| /* vi: set ts=4: |
| * |
| * mke2fs.c - Create an ext2 filesystem image. |
| * |
| * Copyright 2006 Rob Landley <rob@landley.net> |
| */ |
| |
| #include "toys.h" |
| |
| // Shortcut to our global data structure, since we use it so much. |
| #define TT toy.mke2fs |
| |
| #define INODES_RESERVED 10 |
| |
| static uint32_t div_round_up(uint32_t a, uint32_t b) |
| { |
| uint32_t c = a/b; |
| |
| if (a%b) c++; |
| return c; |
| } |
| |
| // Calculate data blocks plus index blocks needed to hold a file. |
| |
| static uint32_t file_blocks_used(uint64_t size, uint32_t *blocklist) |
| { |
| uint32_t dblocks = (uint32_t)((size+(TT.blocksize-1))/TT.blocksize); |
| uint32_t idx=TT.blocksize/4, iblocks=0, diblocks=0, tiblocks=0; |
| |
| // Fill out index blocks in inode. |
| |
| if (blocklist) { |
| int i; |
| |
| // Direct index blocks |
| for (i=0; i<13 && i<dblocks; i++) blocklist[i] = i; |
| // Singly indirect index blocks |
| if (dblocks > 13+idx) blocklist[13] = 13+idx; |
| // Doubly indirect index blocks |
| idx = 13 + idx + (idx*idx); |
| if (dblocks > idx) blocklist[14] = idx; |
| |
| return 0; |
| } |
| |
| // Account for direct, singly, doubly, and triply indirect index blocks |
| |
| if (dblocks > 12) { |
| iblocks = ((dblocks-13)/idx)+1; |
| if (iblocks > 1) { |
| diblocks = ((iblocks-2)/idx)+1; |
| if (diblocks > 1) |
| tiblocks = ((diblocks-2)/idx)+1; |
| } |
| } |
| |
| return dblocks + iblocks + diblocks + tiblocks; |
| } |
| |
| // Use the parent pointer to iterate through the tree non-recursively. |
| static struct dirtree *treenext(struct dirtree *this) |
| { |
| while (this && !this->next) this = this->parent; |
| if (this) this = this->next; |
| |
| return this; |
| } |
| |
| // Recursively calculate the number of blocks used by each inode in the tree. |
| // Returns blocks used by this directory, assigns bytes used to *size. |
| // Writes total block count to TT.treeblocks and inode count to TT.treeinodes. |
| |
| static long check_treesize(struct dirtree *this, off_t *size) |
| { |
| long blocks; |
| |
| while (this) { |
| *size += sizeof(struct ext2_dentry) + strlen(this->name); |
| |
| if (this->child) |
| this->st.st_blocks = check_treesize(this->child, &this->st.st_size); |
| else if (S_ISREG(this->st.st_mode)) { |
| this->st.st_blocks = file_blocks_used(this->st.st_size, 0); |
| TT.treeblocks += this->st.st_blocks; |
| } |
| this = this->next; |
| } |
| TT.treeblocks += blocks = file_blocks_used(*size, 0); |
| TT.treeinodes++; |
| |
| return blocks; |
| } |
| |
| // Calculate inode numbers and link counts. |
| // |
| // To do this right I need to copy the tree and sort it, but here's a really |
| // ugly n^2 way of dealing with the problem that doesn't scale well to large |
| // numbers of files (> 100,000) but can be done in very little code. |
| // This rewrites inode numbers to their final values, allocating depth first. |
| |
| static void check_treelinks(struct dirtree *tree) |
| { |
| struct dirtree *this=tree, *that; |
| long inode = INODES_RESERVED; |
| |
| while (this) { |
| ++inode; |
| // Since we can't hardlink to directories, we know their link count. |
| if (S_ISDIR(this->st.st_mode)) this->st.st_nlink = 2; |
| else { |
| dev_t new = this->st.st_dev; |
| |
| if (!new) continue; |
| |
| this->st.st_nlink = 0; |
| for (that = tree; that; that = treenext(that)) { |
| if (this->st.st_ino == that->st.st_ino && |
| this->st.st_dev == that->st.st_dev) |
| { |
| this->st.st_nlink++; |
| this->st.st_ino = inode; |
| } |
| } |
| } |
| this->st.st_ino = inode; |
| this = treenext(this); |
| } |
| } |
| |
| // According to http://www.opengroup.org/onlinepubs/9629399/apdxa.htm |
| // we should generate a uuid structure by reading a clock with 100 nanosecond |
| // precision, normalizing it to the start of the gregorian calendar in 1582, |
| // and looking up our eth0 mac address. |
| // |
| // On the other hand, we have 128 bits to come up with a unique identifier, of |
| // which 6 have a defined value. /dev/urandom it is. |
| |
| static void create_uuid(char *uuid) |
| { |
| // Read 128 random bits |
| int fd = xopen("/dev/urandom", O_RDONLY); |
| xreadall(fd, uuid, 16); |
| close(fd); |
| |
| // Claim to be a DCE format UUID. |
| uuid[6] = (uuid[6] & 0x0F) | 0x40; |
| uuid[8] = (uuid[8] & 0x3F) | 0x80; |
| |
| // rfc2518 section 6.4.1 suggests if we're not using a macaddr, we should |
| // set bit 1 of the node ID, which is the mac multicast bit. This means we |
| // should never collide with anybody actually using a macaddr. |
| uuid[11] = uuid[11] | 128; |
| } |
| |
| // Calculate inodes per group from total inodes. |
| static uint32_t get_inodespg(uint32_t inodes) |
| { |
| uint32_t temp; |
| |
| // Round up to fill complete inode blocks. |
| temp = (inodes + TT.groups - 1) / TT.groups; |
| inodes = TT.blocksize/sizeof(struct ext2_inode); |
| return ((temp + inodes - 1)/inodes)*inodes; |
| } |
| |
| // Fill out superblock and TT structures. |
| |
| static void init_superblock(struct ext2_superblock *sb) |
| { |
| uint32_t temp; |
| |
| // Set log_block_size and log_frag_size. |
| |
| for (temp = 0; temp < 4; temp++) if (TT.blocksize == 1024<<temp) break; |
| if (temp==4) error_exit("bad blocksize"); |
| sb->log_block_size = sb->log_frag_size = SWAP_LE32(temp); |
| |
| // Fill out blocks_count, r_blocks_count, first_data_block |
| |
| sb->blocks_count = SWAP_LE32(TT.blocks); |
| sb->free_blocks_count = SWAP_LE32(TT.freeblocks); |
| temp = (TT.blocks * (uint64_t)TT.reserved_percent) / 100; |
| sb->r_blocks_count = SWAP_LE32(temp); |
| |
| sb->first_data_block = SWAP_LE32(TT.blocksize == 1024 ? 1 : 0); |
| |
| // Set blocks_per_group and frags_per_group, which is the size of an |
| // allocation bitmap that fits in one block (I.E. how many bits per block)? |
| |
| sb->blocks_per_group = sb->frags_per_group = SWAP_LE32(TT.blockbits); |
| |
| // Set inodes_per_group and total inodes_count |
| sb->inodes_per_group = SWAP_LE32(TT.inodespg); |
| sb->inodes_count = SWAP_LE32(TT.inodespg * TT.groups); |
| |
| // Determine free inodes. |
| temp = TT.inodespg*TT.groups - INODES_RESERVED; |
| if (temp < TT.treeinodes) error_exit("Not enough inodes.\n"); |
| sb->free_inodes_count = SWAP_LE32(temp - TT.treeinodes); |
| |
| // Fill out the rest of the superblock. |
| sb->max_mnt_count=0xFFFF; |
| sb->wtime = sb->lastcheck = sb->mkfs_time = SWAP_LE32(time(NULL)); |
| sb->magic = SWAP_LE32(0xEF53); |
| sb->state = sb->errors = SWAP_LE16(1); |
| |
| sb->rev_level = SWAP_LE32(1); |
| sb->first_ino = SWAP_LE32(INODES_RESERVED+1); |
| sb->inode_size = SWAP_LE16(sizeof(struct ext2_inode)); |
| sb->feature_incompat = SWAP_LE32(EXT2_FEATURE_INCOMPAT_FILETYPE); |
| sb->feature_ro_compat = SWAP_LE32(EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER); |
| |
| create_uuid(sb->uuid); |
| |
| // TODO If we're called as mke3fs or mkfs.ext3, do a journal. |
| |
| //if (strchr(toys.which->name,'3')) |
| // sb->feature_compat |= SWAP_LE32(EXT3_FEATURE_COMPAT_HAS_JOURNAL); |
| } |
| |
| // Does this group contain a superblock backup (and group descriptor table)? |
| static int is_sb_group(uint32_t group) |
| { |
| int i; |
| |
| // Superblock backups are on groups 0, 1, and powers of 3, 5, and 7. |
| if(!group || group==1) return 1; |
| for (i=3; i<9; i+=2) { |
| int j = i; |
| while (j<group) j*=i; |
| if (j==group) return 1; |
| } |
| return 0; |
| } |
| |
| |
| // Number of blocks used in group by optional superblock/group list backup. |
| static int group_superblock_overhead(uint32_t group) |
| { |
| int used; |
| |
| if (!is_sb_group(group)) return 0; |
| |
| // How many blocks does the group descriptor table take up? |
| used = TT.groups * sizeof(struct ext2_group); |
| used += TT.blocksize - 1; |
| used /= TT.blocksize; |
| // Plus the superblock itself. |
| used++; |
| // And a corner case. |
| if (!group && TT.blocksize == 1024) used++; |
| |
| return used; |
| } |
| |
| // Number of blocks used in group to store superblock/group/inode list |
| static int group_overhead(uint32_t group) |
| { |
| // Return superblock backup overhead (if any), plus block/inode |
| // allocation bitmaps, plus inode tables. |
| return group_superblock_overhead(group) + 2 + get_inodespg(TT.inodespg) |
| / (TT.blocksize/sizeof(struct ext2_inode)); |
| } |
| |
| // In bitmap "array" set "len" bits starting at position "start" (from 0). |
| static void bits_set(char *array, int start, int len) |
| { |
| while(len) { |
| if ((start&7) || len<8) { |
| array[start/8]|=(1<<(start&7)); |
| start++; |
| len--; |
| } else { |
| array[start/8]=255; |
| start+=8; |
| len-=8; |
| } |
| } |
| } |
| |
| // Seek past len bytes (to maintain sparse file), or write zeroes if output |
| // not seekable |
| static void put_zeroes(int len) |
| { |
| if(-1 == lseek(TT.fsfd, len, SEEK_SET)) { |
| memset(toybuf, 0, sizeof(toybuf)); |
| while (len) { |
| int out = len > sizeof(toybuf) ? sizeof(toybuf) : len; |
| xwrite(TT.fsfd, toybuf, out); |
| len -= out; |
| } |
| } |
| } |
| |
| // Fill out an inode structure from struct stat info in dirtree. |
| static void fill_inode(struct ext2_inode *in, struct dirtree *this) |
| { |
| uint32_t fbu[15]; |
| int temp; |
| |
| file_blocks_used(this->st.st_size, fbu); |
| |
| // If this inode needs data blocks allocated to it. |
| if (this->st.st_size) { |
| int i, group = TT.nextblock/TT.blockbits; |
| |
| // TODO: teach this about indirect blocks. |
| for (i=0; i<15; i++) { |
| // If we just jumped into a new group, skip group overhead blocks. |
| while (group >= TT.nextgroup) |
| TT.nextblock += group_overhead(TT.nextgroup++); |
| } |
| } |
| // TODO : S_ISREG/DIR/CHR/BLK/FIFO/LNK/SOCK(m) |
| in->mode = SWAP_LE32(this->st.st_mode); |
| |
| in->uid = SWAP_LE16(this->st.st_uid & 0xFFFF); |
| in->uid_high = SWAP_LE16(this->st.st_uid >> 16); |
| in->gid = SWAP_LE16(this->st.st_gid & 0xFFFF); |
| in->gid_high = SWAP_LE16(this->st.st_gid >> 16); |
| in->size = SWAP_LE32(this->st.st_size & 0xFFFFFFFF); |
| |
| // Contortions to make the compiler not generate a warning for x>>32 |
| // when x is 32 bits. The optimizer should clean this up. |
| if (sizeof(this->st.st_size) > 4) temp = 32; |
| else temp = 0; |
| if (temp) in->dir_acl = SWAP_LE32(this->st.st_size >> temp); |
| |
| in->atime = SWAP_LE32(this->st.st_atime); |
| in->ctime = SWAP_LE32(this->st.st_ctime); |
| in->mtime = SWAP_LE32(this->st.st_mtime); |
| |
| in->links_count = SWAP_LE16(this->st.st_nlink); |
| in->blocks = SWAP_LE32(this->st.st_blocks); |
| // in->faddr |
| } |
| |
| // Works like an archiver. |
| // The first argument is the name of the file to create. If it already |
| // exists, that size will be used. |
| |
| int mke2fs_main(void) |
| { |
| int i, temp; |
| off_t length; |
| uint32_t usedblocks, usedinodes, dtiblk, dtbblk; |
| struct dirtree *dti, *dtb; |
| |
| // Handle command line arguments. |
| |
| if (toys.optargs[1]) { |
| sscanf(toys.optargs[1], "%u", &TT.blocks); |
| temp = O_RDWR|O_CREAT; |
| } else temp = O_RDWR; |
| if (!TT.reserved_percent) TT.reserved_percent = 5; |
| |
| // TODO: Check if filesystem is mounted here |
| |
| // For mke?fs, open file. For gene?fs, create file. |
| TT.fsfd = xcreate(*toys.optargs, temp, 0777); |
| |
| // Determine appropriate block size and block count from file length. |
| // (If no length, default to 4k. They can override it on the cmdline.) |
| |
| length = fdlength(TT.fsfd); |
| if (!TT.blocksize) TT.blocksize = (length && length < 1<<29) ? 1024 : 4096; |
| TT.blockbits = 8*TT.blocksize; |
| if (!TT.blocks) TT.blocks = length/TT.blocksize; |
| |
| // Collect gene2fs list or lost+found, calculate requirements. |
| |
| if (TT.gendir) { |
| strncpy(toybuf, TT.gendir, sizeof(toybuf)); |
| dti = dirtree_read(toybuf, NULL, NULL); |
| } else { |
| dti = xzalloc(sizeof(struct dirtree)+11); |
| strcpy(dti->name, "lost+found"); |
| dti->st.st_mode = S_IFDIR|0755; |
| dti->st.st_ctime = dti->st.st_mtime = time(NULL); |
| } |
| |
| // Add root directory inode. This is iterated through for when finding |
| // blocks, but not when finding inodes. The tree's parent pointers don't |
| // point back into this. |
| |
| dtb = xzalloc(sizeof(struct dirtree)+1); |
| dtb->st.st_mode = S_IFDIR|0755; |
| dtb->st.st_ctime = dtb->st.st_mtime = time(NULL); |
| dtb->child = dti; |
| |
| // Figure out how much space is used by preset files |
| length = check_treesize(dtb, &(dtb->st.st_size)); |
| check_treelinks(dtb); |
| |
| // Figure out how many total inodes we need. |
| |
| if (!TT.inodes) { |
| if (!TT.bytes_per_inode) TT.bytes_per_inode = 8192; |
| TT.inodes = (TT.blocks * (uint64_t)TT.blocksize) / TT.bytes_per_inode; |
| } |
| |
| // If we're generating a filesystem and have no idea how many blocks it |
| // needs, start with a minimal guess, find the overhead of that many |
| // groups, and loop until this is enough groups to store this many blocks. |
| if (!TT.blocks) TT.groups = (TT.treeblocks/TT.blockbits)+1; |
| else TT.groups = div_round_up(TT.blocks, TT.blockbits); |
| |
| for (;;) { |
| temp = TT.treeblocks; |
| |
| for (i = 0; i<TT.groups; i++) temp += group_overhead(i); |
| |
| if (TT.blocks) { |
| if (TT.blocks < temp) error_exit("Not enough space.\n"); |
| break; |
| } |
| if (temp <= TT.groups * TT.blockbits) { |
| TT.blocks = temp; |
| break; |
| } |
| TT.groups++; |
| } |
| TT.freeblocks = TT.blocks - temp; |
| |
| // Now we know all the TT data, initialize superblock structure. |
| |
| init_superblock(&TT.sb); |
| |
| // Start writing. Skip the first 1k to avoid the boot sector (if any). |
| put_zeroes(1024); |
| |
| // Loop through block groups, write out each one. |
| dtiblk = dtbblk = usedblocks = usedinodes = 0; |
| for (i=0; i<TT.groups; i++) { |
| struct ext2_inode *in = (struct ext2_inode *)toybuf; |
| uint32_t start, itable, used, end; |
| int j, slot; |
| |
| // Where does this group end? |
| end = TT.blockbits; |
| if ((i+1)*TT.blockbits > TT.blocks) end = TT.blocks & (TT.blockbits-1); |
| |
| // Blocks used by inode table |
| itable = (TT.inodespg*sizeof(struct ext2_inode))/TT.blocksize; |
| |
| // If a superblock goes here, write it out. |
| start = group_superblock_overhead(i); |
| if (start) { |
| struct ext2_group *bg = (struct ext2_group *)toybuf; |
| int treeblocks = TT.treeblocks, treeinodes = TT.treeinodes; |
| |
| TT.sb.block_group_nr = SWAP_LE16(i); |
| |
| // Write superblock and pad it up to block size |
| xwrite(TT.fsfd, &TT.sb, sizeof(struct ext2_superblock)); |
| temp = TT.blocksize - sizeof(struct ext2_superblock); |
| if (!i && TT.blocksize > 1024) temp -= 1024; |
| memset(toybuf, 0, TT.blocksize); |
| xwrite(TT.fsfd, toybuf, temp); |
| |
| // Loop through groups to write group descriptor table. |
| for(j=0; j<TT.groups; j++) { |
| |
| // Figure out what sector this group starts in. |
| used = group_superblock_overhead(j); |
| |
| // Find next array slot in this block (flush block if full). |
| slot = j % (TT.blocksize/sizeof(struct ext2_group)); |
| if (!slot) { |
| if (j) xwrite(TT.fsfd, bg, TT.blocksize); |
| memset(bg, 0, TT.blocksize); |
| } |
| |
| // How many free inodes in this group? |
| temp = TT.inodespg; |
| if (!i) temp -= INODES_RESERVED; |
| if (temp > treeinodes) { |
| treeinodes -= temp; |
| temp = 0; |
| } else { |
| temp -= treeinodes; |
| treeinodes = 0; |
| } |
| bg[slot].free_inodes_count = SWAP_LE16(temp); |
| |
| // How many free blocks in this group? |
| temp = TT.inodespg/(TT.blocksize/sizeof(struct ext2_inode)) + 2; |
| temp = end-used-temp; |
| if (temp > treeblocks) { |
| treeblocks -= temp; |
| temp = 0; |
| } else { |
| temp -= treeblocks; |
| treeblocks = 0; |
| } |
| bg[slot].free_blocks_count = SWAP_LE32(temp); |
| |
| // Fill out rest of group structure |
| used += j*TT.blockbits; |
| bg[slot].block_bitmap = SWAP_LE32(used++); |
| bg[slot].inode_bitmap = SWAP_LE32(used++); |
| bg[slot].inode_table = SWAP_LE32(used); |
| bg[slot].used_dirs_count = 0; // (TODO) |
| } |
| xwrite(TT.fsfd, bg, TT.blocksize); |
| } |
| |
| // Now write out stuff that every block group has. |
| |
| // Write block usage bitmap |
| |
| start += 2 + itable; |
| memset(toybuf, 0, TT.blocksize); |
| bits_set(toybuf, 0, start); |
| bits_set(toybuf, end, TT.blockbits-end); |
| temp = TT.treeblocks - usedblocks; |
| if (temp) { |
| if (end-start > temp) temp = end-start; |
| bits_set(toybuf, start, temp); |
| } |
| xwrite(TT.fsfd, toybuf, TT.blocksize); |
| |
| // Write inode bitmap |
| memset(toybuf, 0, TT.blocksize); |
| j = 0; |
| if (!i) bits_set(toybuf, 0, j = INODES_RESERVED); |
| bits_set(toybuf, TT.inodespg, slot = TT.blockbits-TT.inodespg); |
| temp = TT.treeinodes - usedinodes; |
| if (temp) { |
| if (slot-j > temp) temp = slot-j; |
| bits_set(toybuf, j, temp); |
| } |
| xwrite(TT.fsfd, toybuf, TT.blocksize); |
| |
| // Write inode table for this group (TODO) |
| for (j = 0; j<TT.inodespg; j++) { |
| slot = j % (TT.blocksize/sizeof(struct ext2_inode)); |
| if (!slot) { |
| if (j) xwrite(TT.fsfd, in, TT.blocksize); |
| memset(in, 0, TT.blocksize); |
| } |
| if (!i && j<INODES_RESERVED) { |
| // Write root inode |
| if (j == 2) fill_inode(in+slot, dtb); |
| } else if (dti) { |
| fill_inode(in+slot, dti); |
| dti = treenext(dti); |
| } |
| } |
| xwrite(TT.fsfd, in, TT.blocksize); |
| |
| while (dtb) { |
| // TODO write index data block |
| // TODO write root directory data block |
| // TODO write directory data block |
| // TODO write file data block |
| put_zeroes(TT.blocksize); |
| start++; |
| if (start == end) break; |
| } |
| // Write data blocks (TODO) |
| put_zeroes((end-start) * TT.blocksize); |
| } |
| |
| return 0; |
| } |
| |
| // Scratch pad: |
| // b - block size (1024, 2048, 4096) |
| // F - force (run on mounted device or non-block device) |
| // i - bytes per inode |
| // N - number of inodes |
| // m - reserved blocks percentage |
| // n - Don't write |
| // q - quiet |
| |
| // L - volume label |
| // M - last mounted path |
| // o - creator os |
| |
| // j - create journal |
| // J - journal options (size=1024-102400 blocks,device=) |
| // device=/dev/blah or LABEL=label UUID=uuid |
| |
| // E - extended options (stride=stripe-size blocks) |
| // O - none,dir_index,filetype,has_journal,journal_dev,sparse_super |
| |
| |