blob: 449e7b147bb0adf8a2c63b4d42b19e3e57c1a6dc [file] [log] [blame]
/* xwrap.c - wrappers around existing library functions.
*
* Functions with the x prefix are wrappers that either succeed or kill the
* program with an error message, but never return failure. They usually have
* the same arguments and return value as the function they wrap.
*
* Copyright 2006 Rob Landley <rob@landley.net>
*/
#include "toys.h"
// strcpy and strncat with size checking. Size is the total space in "dest",
// including null terminator. Exit if there's not enough space for the string
// (including space for the null terminator), because silently truncating is
// still broken behavior. (And leaving the string unterminated is INSANE.)
void xstrncpy(char *dest, char *src, size_t size)
{
if (strlen(src)+1 > size) error_exit("'%s' > %ld bytes", src, (long)size);
strcpy(dest, src);
}
void xstrncat(char *dest, char *src, size_t size)
{
long len = strlen(dest);
if (len+strlen(src)+1 > size)
error_exit("'%s%s' > %ld bytes", dest, src, (long)size);
strcpy(dest+len, src);
}
// We replaced exit(), _exit(), and atexit() with xexit(), _xexit(), and
// sigatexit(). This gives _xexit() the option to siglongjmp(toys.rebound, 1)
// instead of exiting, lets xexit() report stdout flush failures to stderr
// and change the exit code to indicate error, lets our toys.exit function
// change happen for signal exit paths and lets us remove the functions
// after we've called them.
void _xexit(void)
{
if (toys.rebound) siglongjmp(*toys.rebound, 1);
_exit(toys.exitval);
}
void xexit(void)
{
// Call toys.xexit functions in reverse order added.
while (toys.xexit) {
struct arg_list *al = llist_pop(&toys.xexit);
// typecast xexit->arg to a function pointer, then call it using invalid
// signal 0 to let signal handlers tell actual signal from regular exit.
((void (*)(int))(al->arg))(0);
free(al);
}
xflush(1);
_xexit();
}
void *xmmap(void *addr, size_t length, int prot, int flags, int fd, off_t off)
{
void *ret = mmap(addr, length, prot, flags, fd, off);
if (ret == MAP_FAILED) perror_exit("mmap");
return ret;
}
// Die unless we can allocate memory.
void *xmalloc(size_t size)
{
void *ret = malloc(size);
if (!ret) error_exit("xmalloc(%ld)", (long)size);
return ret;
}
// Die unless we can allocate prezeroed memory.
void *xzalloc(size_t size)
{
void *ret = xmalloc(size);
memset(ret, 0, size);
return ret;
}
// Die unless we can change the size of an existing allocation, possibly
// moving it. (Notice different arguments from libc function.)
void *xrealloc(void *ptr, size_t size)
{
ptr = realloc(ptr, size);
if (!ptr) error_exit("xrealloc");
return ptr;
}
// Die unless we can allocate a copy of this many bytes of string.
char *xstrndup(char *s, size_t n)
{
char *ret = strndup(s, n);
if (!ret) error_exit("xstrndup");
return ret;
}
// Die unless we can allocate a copy of this string.
char *xstrdup(char *s)
{
return xstrndup(s, strlen(s));
}
void *xmemdup(void *s, long len)
{
void *ret = xmalloc(len);
memcpy(ret, s, len);
return ret;
}
// Die unless we can allocate enough space to sprintf() into.
char *xmprintf(char *format, ...)
{
va_list va, va2;
int len;
char *ret;
va_start(va, format);
va_copy(va2, va);
// How long is it?
len = vsnprintf(0, 0, format, va)+1;
va_end(va);
// Allocate and do the sprintf()
ret = xmalloc(len);
vsnprintf(ret, len, format, va2);
va_end(va2);
return ret;
}
// if !flush just check for error on stdout without flushing
void xflush(int flush)
{
if ((flush && fflush(0)) || ferror(stdout))
if (!toys.exitval) perror_msg("write");
}
void xprintf(char *format, ...)
{
va_list va;
va_start(va, format);
vprintf(format, va);
va_end(va);
xflush(0);
}
// Put string with length (does not append newline)
void xputsl(char *s, int len)
{
xflush(1);
xwrite(1, s, len);
}
// xputs with no newline
void xputsn(char *s)
{
xputsl(s, strlen(s));
}
// Write string to stdout with newline, flushing and checking for errors
void xputs(char *s)
{
puts(s);
xflush(0);
}
void xputc(char c)
{
if (EOF == fputc(c, stdout)) perror_exit("write");
xflush(0);
}
// daemonize via vfork(). Does not chdir("/"), caller should do that first
// note: restarts process from command_main()
void xvdaemon(void)
{
int fd;
// vfork and exec /proc/self/exe
if (toys.stacktop) {
xpopen_both(0, 0);
_exit(0);
}
// new session id, point fd 0-2 at /dev/null, detach from tty
setsid();
close(0);
xopen_stdio("/dev/null", O_RDWR);
dup2(0, 1);
if (-1 != (fd = open("/dev/tty", O_RDONLY))) {
ioctl(fd, TIOCNOTTY);
close(fd);
}
dup2(0, 2);
}
// This is called through the XVFORK macro because parent/child of vfork
// share a stack, so child returning from a function would stomp the return
// address parent would need. Solution: make vfork() an argument so processes
// diverge before function gets called.
pid_t __attribute__((returns_twice)) xvforkwrap(pid_t pid)
{
if (pid == -1) perror_exit("vfork");
// Signal to xexec() and friends that we vforked so can't recurse
if (!pid) toys.stacktop = 0;
return pid;
}
// Die unless we can exec argv[] (or run builtin command). Note that anything
// with a path isn't a builtin, so /bin/sh won't match the builtin sh.
void xexec(char **argv)
{
// Only recurse to builtin when we have multiplexer and !vfork context.
if (CFG_TOYBOX && !CFG_TOYBOX_NORECURSE)
if (toys.stacktop && !strchr(*argv, '/')) toy_exec(argv);
execvp(argv[0], argv);
toys.exitval = 126+(errno == ENOENT);
perror_msg("exec %s", argv[0]);
if (!toys.stacktop) _exit(toys.exitval);
xexit();
}
// Spawn child process, capturing stdin/stdout.
// argv[]: command to exec. If null, child re-runs original program with
// toys.stacktop zeroed.
// pipes[2]: Filehandle to move to stdin/stdout of new process.
// If -1, replace with pipe handle connected to stdin/stdout.
// NULL treated as {0, 1}, I.E. leave stdin/stdout as is
// return: pid of child process
pid_t xpopen_setup(char **argv, int *pipes, void (*callback)(char **argv))
{
int cestnepasun[4], pid;
// Make the pipes?
memset(cestnepasun, 0, sizeof(cestnepasun));
if (pipes) for (pid = 0; pid < 2; pid++) {
if (pipes[pid] != -1) continue;
if (pipe(cestnepasun+(2*pid))) perror_exit("pipe");
}
if (!(pid = CFG_TOYBOX_FORK ? xfork() : XVFORK())) {
// Child process: Dance of the stdin/stdout redirection.
// cestnepasun[1]->cestnepasun[0] and cestnepasun[3]->cestnepasun[2]
if (pipes) {
// if we had no stdin/out, pipe handles could overlap, so test for it
// and free up potentially overlapping pipe handles before reuse
// in child, close read end of output pipe, use write end as new stdout
if (cestnepasun[2]) {
close(cestnepasun[2]);
pipes[1] = cestnepasun[3];
}
// in child, close write end of input pipe, use read end as new stdin
if (cestnepasun[1]) {
close(cestnepasun[1]);
pipes[0] = cestnepasun[0];
}
// If swapping stdin/stdout, dup a filehandle that gets closed before use
if (!pipes[1]) pipes[1] = dup(0);
// Are we redirecting stdin?
if (pipes[0]) {
dup2(pipes[0], 0);
close(pipes[0]);
}
// Are we redirecting stdout?
if (pipes[1] != 1) {
dup2(pipes[1], 1);
close(pipes[1]);
}
}
if (callback) callback(argv);
if (argv) xexec(argv);
// In fork() case, force recursion because we know it's us.
if (CFG_TOYBOX_FORK) {
toy_init(toys.which, toys.argv);
toys.stacktop = 0;
toys.which->toy_main();
xexit();
// In vfork() case, exec /proc/self/exe with high bit of first letter set
// to tell main() we reentered.
} else {
char *s = "/proc/self/exe";
// We did a nommu-friendly vfork but must exec to continue.
// setting high bit of argv[0][0] to let new process know
**toys.argv |= 0x80;
execv(s, toys.argv);
if ((s = getenv("_"))) execv(s, toys.argv);
perror_msg_raw(s);
_exit(127);
}
}
// Parent process: vfork had a shared environment, clean up.
if (!CFG_TOYBOX_FORK) **toys.argv &= 0x7f;
if (pipes) {
if (cestnepasun[1]) {
pipes[0] = cestnepasun[1];
close(cestnepasun[0]);
}
if (cestnepasun[2]) {
pipes[1] = cestnepasun[2];
close(cestnepasun[3]);
}
}
return pid;
}
pid_t xpopen_both(char **argv, int *pipes)
{
return xpopen_setup(argv, pipes, 0);
}
// Wait for child process to exit, then return adjusted exit code.
int xwaitpid(pid_t pid)
{
int status;
while (-1 == waitpid(pid, &status, 0) && errno == EINTR) errno = 0;
return WIFEXITED(status) ? WEXITSTATUS(status) : WTERMSIG(status)+128;
}
int xpclose_both(pid_t pid, int *pipes)
{
if (pipes) {
close(pipes[0]);
close(pipes[1]);
}
return xwaitpid(pid);
}
// Wrapper to xpopen with a pipe for just one of stdin/stdout
pid_t xpopen(char **argv, int *pipe, int isstdout)
{
int pipes[2], pid;
pipes[0] = isstdout ? 0 : -1;
pipes[1] = isstdout ? -1 : 1;
pid = xpopen_both(argv, pipes);
*pipe = pid ? pipes[!!isstdout] : -1;
return pid;
}
int xpclose(pid_t pid, int pipe)
{
close(pipe);
return xpclose_both(pid, 0);
}
// Call xpopen and wait for it to finish, keeping existing stdin/stdout.
int xrun(char **argv)
{
return xpclose_both(xpopen_both(argv, 0), 0);
}
void xaccess(char *path, int flags)
{
if (access(path, flags)) perror_exit("Can't access '%s'", path);
}
// Die unless we can delete a file. (File must exist to be deleted.)
void xunlink(char *path)
{
if (unlink(path)) perror_exit("unlink '%s'", path);
}
// Die unless we can open/create a file, returning file descriptor.
// The meaning of O_CLOEXEC is reversed (it defaults on, pass it to disable)
// and WARN_ONLY tells us not to exit.
int xcreate_stdio(char *path, int flags, int mode)
{
int fd = open(path, (flags^O_CLOEXEC)&~WARN_ONLY, mode);
if (fd == -1) ((flags&WARN_ONLY) ? perror_msg_raw : perror_exit_raw)(path);
return fd;
}
// Die unless we can open a file, returning file descriptor.
int xopen_stdio(char *path, int flags)
{
return xcreate_stdio(path, flags, 0);
}
void xpipe(int *pp)
{
if (pipe(pp)) perror_exit("xpipe");
}
void xclose(int fd)
{
if (fd != -1 && close(fd)) perror_exit("xclose");
}
int xdup(int fd)
{
if (fd != -1) {
fd = dup(fd);
if (fd == -1) perror_exit("xdup");
}
return fd;
}
// Move file descriptor above stdin/stdout/stderr, using /dev/null to consume
// old one. (We should never be called with stdin/stdout/stderr closed, but...)
int notstdio(int fd)
{
if (fd<0) return fd;
while (fd<3) {
int fd2 = xdup(fd);
close(fd);
xopen_stdio("/dev/null", O_RDWR);
fd = fd2;
}
return fd;
}
void xrename(char *from, char *to)
{
if (rename(from, to)) perror_exit("rename %s -> %s", from, to);
}
int xtempfile(char *name, char **tempname)
{
int fd;
*tempname = xmprintf("%s%s", name, "XXXXXX");
if(-1 == (fd = mkstemp(*tempname))) error_exit("no temp file");
return fd;
}
// Create a file but don't return stdin/stdout/stderr
int xcreate(char *path, int flags, int mode)
{
return notstdio(xcreate_stdio(path, flags, mode));
}
// Open a file descriptor NOT in stdin/stdout/stderr
int xopen(char *path, int flags)
{
return notstdio(xopen_stdio(path, flags));
}
// Open read only, treating "-" as a synonym for stdin, defaulting to warn only
int openro(char *path, int flags)
{
if (!strcmp(path, "-")) return 0;
return xopen(path, flags^WARN_ONLY);
}
// Open read only, treating "-" as a synonym for stdin.
int xopenro(char *path)
{
return openro(path, O_RDONLY|WARN_ONLY);
}
FILE *xfdopen(int fd, char *mode)
{
FILE *f = fdopen(fd, mode);
if (!f) perror_exit("xfdopen");
return f;
}
// Die unless we can open/create a file, returning FILE *.
FILE *xfopen(char *path, char *mode)
{
FILE *f = fopen(path, mode);
if (!f) perror_exit("No file %s", path);
return f;
}
// Die if there's an error other than EOF.
size_t xread(int fd, void *buf, size_t len)
{
ssize_t ret = read(fd, buf, len);
if (ret < 0) perror_exit("xread");
return ret;
}
void xreadall(int fd, void *buf, size_t len)
{
if (len != readall(fd, buf, len)) perror_exit("xreadall");
}
// There's no xwriteall(), just xwrite(). When we read, there may or may not
// be more data waiting. When we write, there is data and it had better go
// somewhere.
void xwrite(int fd, void *buf, size_t len)
{
if (len != writeall(fd, buf, len)) perror_exit("xwrite");
}
// Die if lseek fails, probably due to being called on a pipe.
off_t xlseek(int fd, off_t offset, int whence)
{
offset = lseek(fd, offset, whence);
if (offset<0) perror_exit("lseek");
return offset;
}
char *xgetcwd(void)
{
char *buf = getcwd(NULL, 0);
if (!buf) perror_exit("xgetcwd");
return buf;
}
void xstat(char *path, struct stat *st)
{
if(stat(path, st)) perror_exit("Can't stat %s", path);
}
// Canonicalize path, even to file with one or more missing components at end.
// Returns allocated string for pathname or NULL if doesn't exist. Flags are:
// ABS_PATH:path to last component must exist ABS_FILE: whole path must exist
// ABS_KEEP:keep symlinks in path ABS_LAST: keep symlink at end of path
char *xabspath(char *path, int flags)
{
struct string_list *todo, *done = 0, *new, **tail;
int fd, track, len, try = 9999, dirfd = -1, missing = 0;
char *str;
// If the last file must exist, path to it must exist.
if (flags&ABS_FILE) flags |= ABS_PATH;
// If we don't resolve path's symlinks, don't resolve last symlink.
if (flags&ABS_KEEP) flags |= ABS_LAST;
// If this isn't an absolute path, start with cwd or $PWD.
if (*path != '/') {
if ((flags & ABS_KEEP) && (str = getenv("PWD")))
splitpath(path, splitpath(str, &todo));
else {
splitpath(path, splitpath(str = xgetcwd(), &todo));
free(str);
}
} else splitpath(path, &todo);
// Iterate through path components in todo, prepend processed ones to done.
while (todo) {
// break out of endless symlink loops
if (!try--) {
errno = ELOOP;
goto error;
}
// Remove . or .. component, tracking dirfd back up tree as necessary
str = (new = llist_pop(&todo))->str;
// track dirfd if this component must exist or we're resolving symlinks
track = ((flags>>!todo) & (ABS_PATH|ABS_KEEP)) ^ ABS_KEEP;
if (!done && track) dirfd = open("/", O_PATH);
if (*str=='.' && !str[1+((fd = str[1])=='.')]) {
free(new);
if (fd) {
if (done) free(llist_pop(&done));
if (missing) missing--;
else if (track) {
if (-1 == (fd = openat(dirfd, "..", O_PATH))) goto error;
close(dirfd);
dirfd = fd;
}
}
continue;
}
// Is this a symlink?
if (flags & (ABS_KEEP<<!todo)) errno = len = 0;
else len = readlinkat(dirfd, new->str, libbuf, sizeof(libbuf));
if (len>4095) goto error;
// Not a symlink: add to linked list, move dirfd, fail if error
if (len<1) {
new->next = done;
done = new;
if (errno == ENOENT && !(flags & (ABS_PATH<<!todo))) missing++;
else if (errno != EINVAL && (flags & (ABS_PATH<<!todo))) goto error;
else if (track) {
if (-1 == (fd = openat(dirfd, new->str, O_PATH))) goto error;
close(dirfd);
dirfd = fd;
}
continue;
}
// If this symlink is to an absolute path, discard existing resolved path
libbuf[len] = 0;
if (*libbuf == '/') {
llist_traverse(done, free);
done = 0;
close(dirfd);
dirfd = -1;
}
free(new);
// prepend components of new path. Note symlink to "/" will leave new = NULL
tail = splitpath(libbuf, &new);
// symlink to "/" will return null and leave tail alone
if (new) {
*tail = todo;
todo = new;
}
}
xclose(dirfd);
// At this point done has the path, in reverse order. Reverse list
// (into todo) while calculating buffer length.
try = 2;
while (done) {
struct string_list *temp = llist_pop(&done);
if (todo) try++;
try += strlen(temp->str);
temp->next = todo;
todo = temp;
}
// Assemble return buffer
*(str = xmalloc(try)) = '/';
str[try = 1] = 0;
while (todo) {
if (try>1) str[try++] = '/';
try = stpcpy(str+try, todo->str) - str;
free(llist_pop(&todo));
}
return str;
error:
xclose(dirfd);
llist_traverse(todo, free);
llist_traverse(done, free);
return 0;
}
void xchdir(char *path)
{
if (chdir(path)) perror_exit("chdir '%s'", path);
}
void xchroot(char *path)
{
if (chroot(path)) error_exit("chroot '%s'", path);
xchdir("/");
}
struct passwd *xgetpwuid(uid_t uid)
{
struct passwd *pwd = getpwuid(uid);
if (!pwd) error_exit("bad uid %ld", (long)uid);
return pwd;
}
struct group *xgetgrgid(gid_t gid)
{
struct group *group = getgrgid(gid);
if (!group) perror_exit("gid %ld", (long)gid);
return group;
}
unsigned xgetuid(char *name)
{
struct passwd *up = getpwnam(name);
char *s = 0;
long uid;
if (up) return up->pw_uid;
uid = estrtol(name, &s, 10);
if (!errno && s && !*s && uid>=0 && uid<=UINT_MAX) return uid;
error_exit("bad user '%s'", name);
}
unsigned xgetgid(char *name)
{
struct group *gr = getgrnam(name);
char *s = 0;
long gid;
if (gr) return gr->gr_gid;
gid = estrtol(name, &s, 10);
if (!errno && s && !*s && gid>=0 && gid<=UINT_MAX) return gid;
error_exit("bad group '%s'", name);
}
struct passwd *xgetpwnam(char *name)
{
struct passwd *up = getpwnam(name);
if (!up) perror_exit("user '%s'", name);
return up;
}
struct group *xgetgrnam(char *name)
{
struct group *gr = getgrnam(name);
if (!gr) perror_exit("group '%s'", name);
return gr;
}
// setuid() can fail (for example, too many processes belonging to that user),
// which opens a security hole if the process continues as the original user.
void xsetuser(struct passwd *pwd)
{
if (initgroups(pwd->pw_name, pwd->pw_gid) || setgid(pwd->pw_uid)
|| setuid(pwd->pw_uid)) perror_exit("xsetuser '%s'", pwd->pw_name);
}
// This can return null (meaning file not found). It just won't return null
// for memory allocation reasons.
char *xreadlinkat(int dir, char *name)
{
int len, size = 0;
char *buf = 0;
// Grow by 64 byte chunks until it's big enough.
for(;;) {
size +=64;
buf = xrealloc(buf, size);
len = readlinkat(dir, name, buf, size);
if (len<0) {
free(buf);
return 0;
}
if (len<size) {
buf[len]=0;
return buf;
}
}
}
char *xreadlink(char *name)
{
return xreadlinkat(AT_FDCWD, name);
}
char *xreadfile(char *name, char *buf, off_t len)
{
if (!(buf = readfile(name, buf, len))) perror_exit("Bad '%s'", name);
return buf;
}
// The data argument to ioctl() is actually long, but it's usually used as
// a pointer. If you need to feed in a number, do (void *)(long) typecast.
int xioctl(int fd, int request, void *data)
{
int rc;
errno = 0;
rc = ioctl(fd, request, data);
if (rc == -1 && errno) perror_exit("ioctl %x", request);
return rc;
}
// Open a /var/run/NAME.pid file, dying if we can't write it or if it currently
// exists and is this executable.
void xpidfile(char *name)
{
char pidfile[256], spid[32];
int i, fd;
pid_t pid;
sprintf(pidfile, "/var/run/%s.pid", name);
// Try three times to open the sucker.
for (i=0; i<3; i++) {
fd = open(pidfile, O_CREAT|O_EXCL|O_WRONLY, 0644);
if (fd != -1) break;
// If it already existed, read it. Loop for race condition.
fd = open(pidfile, O_RDONLY);
if (fd == -1) continue;
// Is the old program still there?
spid[xread(fd, spid, sizeof(spid)-1)] = 0;
close(fd);
pid = atoi(spid);
if (pid < 1 || (kill(pid, 0) && errno == ESRCH)) unlink(pidfile);
// An else with more sanity checking might be nice here.
}
if (i == 3) error_exit("xpidfile %s", name);
xwrite(fd, spid, sprintf(spid, "%ld\n", (long)getpid()));
close(fd);
}
// error_exit if we couldn't copy all bytes
long long xsendfile_len(int in, int out, long long bytes)
{
long long len = sendfile_len(in, out, bytes, 0);
if (bytes != -1 && bytes != len) {
if (out == 1 && len<0) xexit();
error_exit("short %s", (len<0) ? "write" : "read");
}
return len;
}
// warn and pad with zeroes if we couldn't copy all bytes
void xsendfile_pad(int in, int out, long long len)
{
len -= xsendfile_len(in, out, len);
if (len) {
perror_msg("short read");
memset(libbuf, 0, sizeof(libbuf));
while (len) {
int i = len>sizeof(libbuf) ? sizeof(libbuf) : len;
xwrite(out, libbuf, i);
len -= i;
}
}
}
// copy all of in to out
long long xsendfile(int in, int out)
{
return xsendfile_len(in, out, -1);
}
double xstrtod(char *s)
{
char *end;
double d;
errno = 0;
d = strtod(s, &end);
if (!errno && *end) errno = E2BIG;
if (errno) perror_exit("strtod %s", s);
return d;
}
// parse fractional seconds with optional s/m/h/d suffix
long xparsetime(char *arg, long zeroes, long *fraction)
{
long l, fr = 0, mask = 1;
char *end;
if (*arg != '.' && !isdigit(*arg)) error_exit("Not a number '%s'", arg);
l = strtoul(arg, &end, 10);
if (*end == '.') {
end++;
while (zeroes--) {
fr *= 10;
mask *= 10;
if (isdigit(*end)) fr += *end++-'0';
}
while (isdigit(*end)) end++;
}
// Parse suffix
if (*end) {
int ismhd[]={1,60,3600,86400}, i = stridx("smhd", *end);
if (i == -1 || *(end+1)) error_exit("Unknown suffix '%s'", end);
l *= ismhd[i];
fr *= ismhd[i];
l += fr/mask;
fr %= mask;
}
if (fraction) *fraction = fr;
return l;
}
long long xparsemillitime(char *arg)
{
long l, ll;
l = xparsetime(arg, 3, &ll);
return (l*1000LL)+ll;
}
void xparsetimespec(char *arg, struct timespec *ts)
{
ts->tv_sec = xparsetime(arg, 9, &ts->tv_nsec);
}
// Compile a regular expression into a regex_t
void xregcomp(regex_t *preg, char *regex, int cflags)
{
int rc;
// BSD regex implementations don't support the empty regex (which isn't
// allowed in the POSIX grammar), but glibc does. Fake it for BSD.
if (!*regex) {
regex = "()";
cflags |= REG_EXTENDED;
}
if ((rc = regcomp(preg, regex, cflags))) {
regerror(rc, preg, libbuf, sizeof(libbuf));
error_exit("bad regex '%s': %s", regex, libbuf);
}
}
char *xtzset(char *new)
{
char *old = getenv("TZ");
if (old) old = xstrdup(old);
if (new ? setenv("TZ", new, 1) : unsetenv("TZ")) perror_exit("setenv");
tzset();
return old;
}
// Set a signal handler
void xsignal_flags(int signal, void *handler, int flags)
{
struct sigaction *sa = (void *)libbuf;
memset(sa, 0, sizeof(struct sigaction));
sa->sa_handler = handler;
sa->sa_flags = flags;
if (sigaction(signal, sa, 0)) perror_exit("xsignal %d", signal);
}
void xsignal(int signal, void *handler)
{
xsignal_flags(signal, handler, 0);
}
time_t xvali_date(struct tm *tm, char *str)
{
time_t t;
if (tm && (unsigned)tm->tm_sec<=60 && (unsigned)tm->tm_min<=59
&& (unsigned)tm->tm_hour<=23 && tm->tm_mday && (unsigned)tm->tm_mday<=31
&& (unsigned)tm->tm_mon<=11 && (t = mktime(tm)) != -1) return t;
error_exit("bad date %s", str);
}
// Parse date string (relative to current *t). Sets time_t and nanoseconds.
void xparsedate(char *str, time_t *t, unsigned *nano, int endian)
{
struct tm tm;
time_t now = *t;
int len = 0, i = 0;
// Formats with seconds come first. Posix can't agree on whether 12 digits
// has year before (touch -t) or year after (date), so support both.
char *s = str, *p, *oldtz = 0, *formats[] = {"%Y-%m-%d %T", "%Y-%m-%dT%T",
"%a %b %e %H:%M:%S %Z %Y", // date(1) output format in POSIX/C locale.
"%H:%M:%S", "%Y-%m-%d %H:%M", "%Y-%m-%d", "%H:%M", "%m%d%H%M",
endian ? "%m%d%H%M%y" : "%y%m%d%H%M",
endian ? "%m%d%H%M%C%y" : "%C%y%m%d%H%M"};
*nano = 0;
// Parse @UNIXTIME[.FRACTION]
if (*str == '@') {
long long ll;
// Collect seconds and nanoseconds.
// &ll is not just t because we can't guarantee time_t is 64 bit (yet).
sscanf(s, "@%lld%n", &ll, &len);
if (s[len]=='.') {
s += len+1;
for (len = 0; len<9; len++) {
*nano *= 10;
if (isdigit(*s)) *nano += *s++-'0';
}
}
*t = ll;
if (!s[len]) return;
xvali_date(0, str);
}
// Try each format
for (i = 0; i<ARRAY_LEN(formats); i++) {
localtime_r(&now, &tm);
tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
tm.tm_isdst = -endian;
if ((p = strptime(s, formats[i], &tm))) {
// Handle optional fractional seconds.
if (*p == '.') {
p++;
// If format didn't already specify seconds, grab seconds
if (i>2) {
len = 0;
sscanf(p, "%2u%n", &tm.tm_sec, &len);
p += len;
}
// nanoseconds
for (len = 0; len<9; len++) {
*nano *= 10;
if (isdigit(*p)) *nano += *p++-'0';
}
}
// Handle optional Z or +HH[[:]MM] timezone
while (isspace(*p)) p++;
if (*p && strchr("Z+-", *p)) {
unsigned uu[3] = {0}, n = 0, nn = 0;
char *tz = 0, sign = *p++;
if (sign == 'Z') tz = "UTC0";
else if (0<sscanf(p, " %u%n : %u%n : %u%n", uu,&n,uu+1,&nn,uu+2,&nn)) {
if (n>2) {
uu[1] += uu[0]%100;
uu[0] /= 100;
}
if (n>nn) nn = n;
if (!nn) continue;
// flip sign because POSIX UTC offsets are backwards
sprintf(tz = libbuf, "UTC%c%02u:%02u:%02u", "+-"[sign=='+'],
uu[0], uu[1], uu[2]);
p += nn;
}
if (!oldtz) {
oldtz = getenv("TZ");
if (oldtz) oldtz = xstrdup(oldtz);
}
if (tz) setenv("TZ", tz, 1);
}
while (isspace(*p)) p++;
if (!*p) break;
}
}
// Sanity check field ranges
*t = xvali_date((i!=ARRAY_LEN(formats)) ? &tm : 0, str);
if (oldtz) setenv("TZ", oldtz, 1);
free(oldtz);
}
// Return line of text from file. Strips trailing newline (if any).
char *xgetline(FILE *fp)
{
char *new = 0;
size_t len = 0;
long ll;
errno = 0;
if (1>(ll = getline(&new, &len, fp))) {
if (errno && errno != EINTR) perror_msg("getline");
new = 0;
} else if (new[ll-1] == '\n') new[--ll] = 0;
return new;
}
time_t xmktime(struct tm *tm, int utc)
{
char *old_tz = utc ? xtzset("UTC0") : 0;
time_t result;
if ((result = mktime(tm)) < 0) error_exit("mktime");
if (utc) {
free(xtzset(old_tz));
free(old_tz);
}
return result;
}