver should |
| * have parsed the PCCT (global table of all |
| * PCC channels) and stored pointers to the |
| * subspace communication region in con_priv. |
| */ |
| cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv; |
| |
| if (!cppc_ss) { |
| pr_err("No PCC subspace found for %d CPPC\n", |
| pcc_ss_idx); |
| return -ENODEV; |
| } |
| |
| /* |
| * cppc_ss->latency is just a Nominal value. In reality |
| * the remote processor could be much slower to reply. |
| * So add an arbitrary amount of wait on top of Nominal. |
| */ |
| usecs_lat = NUM_RETRIES * cppc_ss->latency; |
| pcc_data[pcc_ss_idx]->deadline_us = usecs_lat; |
| pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time; |
| pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate; |
| pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency; |
| |
| pcc_data[pcc_ss_idx]->pcc_comm_addr = |
| acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length); |
| if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) { |
| pr_err("Failed to ioremap PCC comm region mem for %d\n", |
| pcc_ss_idx); |
| return -ENOMEM; |
| } |
| |
| /* Set flag so that we don't come here for each CPU. */ |
| pcc_data[pcc_ss_idx]->pcc_channel_acquired = true; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * cpc_ffh_supported() - check if FFH reading supported |
| * |
| * Check if the architecture has support for functional fixed hardware |
| * read/write capability. |
| * |
| * Return: true for supported, false for not supported |
| */ |
| bool __weak cpc_ffh_supported(void) |
| { |
| return false; |
| } |
| |
| /** |
| * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace |
| * |
| * Check and allocate the cppc_pcc_data memory. |
| * In some processor configurations it is possible that same subspace |
| * is shared between multiple CPUs. This is seen especially in CPUs |
| * with hardware multi-threading support. |
| * |
| * Return: 0 for success, errno for failure |
| */ |
| int pcc_data_alloc(int pcc_ss_id) |
| { |
| if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES) |
| return -EINVAL; |
| |
| if (pcc_data[pcc_ss_id]) { |
| pcc_data[pcc_ss_id]->refcount++; |
| } else { |
| pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data), |
| GFP_KERNEL); |
| if (!pcc_data[pcc_ss_id]) |
| return -ENOMEM; |
| pcc_data[pcc_ss_id]->refcount++; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * An example CPC table looks like the following. |
| * |
| * Name(_CPC, Package() |
| * { |
| * 17, |
| * NumEntries |
| * 1, |
| * // Revision |
| * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)}, |
| * // Highest Performance |
| * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)}, |
| * // Nominal Performance |
| * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)}, |
| * // Lowest Nonlinear Performance |
| * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)}, |
| * // Lowest Performance |
| * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)}, |
| * // Guaranteed Performance Register |
| * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)}, |
| * // Desired Performance Register |
| * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, |
| * .. |
| * .. |
| * .. |
| * |
| * } |
| * Each Register() encodes how to access that specific register. |
| * e.g. a sample PCC entry has the following encoding: |
| * |
| * Register ( |
| * PCC, |
| * AddressSpaceKeyword |
| * 8, |
| * //RegisterBitWidth |
| * 8, |
| * //RegisterBitOffset |
| * 0x30, |
| * //RegisterAddress |
| * 9 |
| * //AccessSize (subspace ID) |
| * 0 |
| * ) |
| * } |
| */ |
| |
| /** |
| * acpi_cppc_processor_probe - Search for per CPU _CPC objects. |
| * @pr: Ptr to acpi_processor containing this CPU's logical ID. |
| * |
| * Return: 0 for success or negative value for err. |
| */ |
| int acpi_cppc_processor_probe(struct acpi_processor *pr) |
| { |
| struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; |
| union acpi_object *out_obj, *cpc_obj; |
| struct cpc_desc *cpc_ptr; |
| struct cpc_reg *gas_t; |
| struct device *cpu_dev; |
| acpi_handle handle = pr->handle; |
| unsigned int num_ent, i, cpc_rev; |
| int pcc_subspace_id = -1; |
| acpi_status status; |
| int ret = -EFAULT; |
| |
| /* Parse the ACPI _CPC table for this CPU. */ |
| status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output, |
| ACPI_TYPE_PACKAGE); |
| if (ACPI_FAILURE(status)) { |
| ret = -ENODEV; |
| goto out_buf_free; |
| } |
| |
| out_obj = (union acpi_object *) output.pointer; |
| |
| cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL); |
| if (!cpc_ptr) { |
| ret = -ENOMEM; |
| goto out_buf_free; |
| } |
| |
| /* First entry is NumEntries. */ |
| cpc_obj = &out_obj->package.elements[0]; |
| if (cpc_obj->type == ACPI_TYPE_INTEGER) { |
| num_ent = cpc_obj->integer.value; |
| if (num_ent <= 1) { |
| pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n", |
| num_ent, pr->id); |
| goto out_free; |
| } |
| } else { |
| pr_debug("Unexpected entry type(%d) for NumEntries\n", |
| cpc_obj->type); |
| goto out_free; |
| } |
| |
| /* Second entry should be revision. */ |
| cpc_obj = &out_obj->package.elements[1]; |
| if (cpc_obj->type == ACPI_TYPE_INTEGER) { |
| cpc_rev = cpc_obj->integer.value; |
| } else { |
| pr_debug("Unexpected entry type(%d) for Revision\n", |
| cpc_obj->type); |
| goto out_free; |
| } |
| |
| if (cpc_rev < CPPC_V2_REV) { |
| pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev, |
| pr->id); |
| goto out_free; |
| } |
| |
| /* |
| * Disregard _CPC if the number of entries in the return pachage is not |
| * as expected, but support future revisions being proper supersets of |
| * the v3 and only causing more entries to be returned by _CPC. |
| */ |
| if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) || |
| (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) || |
| (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) { |
| pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n", |
| num_ent, pr->id); |
| goto out_free; |
| } |
| if (cpc_rev > CPPC_V3_REV) { |
| num_ent = CPPC_V3_NUM_ENT; |
| cpc_rev = CPPC_V3_REV; |
| } |
| |
| cpc_ptr->num_entries = num_ent; |
| cpc_ptr->version = cpc_rev; |
| |
| /* Iterate through remaining entries in _CPC */ |
| for (i = 2; i < num_ent; i++) { |
| cpc_obj = &out_obj->package.elements[i]; |
| |
| if (cpc_obj->type == ACPI_TYPE_INTEGER) { |
| cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER; |
| cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value; |
| } else if (cpc_obj->type == ACPI_TYPE_BUFFER) { |
| gas_t = (struct cpc_reg *) |
| cpc_obj->buffer.pointer; |
| |
| /* |
| * The PCC Subspace index is encoded inside |
| * the CPC table entries. The same PCC index |
| * will be used for all the PCC entries, |
| * so extract it only once. |
| */ |
| if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { |
| if (pcc_subspace_id < 0) { |
| pcc_subspace_id = gas_t->access_width; |
| if (pcc_data_alloc(pcc_subspace_id)) |
| goto out_free; |
| } else if (pcc_subspace_id != gas_t->access_width) { |
| pr_debug("Mismatched PCC ids.\n"); |
| goto out_free; |
| } |
| } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { |
| if (gas_t->address) { |
| void __iomem *addr; |
| |
| addr = ioremap(gas_t->address, gas_t->bit_width/8); |
| if (!addr) |
| goto out_free; |
| cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr; |
| } |
| } else { |
| if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) { |
| /* Support only PCC ,SYS MEM and FFH type regs */ |
| pr_debug("Unsupported register type: %d\n", gas_t->space_id); |
| goto out_free; |
| } |
| } |
| |
| cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER; |
| memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t)); |
| } else { |
| pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id); |
| goto out_free; |
| } |
| } |
| per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id; |
| |
| /* |
| * Initialize the remaining cpc_regs as unsupported. |
| * Example: In case FW exposes CPPC v2, the below loop will initialize |
| * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported |
| */ |
| for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) { |
| cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER; |
| cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0; |
| } |
| |
| |
| /* Store CPU Logical ID */ |
| cpc_ptr->cpu_id = pr->id; |
| |
| /* Parse PSD data for this CPU */ |
| ret = acpi_get_psd(cpc_ptr, handle); |
| if (ret) |
| goto out_free; |
| |
| /* Register PCC channel once for all PCC subspace ID. */ |
| if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) { |
| ret = register_pcc_channel(pcc_subspace_id); |
| if (ret) |
| goto out_free; |
| |
| init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock); |
| init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q); |
| } |
| |
| /* Everything looks okay */ |
| pr_debug("Parsed CPC struct for CPU: %d\n", pr->id); |
| |
| /* Add per logical CPU nodes for reading its feedback counters. */ |
| cpu_dev = get_cpu_device(pr->id); |
| if (!cpu_dev) { |
| ret = -EINVAL; |
| goto out_free; |
| } |
| |
| /* Plug PSD data into this CPU's CPC descriptor. */ |
| per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr; |
| |
| ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj, |
| "acpi_cppc"); |
| if (ret) { |
| per_cpu(cpc_desc_ptr, pr->id) = NULL; |
| kobject_put(&cpc_ptr->kobj); |
| goto out_free; |
| } |
| |
| kfree(output.pointer); |
| return 0; |
| |
| out_free: |
| /* Free all the mapped sys mem areas for this CPU */ |
| for (i = 2; i < cpc_ptr->num_entries; i++) { |
| void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; |
| |
| if (addr) |
| iounmap(addr); |
| } |
| kfree(cpc_ptr); |
| |
| out_buf_free: |
| kfree(output.pointer); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe); |
| |
| /** |
| * acpi_cppc_processor_exit - Cleanup CPC structs. |
| * @pr: Ptr to acpi_processor containing this CPU's logical ID. |
| * |
| * Return: Void |
| */ |
| void acpi_cppc_processor_exit(struct acpi_processor *pr) |
| { |
| struct cpc_desc *cpc_ptr; |
| unsigned int i; |
| void __iomem *addr; |
| int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id); |
| |
| if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) { |
| if (pcc_data[pcc_ss_id]->pcc_channel_acquired) { |
| pcc_data[pcc_ss_id]->refcount--; |
| if (!pcc_data[pcc_ss_id]->refcount) { |
| pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel); |
| kfree(pcc_data[pcc_ss_id]); |
| pcc_data[pcc_ss_id] = NULL; |
| } |
| } |
| } |
| |
| cpc_ptr = per_cpu(cpc_desc_ptr, pr->id); |
| if (!cpc_ptr) |
| return; |
| |
| /* Free all the mapped sys mem areas for this CPU */ |
| for (i = 2; i < cpc_ptr->num_entries; i++) { |
| addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr; |
| if (addr) |
| iounmap(addr); |
| } |
| |
| kobject_put(&cpc_ptr->kobj); |
| kfree(cpc_ptr); |
| } |
| EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit); |
| |
| /** |
| * cpc_read_ffh() - Read FFH register |
| * @cpunum: CPU number to read |
| * @reg: cppc register information |
| * @val: place holder for return value |
| * |
| * Read bit_width bits from a specified address and bit_offset |
| * |
| * Return: 0 for success and error code |
| */ |
| int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val) |
| { |
| return -ENOTSUPP; |
| } |
| |
| /** |
| * cpc_write_ffh() - Write FFH register |
| * @cpunum: CPU number to write |
| * @reg: cppc register information |
| * @val: value to write |
| * |
| * Write value of bit_width bits to a specified address and bit_offset |
| * |
| * Return: 0 for success and error code |
| */ |
| int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val) |
| { |
| return -ENOTSUPP; |
| } |
| |
| /* |
| * Since cpc_read and cpc_write are called while holding pcc_lock, it should be |
| * as fast as possible. We have already mapped the PCC subspace during init, so |
| * we can directly write to it. |
| */ |
| |
| static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val) |
| { |
| int ret_val = 0; |
| void __iomem *vaddr = 0; |
| int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); |
| struct cpc_reg *reg = ®_res->cpc_entry.reg; |
| |
| if (reg_res->type == ACPI_TYPE_INTEGER) { |
| *val = reg_res->cpc_entry.int_value; |
| return ret_val; |
| } |
| |
| *val = 0; |
| if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) |
| vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); |
| else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) |
| vaddr = reg_res->sys_mem_vaddr; |
| else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) |
| return cpc_read_ffh(cpu, reg, val); |
| else |
| return acpi_os_read_memory((acpi_physical_address)reg->address, |
| val, reg->bit_width); |
| |
| switch (reg->bit_width) { |
| case 8: |
| *val = readb_relaxed(vaddr); |
| break; |
| case 16: |
| *val = readw_relaxed(vaddr); |
| break; |
| case 32: |
| *val = readl_relaxed(vaddr); |
| break; |
| case 64: |
| *val = readq_relaxed(vaddr); |
| break; |
| default: |
| pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n", |
| reg->bit_width, pcc_ss_id); |
| ret_val = -EFAULT; |
| } |
| |
| return ret_val; |
| } |
| |
| static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val) |
| { |
| int ret_val = 0; |
| void __iomem *vaddr = 0; |
| int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); |
| struct cpc_reg *reg = ®_res->cpc_entry.reg; |
| |
| if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0) |
| vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id); |
| else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) |
| vaddr = reg_res->sys_mem_vaddr; |
| else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) |
| return cpc_write_ffh(cpu, reg, val); |
| else |
| return acpi_os_write_memory((acpi_physical_address)reg->address, |
| val, reg->bit_width); |
| |
| switch (reg->bit_width) { |
| case 8: |
| writeb_relaxed(val, vaddr); |
| break; |
| case 16: |
| writew_relaxed(val, vaddr); |
| break; |
| case 32: |
| writel_relaxed(val, vaddr); |
| break; |
| case 64: |
| writeq_relaxed(val, vaddr); |
| break; |
| default: |
| pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n", |
| reg->bit_width, pcc_ss_id); |
| ret_val = -EFAULT; |
| break; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * cppc_get_desired_perf - Get the value of desired performance register. |
| * @cpunum: CPU from which to get desired performance. |
| * @desired_perf: address of a variable to store the returned desired performance |
| * |
| * Return: 0 for success, -EIO otherwise. |
| */ |
| int cppc_get_desired_perf(int cpunum, u64 *desired_perf) |
| { |
| struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); |
| int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); |
| struct cpc_register_resource *desired_reg; |
| struct cppc_pcc_data *pcc_ss_data = NULL; |
| |
| desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; |
| |
| if (CPC_IN_PCC(desired_reg)) { |
| int ret = 0; |
| |
| if (pcc_ss_id < 0) |
| return -EIO; |
| |
| pcc_ss_data = pcc_data[pcc_ss_id]; |
| |
| down_write(&pcc_ss_data->pcc_lock); |
| |
| if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) |
| cpc_read(cpunum, desired_reg, desired_perf); |
| else |
| ret = -EIO; |
| |
| up_write(&pcc_ss_data->pcc_lock); |
| |
| return ret; |
| } |
| |
| cpc_read(cpunum, desired_reg, desired_perf); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(cppc_get_desired_perf); |
| |
| /** |
| * cppc_get_perf_caps - Get a CPU's performance capabilities. |
| * @cpunum: CPU from which to get capabilities info. |
| * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h |
| * |
| * Return: 0 for success with perf_caps populated else -ERRNO. |
| */ |
| int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) |
| { |
| struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); |
| struct cpc_register_resource *highest_reg, *lowest_reg, |
| *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg, |
| *low_freq_reg = NULL, *nom_freq_reg = NULL; |
| u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0; |
| int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); |
| struct cppc_pcc_data *pcc_ss_data = NULL; |
| int ret = 0, regs_in_pcc = 0; |
| |
| if (!cpc_desc) { |
| pr_debug("No CPC descriptor for CPU:%d\n", cpunum); |
| return -ENODEV; |
| } |
| |
| highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF]; |
| lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF]; |
| lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF]; |
| nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; |
| low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ]; |
| nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ]; |
| guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF]; |
| |
| /* Are any of the regs PCC ?*/ |
| if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) || |
| CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) || |
| CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) { |
| if (pcc_ss_id < 0) { |
| pr_debug("Invalid pcc_ss_id\n"); |
| return -ENODEV; |
| } |
| pcc_ss_data = pcc_data[pcc_ss_id]; |
| regs_in_pcc = 1; |
| down_write(&pcc_ss_data->pcc_lock); |
| /* Ring doorbell once to update PCC subspace */ |
| if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { |
| ret = -EIO; |
| goto out_err; |
| } |
| } |
| |
| cpc_read(cpunum, highest_reg, &high); |
| perf_caps->highest_perf = high; |
| |
| cpc_read(cpunum, lowest_reg, &low); |
| perf_caps->lowest_perf = low; |
| |
| cpc_read(cpunum, nominal_reg, &nom); |
| perf_caps->nominal_perf = nom; |
| |
| if (guaranteed_reg->type != ACPI_TYPE_BUFFER || |
| IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) { |
| perf_caps->guaranteed_perf = 0; |
| } else { |
| cpc_read(cpunum, guaranteed_reg, &guaranteed); |
| perf_caps->guaranteed_perf = guaranteed; |
| } |
| |
| cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear); |
| perf_caps->lowest_nonlinear_perf = min_nonlinear; |
| |
| if (!high || !low || !nom || !min_nonlinear) |
| ret = -EFAULT; |
| |
| /* Read optional lowest and nominal frequencies if present */ |
| if (CPC_SUPPORTED(low_freq_reg)) |
| cpc_read(cpunum, low_freq_reg, &low_f); |
| |
| if (CPC_SUPPORTED(nom_freq_reg)) |
| cpc_read(cpunum, nom_freq_reg, &nom_f); |
| |
| perf_caps->lowest_freq = low_f; |
| perf_caps->nominal_freq = nom_f; |
| |
| |
| out_err: |
| if (regs_in_pcc) |
| up_write(&pcc_ss_data->pcc_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(cppc_get_perf_caps); |
| |
| /** |
| * cppc_get_perf_ctrs - Read a CPU's performance feedback counters. |
| * @cpunum: CPU from which to read counters. |
| * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h |
| * |
| * Return: 0 for success with perf_fb_ctrs populated else -ERRNO. |
| */ |
| int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) |
| { |
| struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); |
| struct cpc_register_resource *delivered_reg, *reference_reg, |
| *ref_perf_reg, *ctr_wrap_reg; |
| int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum); |
| struct cppc_pcc_data *pcc_ss_data = NULL; |
| u64 delivered, reference, ref_perf, ctr_wrap_time; |
| int ret = 0, regs_in_pcc = 0; |
| |
| if (!cpc_desc) { |
| pr_debug("No CPC descriptor for CPU:%d\n", cpunum); |
| return -ENODEV; |
| } |
| |
| delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR]; |
| reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR]; |
| ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF]; |
| ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME]; |
| |
| /* |
| * If reference perf register is not supported then we should |
| * use the nominal perf value |
| */ |
| if (!CPC_SUPPORTED(ref_perf_reg)) |
| ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF]; |
| |
| /* Are any of the regs PCC ?*/ |
| if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) || |
| CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) { |
| if (pcc_ss_id < 0) { |
| pr_debug("Invalid pcc_ss_id\n"); |
| return -ENODEV; |
| } |
| pcc_ss_data = pcc_data[pcc_ss_id]; |
| down_write(&pcc_ss_data->pcc_lock); |
| regs_in_pcc = 1; |
| /* Ring doorbell once to update PCC subspace */ |
| if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) { |
| ret = -EIO; |
| goto out_err; |
| } |
| } |
| |
| cpc_read(cpunum, delivered_reg, &delivered); |
| cpc_read(cpunum, reference_reg, &reference); |
| cpc_read(cpunum, ref_perf_reg, &ref_perf); |
| |
| /* |
| * Per spec, if ctr_wrap_time optional register is unsupported, then the |
| * performance counters are assumed to never wrap during the lifetime of |
| * platform |
| */ |
| ctr_wrap_time = (u64)(~((u64)0)); |
| if (CPC_SUPPORTED(ctr_wrap_reg)) |
| cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time); |
| |
| if (!delivered || !reference || !ref_perf) { |
| ret = -EFAULT; |
| goto out_err; |
| } |
| |
| perf_fb_ctrs->delivered = delivered; |
| perf_fb_ctrs->reference = reference; |
| perf_fb_ctrs->reference_perf = ref_perf; |
| perf_fb_ctrs->wraparound_time = ctr_wrap_time; |
| out_err: |
| if (regs_in_pcc) |
| up_write(&pcc_ss_data->pcc_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs); |
| |
| /** |
| * cppc_set_perf - Set a CPU's performance controls. |
| * @cpu: CPU for which to set performance controls. |
| * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h |
| * |
| * Return: 0 for success, -ERRNO otherwise. |
| */ |
| int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls) |
| { |
| struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); |
| struct cpc_register_resource *desired_reg; |
| int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu); |
| struct cppc_pcc_data *pcc_ss_data = NULL; |
| int ret = 0; |
| |
| if (!cpc_desc) { |
| pr_debug("No CPC descriptor for CPU:%d\n", cpu); |
| return -ENODEV; |
| } |
| |
| desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; |
| |
| /* |
| * This is Phase-I where we want to write to CPC registers |
| * -> We want all CPUs to be able to execute this phase in parallel |
| * |
| * Since read_lock can be acquired by multiple CPUs simultaneously we |
| * achieve that goal here |
| */ |
| if (CPC_IN_PCC(desired_reg)) { |
| if (pcc_ss_id < 0) { |
| pr_debug("Invalid pcc_ss_id\n"); |
| return -ENODEV; |
| } |
| pcc_ss_data = pcc_data[pcc_ss_id]; |
| down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */ |
| if (pcc_ss_data->platform_owns_pcc) { |
| ret = check_pcc_chan(pcc_ss_id, false); |
| if (ret) { |
| up_read(&pcc_ss_data->pcc_lock); |
| return ret; |
| } |
| } |
| /* |
| * Update the pending_write to make sure a PCC CMD_READ will not |
| * arrive and steal the channel during the switch to write lock |
| */ |
| pcc_ss_data->pending_pcc_write_cmd = true; |
| cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt; |
| cpc_desc->write_cmd_status = 0; |
| } |
| |
| /* |
| * Skip writing MIN/MAX until Linux knows how to come up with |
| * useful values. |
| */ |
| cpc_write(cpu, desired_reg, perf_ctrls->desired_perf); |
| |
| if (CPC_IN_PCC(desired_reg)) |
| up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */ |
| /* |
| * This is Phase-II where we transfer the ownership of PCC to Platform |
| * |
| * Short Summary: Basically if we think of a group of cppc_set_perf |
| * requests that happened in short overlapping interval. The last CPU to |
| * come out of Phase-I will enter Phase-II and ring the doorbell. |
| * |
| * We have the following requirements for Phase-II: |
| * 1. We want to execute Phase-II only when there are no CPUs |
| * currently executing in Phase-I |
| * 2. Once we start Phase-II we want to avoid all other CPUs from |
| * entering Phase-I. |
| * 3. We want only one CPU among all those who went through Phase-I |
| * to run phase-II |
| * |
| * If write_trylock fails to get the lock and doesn't transfer the |
| * PCC ownership to the platform, then one of the following will be TRUE |
| * 1. There is at-least one CPU in Phase-I which will later execute |
| * write_trylock, so the CPUs in Phase-I will be responsible for |
| * executing the Phase-II. |
| * 2. Some other CPU has beaten this CPU to successfully execute the |
| * write_trylock and has already acquired the write_lock. We know for a |
| * fact it (other CPU acquiring the write_lock) couldn't have happened |
| * before this CPU's Phase-I as we held the read_lock. |
| * 3. Some other CPU executing pcc CMD_READ has stolen the |
| * down_write, in which case, send_pcc_cmd will check for pending |
| * CMD_WRITE commands by checking the pending_pcc_write_cmd. |
| * So this CPU can be certain that its request will be delivered |
| * So in all cases, this CPU knows that its request will be delivered |
| * by another CPU and can return |
| * |
| * After getting the down_write we still need to check for |
| * pending_pcc_write_cmd to take care of the following scenario |
| * The thread running this code could be scheduled out between |
| * Phase-I and Phase-II. Before it is scheduled back on, another CPU |
| * could have delivered the request to Platform by triggering the |
| * doorbell and transferred the ownership of PCC to platform. So this |
| * avoids triggering an unnecessary doorbell and more importantly before |
| * triggering the doorbell it makes sure that the PCC channel ownership |
| * is still with OSPM. |
| * pending_pcc_write_cmd can also be cleared by a different CPU, if |
| * there was a pcc CMD_READ waiting on down_write and it steals the lock |
| * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this |
| * case during a CMD_READ and if there are pending writes it delivers |
| * the write command before servicing the read command |
| */ |
| if (CPC_IN_PCC(desired_reg)) { |
| if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */ |
| /* Update only if there are pending write commands */ |
| if (pcc_ss_data->pending_pcc_write_cmd) |
| send_pcc_cmd(pcc_ss_id, CMD_WRITE); |
| up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */ |
| } else |
| /* Wait until pcc_write_cnt is updated by send_pcc_cmd */ |
| wait_event(pcc_ss_data->pcc_write_wait_q, |
| cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt); |
| |
| /* send_pcc_cmd updates the status in case of failure */ |
| ret = cpc_desc->write_cmd_status; |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(cppc_set_perf); |
| |
| /** |
| * cppc_get_transition_latency - returns frequency transition latency in ns |
| * |
| * ACPI CPPC does not explicitly specifiy how a platform can specify the |
| * transition latency for perfromance change requests. The closest we have |
| * is the timing information from the PCCT tables which provides the info |
| * on the number and frequency of PCC commands the platform can handle. |
| */ |
| unsigned int cppc_get_transition_latency(int cpu_num) |
| { |
| /* |
| * Expected transition latency is based on the PCCT timing values |
| * Below are definition from ACPI spec: |
| * pcc_nominal- Expected latency to process a command, in microseconds |
| * pcc_mpar - The maximum number of periodic requests that the subspace |
| * channel can support, reported in commands per minute. 0 |
| * indicates no limitation. |
| * pcc_mrtt - The minimum amount of time that OSPM must wait after the |
| * completion of a command before issuing the next command, |
| * in microseconds. |
| */ |
| unsigned int latency_ns = 0; |
| struct cpc_desc *cpc_desc; |
| struct cpc_register_resource *desired_reg; |
| int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num); |
| struct cppc_pcc_data *pcc_ss_data; |
| |
| cpc_desc = per_cpu(cpc_desc_ptr, cpu_num); |
| if (!cpc_desc) |
| return CPUFREQ_ETERNAL; |
| |
| desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; |
| if (!CPC_IN_PCC(desired_reg)) |
| return CPUFREQ_ETERNAL; |
| |
| if (pcc_ss_id < 0) |
| return CPUFREQ_ETERNAL; |
| |
| pcc_ss_data = pcc_data[pcc_ss_id]; |
| if (pcc_ss_data->pcc_mpar) |
| latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar); |
| |
| latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000); |
| latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000); |
| |
| return latency_ns; |
| } |
| EXPORT_SYMBOL_GPL(cppc_get_transition_latency); |