| #include <linux/export.h> |
| #include <linux/bitops.h> |
| #include <linux/elf.h> |
| #include <linux/mm.h> |
| |
| #include <linux/io.h> |
| #include <linux/sched.h> |
| #include <linux/sched/clock.h> |
| #include <linux/random.h> |
| #include <asm/processor.h> |
| #include <asm/apic.h> |
| #include <asm/cacheinfo.h> |
| #include <asm/cpu.h> |
| #include <asm/spec-ctrl.h> |
| #include <asm/smp.h> |
| #include <asm/pci-direct.h> |
| #include <asm/delay.h> |
| |
| #ifdef CONFIG_X86_64 |
| # include <asm/mmconfig.h> |
| # include <asm/set_memory.h> |
| #endif |
| |
| #include "cpu.h" |
| |
| static const int amd_erratum_383[]; |
| static const int amd_erratum_400[]; |
| static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum); |
| |
| /* |
| * nodes_per_socket: Stores the number of nodes per socket. |
| * Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX |
| * Node Identifiers[10:8] |
| */ |
| static u32 nodes_per_socket = 1; |
| |
| static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p) |
| { |
| u32 gprs[8] = { 0 }; |
| int err; |
| |
| WARN_ONCE((boot_cpu_data.x86 != 0xf), |
| "%s should only be used on K8!\n", __func__); |
| |
| gprs[1] = msr; |
| gprs[7] = 0x9c5a203a; |
| |
| err = rdmsr_safe_regs(gprs); |
| |
| *p = gprs[0] | ((u64)gprs[2] << 32); |
| |
| return err; |
| } |
| |
| static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val) |
| { |
| u32 gprs[8] = { 0 }; |
| |
| WARN_ONCE((boot_cpu_data.x86 != 0xf), |
| "%s should only be used on K8!\n", __func__); |
| |
| gprs[0] = (u32)val; |
| gprs[1] = msr; |
| gprs[2] = val >> 32; |
| gprs[7] = 0x9c5a203a; |
| |
| return wrmsr_safe_regs(gprs); |
| } |
| |
| /* |
| * B step AMD K6 before B 9730xxxx have hardware bugs that can cause |
| * misexecution of code under Linux. Owners of such processors should |
| * contact AMD for precise details and a CPU swap. |
| * |
| * See http://www.multimania.com/poulot/k6bug.html |
| * and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6" |
| * (Publication # 21266 Issue Date: August 1998) |
| * |
| * The following test is erm.. interesting. AMD neglected to up |
| * the chip setting when fixing the bug but they also tweaked some |
| * performance at the same time.. |
| */ |
| |
| extern __visible void vide(void); |
| __asm__(".globl vide\n" |
| ".type vide, @function\n" |
| ".align 4\n" |
| "vide: ret\n"); |
| |
| static void init_amd_k5(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_X86_32 |
| /* |
| * General Systems BIOSen alias the cpu frequency registers |
| * of the Elan at 0x000df000. Unfortunately, one of the Linux |
| * drivers subsequently pokes it, and changes the CPU speed. |
| * Workaround : Remove the unneeded alias. |
| */ |
| #define CBAR (0xfffc) /* Configuration Base Address (32-bit) */ |
| #define CBAR_ENB (0x80000000) |
| #define CBAR_KEY (0X000000CB) |
| if (c->x86_model == 9 || c->x86_model == 10) { |
| if (inl(CBAR) & CBAR_ENB) |
| outl(0 | CBAR_KEY, CBAR); |
| } |
| #endif |
| } |
| |
| static void init_amd_k6(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_X86_32 |
| u32 l, h; |
| int mbytes = get_num_physpages() >> (20-PAGE_SHIFT); |
| |
| if (c->x86_model < 6) { |
| /* Based on AMD doc 20734R - June 2000 */ |
| if (c->x86_model == 0) { |
| clear_cpu_cap(c, X86_FEATURE_APIC); |
| set_cpu_cap(c, X86_FEATURE_PGE); |
| } |
| return; |
| } |
| |
| if (c->x86_model == 6 && c->x86_stepping == 1) { |
| const int K6_BUG_LOOP = 1000000; |
| int n; |
| void (*f_vide)(void); |
| u64 d, d2; |
| |
| pr_info("AMD K6 stepping B detected - "); |
| |
| /* |
| * It looks like AMD fixed the 2.6.2 bug and improved indirect |
| * calls at the same time. |
| */ |
| |
| n = K6_BUG_LOOP; |
| f_vide = vide; |
| OPTIMIZER_HIDE_VAR(f_vide); |
| d = rdtsc(); |
| while (n--) |
| f_vide(); |
| d2 = rdtsc(); |
| d = d2-d; |
| |
| if (d > 20*K6_BUG_LOOP) |
| pr_cont("system stability may be impaired when more than 32 MB are used.\n"); |
| else |
| pr_cont("probably OK (after B9730xxxx).\n"); |
| } |
| |
| /* K6 with old style WHCR */ |
| if (c->x86_model < 8 || |
| (c->x86_model == 8 && c->x86_stepping < 8)) { |
| /* We can only write allocate on the low 508Mb */ |
| if (mbytes > 508) |
| mbytes = 508; |
| |
| rdmsr(MSR_K6_WHCR, l, h); |
| if ((l&0x0000FFFF) == 0) { |
| unsigned long flags; |
| l = (1<<0)|((mbytes/4)<<1); |
| local_irq_save(flags); |
| wbinvd(); |
| wrmsr(MSR_K6_WHCR, l, h); |
| local_irq_restore(flags); |
| pr_info("Enabling old style K6 write allocation for %d Mb\n", |
| mbytes); |
| } |
| return; |
| } |
| |
| if ((c->x86_model == 8 && c->x86_stepping > 7) || |
| c->x86_model == 9 || c->x86_model == 13) { |
| /* The more serious chips .. */ |
| |
| if (mbytes > 4092) |
| mbytes = 4092; |
| |
| rdmsr(MSR_K6_WHCR, l, h); |
| if ((l&0xFFFF0000) == 0) { |
| unsigned long flags; |
| l = ((mbytes>>2)<<22)|(1<<16); |
| local_irq_save(flags); |
| wbinvd(); |
| wrmsr(MSR_K6_WHCR, l, h); |
| local_irq_restore(flags); |
| pr_info("Enabling new style K6 write allocation for %d Mb\n", |
| mbytes); |
| } |
| |
| return; |
| } |
| |
| if (c->x86_model == 10) { |
| /* AMD Geode LX is model 10 */ |
| /* placeholder for any needed mods */ |
| return; |
| } |
| #endif |
| } |
| |
| static void init_amd_k7(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_X86_32 |
| u32 l, h; |
| |
| /* |
| * Bit 15 of Athlon specific MSR 15, needs to be 0 |
| * to enable SSE on Palomino/Morgan/Barton CPU's. |
| * If the BIOS didn't enable it already, enable it here. |
| */ |
| if (c->x86_model >= 6 && c->x86_model <= 10) { |
| if (!cpu_has(c, X86_FEATURE_XMM)) { |
| pr_info("Enabling disabled K7/SSE Support.\n"); |
| msr_clear_bit(MSR_K7_HWCR, 15); |
| set_cpu_cap(c, X86_FEATURE_XMM); |
| } |
| } |
| |
| /* |
| * It's been determined by AMD that Athlons since model 8 stepping 1 |
| * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx |
| * As per AMD technical note 27212 0.2 |
| */ |
| if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) { |
| rdmsr(MSR_K7_CLK_CTL, l, h); |
| if ((l & 0xfff00000) != 0x20000000) { |
| pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n", |
| l, ((l & 0x000fffff)|0x20000000)); |
| wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h); |
| } |
| } |
| |
| set_cpu_cap(c, X86_FEATURE_K7); |
| |
| /* calling is from identify_secondary_cpu() ? */ |
| if (!c->cpu_index) |
| return; |
| |
| /* |
| * Certain Athlons might work (for various values of 'work') in SMP |
| * but they are not certified as MP capable. |
| */ |
| /* Athlon 660/661 is valid. */ |
| if ((c->x86_model == 6) && ((c->x86_stepping == 0) || |
| (c->x86_stepping == 1))) |
| return; |
| |
| /* Duron 670 is valid */ |
| if ((c->x86_model == 7) && (c->x86_stepping == 0)) |
| return; |
| |
| /* |
| * Athlon 662, Duron 671, and Athlon >model 7 have capability |
| * bit. It's worth noting that the A5 stepping (662) of some |
| * Athlon XP's have the MP bit set. |
| * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for |
| * more. |
| */ |
| if (((c->x86_model == 6) && (c->x86_stepping >= 2)) || |
| ((c->x86_model == 7) && (c->x86_stepping >= 1)) || |
| (c->x86_model > 7)) |
| if (cpu_has(c, X86_FEATURE_MP)) |
| return; |
| |
| /* If we get here, not a certified SMP capable AMD system. */ |
| |
| /* |
| * Don't taint if we are running SMP kernel on a single non-MP |
| * approved Athlon |
| */ |
| WARN_ONCE(1, "WARNING: This combination of AMD" |
| " processors is not suitable for SMP.\n"); |
| add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); |
| #endif |
| } |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * To workaround broken NUMA config. Read the comment in |
| * srat_detect_node(). |
| */ |
| static int nearby_node(int apicid) |
| { |
| int i, node; |
| |
| for (i = apicid - 1; i >= 0; i--) { |
| node = __apicid_to_node[i]; |
| if (node != NUMA_NO_NODE && node_online(node)) |
| return node; |
| } |
| for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { |
| node = __apicid_to_node[i]; |
| if (node != NUMA_NO_NODE && node_online(node)) |
| return node; |
| } |
| return first_node(node_online_map); /* Shouldn't happen */ |
| } |
| #endif |
| |
| /* |
| * Fix up cpu_core_id for pre-F17h systems to be in the |
| * [0 .. cores_per_node - 1] range. Not really needed but |
| * kept so as not to break existing setups. |
| */ |
| static void legacy_fixup_core_id(struct cpuinfo_x86 *c) |
| { |
| u32 cus_per_node; |
| |
| if (c->x86 >= 0x17) |
| return; |
| |
| cus_per_node = c->x86_max_cores / nodes_per_socket; |
| c->cpu_core_id %= cus_per_node; |
| } |
| |
| |
| static void amd_get_topology_early(struct cpuinfo_x86 *c) |
| { |
| if (cpu_has(c, X86_FEATURE_TOPOEXT)) |
| smp_num_siblings = ((cpuid_ebx(0x8000001e) >> 8) & 0xff) + 1; |
| } |
| |
| /* |
| * Fixup core topology information for |
| * (1) AMD multi-node processors |
| * Assumption: Number of cores in each internal node is the same. |
| * (2) AMD processors supporting compute units |
| */ |
| static void amd_get_topology(struct cpuinfo_x86 *c) |
| { |
| u8 node_id; |
| int cpu = smp_processor_id(); |
| |
| /* get information required for multi-node processors */ |
| if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { |
| int err; |
| u32 eax, ebx, ecx, edx; |
| |
| cpuid(0x8000001e, &eax, &ebx, &ecx, &edx); |
| |
| node_id = ecx & 0xff; |
| |
| if (c->x86 == 0x15) |
| c->cu_id = ebx & 0xff; |
| |
| if (c->x86 >= 0x17) { |
| c->cpu_core_id = ebx & 0xff; |
| |
| if (smp_num_siblings > 1) |
| c->x86_max_cores /= smp_num_siblings; |
| } |
| |
| /* |
| * In case leaf B is available, use it to derive |
| * topology information. |
| */ |
| err = detect_extended_topology(c); |
| if (!err) |
| c->x86_coreid_bits = get_count_order(c->x86_max_cores); |
| |
| cacheinfo_amd_init_llc_id(c, cpu, node_id); |
| |
| } else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) { |
| u64 value; |
| |
| rdmsrl(MSR_FAM10H_NODE_ID, value); |
| node_id = value & 7; |
| |
| per_cpu(cpu_llc_id, cpu) = node_id; |
| } else |
| return; |
| |
| if (nodes_per_socket > 1) { |
| set_cpu_cap(c, X86_FEATURE_AMD_DCM); |
| legacy_fixup_core_id(c); |
| } |
| } |
| |
| /* |
| * On a AMD dual core setup the lower bits of the APIC id distinguish the cores. |
| * Assumes number of cores is a power of two. |
| */ |
| static void amd_detect_cmp(struct cpuinfo_x86 *c) |
| { |
| unsigned bits; |
| int cpu = smp_processor_id(); |
| |
| bits = c->x86_coreid_bits; |
| /* Low order bits define the core id (index of core in socket) */ |
| c->cpu_core_id = c->initial_apicid & ((1 << bits)-1); |
| /* Convert the initial APIC ID into the socket ID */ |
| c->phys_proc_id = c->initial_apicid >> bits; |
| /* use socket ID also for last level cache */ |
| per_cpu(cpu_llc_id, cpu) = c->phys_proc_id; |
| } |
| |
| u16 amd_get_nb_id(int cpu) |
| { |
| return per_cpu(cpu_llc_id, cpu); |
| } |
| EXPORT_SYMBOL_GPL(amd_get_nb_id); |
| |
| u32 amd_get_nodes_per_socket(void) |
| { |
| return nodes_per_socket; |
| } |
| EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket); |
| |
| static void srat_detect_node(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_NUMA |
| int cpu = smp_processor_id(); |
| int node; |
| unsigned apicid = c->apicid; |
| |
| node = numa_cpu_node(cpu); |
| if (node == NUMA_NO_NODE) |
| node = per_cpu(cpu_llc_id, cpu); |
| |
| /* |
| * On multi-fabric platform (e.g. Numascale NumaChip) a |
| * platform-specific handler needs to be called to fixup some |
| * IDs of the CPU. |
| */ |
| if (x86_cpuinit.fixup_cpu_id) |
| x86_cpuinit.fixup_cpu_id(c, node); |
| |
| if (!node_online(node)) { |
| /* |
| * Two possibilities here: |
| * |
| * - The CPU is missing memory and no node was created. In |
| * that case try picking one from a nearby CPU. |
| * |
| * - The APIC IDs differ from the HyperTransport node IDs |
| * which the K8 northbridge parsing fills in. Assume |
| * they are all increased by a constant offset, but in |
| * the same order as the HT nodeids. If that doesn't |
| * result in a usable node fall back to the path for the |
| * previous case. |
| * |
| * This workaround operates directly on the mapping between |
| * APIC ID and NUMA node, assuming certain relationship |
| * between APIC ID, HT node ID and NUMA topology. As going |
| * through CPU mapping may alter the outcome, directly |
| * access __apicid_to_node[]. |
| */ |
| int ht_nodeid = c->initial_apicid; |
| |
| if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE) |
| node = __apicid_to_node[ht_nodeid]; |
| /* Pick a nearby node */ |
| if (!node_online(node)) |
| node = nearby_node(apicid); |
| } |
| numa_set_node(cpu, node); |
| #endif |
| } |
| |
| static void early_init_amd_mc(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_SMP |
| unsigned bits, ecx; |
| |
| /* Multi core CPU? */ |
| if (c->extended_cpuid_level < 0x80000008) |
| return; |
| |
| ecx = cpuid_ecx(0x80000008); |
| |
| c->x86_max_cores = (ecx & 0xff) + 1; |
| |
| /* CPU telling us the core id bits shift? */ |
| bits = (ecx >> 12) & 0xF; |
| |
| /* Otherwise recompute */ |
| if (bits == 0) { |
| while ((1 << bits) < c->x86_max_cores) |
| bits++; |
| } |
| |
| c->x86_coreid_bits = bits; |
| #endif |
| } |
| |
| static void bsp_init_amd(struct cpuinfo_x86 *c) |
| { |
| |
| #ifdef CONFIG_X86_64 |
| if (c->x86 >= 0xf) { |
| unsigned long long tseg; |
| |
| /* |
| * Split up direct mapping around the TSEG SMM area. |
| * Don't do it for gbpages because there seems very little |
| * benefit in doing so. |
| */ |
| if (!rdmsrl_safe(MSR_K8_TSEG_ADDR, &tseg)) { |
| unsigned long pfn = tseg >> PAGE_SHIFT; |
| |
| pr_debug("tseg: %010llx\n", tseg); |
| if (pfn_range_is_mapped(pfn, pfn + 1)) |
| set_memory_4k((unsigned long)__va(tseg), 1); |
| } |
| } |
| #endif |
| |
| if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { |
| |
| if (c->x86 > 0x10 || |
| (c->x86 == 0x10 && c->x86_model >= 0x2)) { |
| u64 val; |
| |
| rdmsrl(MSR_K7_HWCR, val); |
| if (!(val & BIT(24))) |
| pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n"); |
| } |
| } |
| |
| if (c->x86 == 0x15) { |
| unsigned long upperbit; |
| u32 cpuid, assoc; |
| |
| cpuid = cpuid_edx(0x80000005); |
| assoc = cpuid >> 16 & 0xff; |
| upperbit = ((cpuid >> 24) << 10) / assoc; |
| |
| va_align.mask = (upperbit - 1) & PAGE_MASK; |
| va_align.flags = ALIGN_VA_32 | ALIGN_VA_64; |
| |
| /* A random value per boot for bit slice [12:upper_bit) */ |
| va_align.bits = get_random_int() & va_align.mask; |
| } |
| |
| if (cpu_has(c, X86_FEATURE_MWAITX)) |
| use_mwaitx_delay(); |
| |
| if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { |
| u32 ecx; |
| |
| ecx = cpuid_ecx(0x8000001e); |
| nodes_per_socket = ((ecx >> 8) & 7) + 1; |
| } else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) { |
| u64 value; |
| |
| rdmsrl(MSR_FAM10H_NODE_ID, value); |
| nodes_per_socket = ((value >> 3) & 7) + 1; |
| } |
| |
| if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) && |
| !boot_cpu_has(X86_FEATURE_VIRT_SSBD) && |
| c->x86 >= 0x15 && c->x86 <= 0x17) { |
| unsigned int bit; |
| |
| switch (c->x86) { |
| case 0x15: bit = 54; break; |
| case 0x16: bit = 33; break; |
| case 0x17: bit = 10; break; |
| default: return; |
| } |
| /* |
| * Try to cache the base value so further operations can |
| * avoid RMW. If that faults, do not enable SSBD. |
| */ |
| if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) { |
| setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD); |
| setup_force_cpu_cap(X86_FEATURE_SSBD); |
| x86_amd_ls_cfg_ssbd_mask = 1ULL << bit; |
| } |
| } |
| } |
| |
| static void early_detect_mem_encrypt(struct cpuinfo_x86 *c) |
| { |
| u64 msr; |
| |
| /* |
| * BIOS support is required for SME and SEV. |
| * For SME: If BIOS has enabled SME then adjust x86_phys_bits by |
| * the SME physical address space reduction value. |
| * If BIOS has not enabled SME then don't advertise the |
| * SME feature (set in scattered.c). |
| * For SEV: If BIOS has not enabled SEV then don't advertise the |
| * SEV feature (set in scattered.c). |
| * |
| * In all cases, since support for SME and SEV requires long mode, |
| * don't advertise the feature under CONFIG_X86_32. |
| */ |
| if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) { |
| /* Check if memory encryption is enabled */ |
| rdmsrl(MSR_K8_SYSCFG, msr); |
| if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) |
| goto clear_all; |
| |
| /* |
| * Always adjust physical address bits. Even though this |
| * will be a value above 32-bits this is still done for |
| * CONFIG_X86_32 so that accurate values are reported. |
| */ |
| c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f; |
| |
| if (IS_ENABLED(CONFIG_X86_32)) |
| goto clear_all; |
| |
| rdmsrl(MSR_K7_HWCR, msr); |
| if (!(msr & MSR_K7_HWCR_SMMLOCK)) |
| goto clear_sev; |
| |
| return; |
| |
| clear_all: |
| clear_cpu_cap(c, X86_FEATURE_SME); |
| clear_sev: |
| clear_cpu_cap(c, X86_FEATURE_SEV); |
| } |
| } |
| |
| static void early_init_amd(struct cpuinfo_x86 *c) |
| { |
| u64 value; |
| u32 dummy; |
| |
| early_init_amd_mc(c); |
| |
| rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy); |
| |
| /* |
| * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate |
| * with P/T states and does not stop in deep C-states |
| */ |
| if (c->x86_power & (1 << 8)) { |
| set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); |
| set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); |
| } |
| |
| /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */ |
| if (c->x86_power & BIT(12)) |
| set_cpu_cap(c, X86_FEATURE_ACC_POWER); |
| |
| #ifdef CONFIG_X86_64 |
| set_cpu_cap(c, X86_FEATURE_SYSCALL32); |
| #else |
| /* Set MTRR capability flag if appropriate */ |
| if (c->x86 == 5) |
| if (c->x86_model == 13 || c->x86_model == 9 || |
| (c->x86_model == 8 && c->x86_stepping >= 8)) |
| set_cpu_cap(c, X86_FEATURE_K6_MTRR); |
| #endif |
| #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI) |
| /* |
| * ApicID can always be treated as an 8-bit value for AMD APIC versions |
| * >= 0x10, but even old K8s came out of reset with version 0x10. So, we |
| * can safely set X86_FEATURE_EXTD_APICID unconditionally for families |
| * after 16h. |
| */ |
| if (boot_cpu_has(X86_FEATURE_APIC)) { |
| if (c->x86 > 0x16) |
| set_cpu_cap(c, X86_FEATURE_EXTD_APICID); |
| else if (c->x86 >= 0xf) { |
| /* check CPU config space for extended APIC ID */ |
| unsigned int val; |
| |
| val = read_pci_config(0, 24, 0, 0x68); |
| if ((val >> 17 & 0x3) == 0x3) |
| set_cpu_cap(c, X86_FEATURE_EXTD_APICID); |
| } |
| } |
| #endif |
| |
| /* |
| * This is only needed to tell the kernel whether to use VMCALL |
| * and VMMCALL. VMMCALL is never executed except under virt, so |
| * we can set it unconditionally. |
| */ |
| set_cpu_cap(c, X86_FEATURE_VMMCALL); |
| |
| /* F16h erratum 793, CVE-2013-6885 */ |
| if (c->x86 == 0x16 && c->x86_model <= 0xf) |
| msr_set_bit(MSR_AMD64_LS_CFG, 15); |
| |
| /* |
| * Check whether the machine is affected by erratum 400. This is |
| * used to select the proper idle routine and to enable the check |
| * whether the machine is affected in arch_post_acpi_init(), which |
| * sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. |
| */ |
| if (cpu_has_amd_erratum(c, amd_erratum_400)) |
| set_cpu_bug(c, X86_BUG_AMD_E400); |
| |
| early_detect_mem_encrypt(c); |
| |
| /* Re-enable TopologyExtensions if switched off by BIOS */ |
| if (c->x86 == 0x15 && |
| (c->x86_model >= 0x10 && c->x86_model <= 0x6f) && |
| !cpu_has(c, X86_FEATURE_TOPOEXT)) { |
| |
| if (msr_set_bit(0xc0011005, 54) > 0) { |
| rdmsrl(0xc0011005, value); |
| if (value & BIT_64(54)) { |
| set_cpu_cap(c, X86_FEATURE_TOPOEXT); |
| pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n"); |
| } |
| } |
| } |
| |
| amd_get_topology_early(c); |
| } |
| |
| static void init_amd_k8(struct cpuinfo_x86 *c) |
| { |
| u32 level; |
| u64 value; |
| |
| /* On C+ stepping K8 rep microcode works well for copy/memset */ |
| level = cpuid_eax(1); |
| if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58) |
| set_cpu_cap(c, X86_FEATURE_REP_GOOD); |
| |
| /* |
| * Some BIOSes incorrectly force this feature, but only K8 revision D |
| * (model = 0x14) and later actually support it. |
| * (AMD Erratum #110, docId: 25759). |
| */ |
| if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) { |
| clear_cpu_cap(c, X86_FEATURE_LAHF_LM); |
| if (!rdmsrl_amd_safe(0xc001100d, &value)) { |
| value &= ~BIT_64(32); |
| wrmsrl_amd_safe(0xc001100d, value); |
| } |
| } |
| |
| if (!c->x86_model_id[0]) |
| strcpy(c->x86_model_id, "Hammer"); |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Disable TLB flush filter by setting HWCR.FFDIS on K8 |
| * bit 6 of msr C001_0015 |
| * |
| * Errata 63 for SH-B3 steppings |
| * Errata 122 for all steppings (F+ have it disabled by default) |
| */ |
| msr_set_bit(MSR_K7_HWCR, 6); |
| #endif |
| set_cpu_bug(c, X86_BUG_SWAPGS_FENCE); |
| } |
| |
| static void init_amd_gh(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_MMCONF_FAM10H |
| /* do this for boot cpu */ |
| if (c == &boot_cpu_data) |
| check_enable_amd_mmconf_dmi(); |
| |
| fam10h_check_enable_mmcfg(); |
| #endif |
| |
| /* |
| * Disable GART TLB Walk Errors on Fam10h. We do this here because this |
| * is always needed when GART is enabled, even in a kernel which has no |
| * MCE support built in. BIOS should disable GartTlbWlk Errors already. |
| * If it doesn't, we do it here as suggested by the BKDG. |
| * |
| * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012 |
| */ |
| msr_set_bit(MSR_AMD64_MCx_MASK(4), 10); |
| |
| /* |
| * On family 10h BIOS may not have properly enabled WC+ support, causing |
| * it to be converted to CD memtype. This may result in performance |
| * degradation for certain nested-paging guests. Prevent this conversion |
| * by clearing bit 24 in MSR_AMD64_BU_CFG2. |
| * |
| * NOTE: we want to use the _safe accessors so as not to #GP kvm |
| * guests on older kvm hosts. |
| */ |
| msr_clear_bit(MSR_AMD64_BU_CFG2, 24); |
| |
| if (cpu_has_amd_erratum(c, amd_erratum_383)) |
| set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH); |
| } |
| |
| #define MSR_AMD64_DE_CFG 0xC0011029 |
| |
| static void init_amd_ln(struct cpuinfo_x86 *c) |
| { |
| /* |
| * Apply erratum 665 fix unconditionally so machines without a BIOS |
| * fix work. |
| */ |
| msr_set_bit(MSR_AMD64_DE_CFG, 31); |
| } |
| |
| static void init_amd_bd(struct cpuinfo_x86 *c) |
| { |
| u64 value; |
| |
| /* |
| * The way access filter has a performance penalty on some workloads. |
| * Disable it on the affected CPUs. |
| */ |
| if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) { |
| if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) { |
| value |= 0x1E; |
| wrmsrl_safe(MSR_F15H_IC_CFG, value); |
| } |
| } |
| } |
| |
| static void init_amd_zn(struct cpuinfo_x86 *c) |
| { |
| set_cpu_cap(c, X86_FEATURE_ZEN); |
| /* |
| * Fix erratum 1076: CPB feature bit not being set in CPUID. It affects |
| * all up to and including B1. |
| */ |
| if (c->x86_model <= 1 && c->x86_stepping <= 1) |
| set_cpu_cap(c, X86_FEATURE_CPB); |
| } |
| |
| static void init_amd(struct cpuinfo_x86 *c) |
| { |
| early_init_amd(c); |
| |
| /* |
| * Bit 31 in normal CPUID used for nonstandard 3DNow ID; |
| * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway |
| */ |
| clear_cpu_cap(c, 0*32+31); |
| |
| if (c->x86 >= 0x10) |
| set_cpu_cap(c, X86_FEATURE_REP_GOOD); |
| |
| /* get apicid instead of initial apic id from cpuid */ |
| c->apicid = hard_smp_processor_id(); |
| |
| /* K6s reports MCEs but don't actually have all the MSRs */ |
| if (c->x86 < 6) |
| clear_cpu_cap(c, X86_FEATURE_MCE); |
| |
| switch (c->x86) { |
| case 4: init_amd_k5(c); break; |
| case 5: init_amd_k6(c); break; |
| case 6: init_amd_k7(c); break; |
| case 0xf: init_amd_k8(c); break; |
| case 0x10: init_amd_gh(c); break; |
| case 0x12: init_amd_ln(c); break; |
| case 0x15: init_amd_bd(c); break; |
| case 0x17: init_amd_zn(c); break; |
| } |
| |
| /* |
| * Enable workaround for FXSAVE leak on CPUs |
| * without a XSaveErPtr feature |
| */ |
| if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR))) |
| set_cpu_bug(c, X86_BUG_FXSAVE_LEAK); |
| |
| cpu_detect_cache_sizes(c); |
| |
| amd_detect_cmp(c); |
| amd_get_topology(c); |
| srat_detect_node(c); |
| |
| init_amd_cacheinfo(c); |
| |
| if (c->x86 >= 0xf) |
| set_cpu_cap(c, X86_FEATURE_K8); |
| |
| if (cpu_has(c, X86_FEATURE_XMM2)) { |
| unsigned long long val; |
| int ret; |
| |
| /* |
| * A serializing LFENCE has less overhead than MFENCE, so |
| * use it for execution serialization. On families which |
| * don't have that MSR, LFENCE is already serializing. |
| * msr_set_bit() uses the safe accessors, too, even if the MSR |
| * is not present. |
| */ |
| msr_set_bit(MSR_F10H_DECFG, |
| MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT); |
| |
| /* |
| * Verify that the MSR write was successful (could be running |
| * under a hypervisor) and only then assume that LFENCE is |
| * serializing. |
| */ |
| ret = rdmsrl_safe(MSR_F10H_DECFG, &val); |
| if (!ret && (val & MSR_F10H_DECFG_LFENCE_SERIALIZE)) { |
| /* A serializing LFENCE stops RDTSC speculation */ |
| set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); |
| } else { |
| /* MFENCE stops RDTSC speculation */ |
| set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC); |
| } |
| } |
| |
| /* |
| * Family 0x12 and above processors have APIC timer |
| * running in deep C states. |
| */ |
| if (c->x86 > 0x11) |
| set_cpu_cap(c, X86_FEATURE_ARAT); |
| |
| /* 3DNow or LM implies PREFETCHW */ |
| if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH)) |
| if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM)) |
| set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH); |
| |
| /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */ |
| if (!cpu_has(c, X86_FEATURE_XENPV)) |
| set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size) |
| { |
| /* AMD errata T13 (order #21922) */ |
| if ((c->x86 == 6)) { |
| /* Duron Rev A0 */ |
| if (c->x86_model == 3 && c->x86_stepping == 0) |
| size = 64; |
| /* Tbird rev A1/A2 */ |
| if (c->x86_model == 4 && |
| (c->x86_stepping == 0 || c->x86_stepping == 1)) |
| size = 256; |
| } |
| return size; |
| } |
| #endif |
| |
| static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c) |
| { |
| u32 ebx, eax, ecx, edx; |
| u16 mask = 0xfff; |
| |
| if (c->x86 < 0xf) |
| return; |
| |
| if (c->extended_cpuid_level < 0x80000006) |
| return; |
| |
| cpuid(0x80000006, &eax, &ebx, &ecx, &edx); |
| |
| tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask; |
| tlb_lli_4k[ENTRIES] = ebx & mask; |
| |
| /* |
| * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB |
| * characteristics from the CPUID function 0x80000005 instead. |
| */ |
| if (c->x86 == 0xf) { |
| cpuid(0x80000005, &eax, &ebx, &ecx, &edx); |
| mask = 0xff; |
| } |
| |
| /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ |
| if (!((eax >> 16) & mask)) |
| tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff; |
| else |
| tlb_lld_2m[ENTRIES] = (eax >> 16) & mask; |
| |
| /* a 4M entry uses two 2M entries */ |
| tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1; |
| |
| /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ |
| if (!(eax & mask)) { |
| /* Erratum 658 */ |
| if (c->x86 == 0x15 && c->x86_model <= 0x1f) { |
| tlb_lli_2m[ENTRIES] = 1024; |
| } else { |
| cpuid(0x80000005, &eax, &ebx, &ecx, &edx); |
| tlb_lli_2m[ENTRIES] = eax & 0xff; |
| } |
| } else |
| tlb_lli_2m[ENTRIES] = eax & mask; |
| |
| tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1; |
| } |
| |
| static const struct cpu_dev amd_cpu_dev = { |
| .c_vendor = "AMD", |
| .c_ident = { "AuthenticAMD" }, |
| #ifdef CONFIG_X86_32 |
| .legacy_models = { |
| { .family = 4, .model_names = |
| { |
| [3] = "486 DX/2", |
| [7] = "486 DX/2-WB", |
| [8] = "486 DX/4", |
| [9] = "486 DX/4-WB", |
| [14] = "Am5x86-WT", |
| [15] = "Am5x86-WB" |
| } |
| }, |
| }, |
| .legacy_cache_size = amd_size_cache, |
| #endif |
| .c_early_init = early_init_amd, |
| .c_detect_tlb = cpu_detect_tlb_amd, |
| .c_bsp_init = bsp_init_amd, |
| .c_init = init_amd, |
| .c_x86_vendor = X86_VENDOR_AMD, |
| }; |
| |
| cpu_dev_register(amd_cpu_dev); |
| |
| /* |
| * AMD errata checking |
| * |
| * Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or |
| * AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that |
| * have an OSVW id assigned, which it takes as first argument. Both take a |
| * variable number of family-specific model-stepping ranges created by |
| * AMD_MODEL_RANGE(). |
| * |
| * Example: |
| * |
| * const int amd_erratum_319[] = |
| * AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2), |
| * AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0), |
| * AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0)); |
| */ |
| |
| #define AMD_LEGACY_ERRATUM(...) { -1, __VA_ARGS__, 0 } |
| #define AMD_OSVW_ERRATUM(osvw_id, ...) { osvw_id, __VA_ARGS__, 0 } |
| #define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \ |
| ((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end)) |
| #define AMD_MODEL_RANGE_FAMILY(range) (((range) >> 24) & 0xff) |
| #define AMD_MODEL_RANGE_START(range) (((range) >> 12) & 0xfff) |
| #define AMD_MODEL_RANGE_END(range) ((range) & 0xfff) |
| |
| static const int amd_erratum_400[] = |
| AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf), |
| AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf)); |
| |
| static const int amd_erratum_383[] = |
| AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf)); |
| |
| |
| static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum) |
| { |
| int osvw_id = *erratum++; |
| u32 range; |
| u32 ms; |
| |
| if (osvw_id >= 0 && osvw_id < 65536 && |
| cpu_has(cpu, X86_FEATURE_OSVW)) { |
| u64 osvw_len; |
| |
| rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len); |
| if (osvw_id < osvw_len) { |
| u64 osvw_bits; |
| |
| rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6), |
| osvw_bits); |
| return osvw_bits & (1ULL << (osvw_id & 0x3f)); |
| } |
| } |
| |
| /* OSVW unavailable or ID unknown, match family-model-stepping range */ |
| ms = (cpu->x86_model << 4) | cpu->x86_stepping; |
| while ((range = *erratum++)) |
| if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) && |
| (ms >= AMD_MODEL_RANGE_START(range)) && |
| (ms <= AMD_MODEL_RANGE_END(range))) |
| return true; |
| |
| return false; |
| } |
| |
| void set_dr_addr_mask(unsigned long mask, int dr) |
| { |
| if (!boot_cpu_has(X86_FEATURE_BPEXT)) |
| return; |
| |
| switch (dr) { |
| case 0: |
| wrmsr(MSR_F16H_DR0_ADDR_MASK, mask, 0); |
| break; |
| case 1: |
| case 2: |
| case 3: |
| wrmsr(MSR_F16H_DR1_ADDR_MASK - 1 + dr, mask, 0); |
| break; |
| default: |
| break; |
| } |
| } |