| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "eytzinger.h" |
| |
| /** |
| * is_aligned - is this pointer & size okay for word-wide copying? |
| * @base: pointer to data |
| * @size: size of each element |
| * @align: required alignment (typically 4 or 8) |
| * |
| * Returns true if elements can be copied using word loads and stores. |
| * The size must be a multiple of the alignment, and the base address must |
| * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS. |
| * |
| * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)" |
| * to "if ((a | b) & mask)", so we do that by hand. |
| */ |
| __attribute_const__ __always_inline |
| static bool is_aligned(const void *base, size_t size, unsigned char align) |
| { |
| unsigned char lsbits = (unsigned char)size; |
| |
| (void)base; |
| #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS |
| lsbits |= (unsigned char)(uintptr_t)base; |
| #endif |
| return (lsbits & (align - 1)) == 0; |
| } |
| |
| /** |
| * swap_words_32 - swap two elements in 32-bit chunks |
| * @a: pointer to the first element to swap |
| * @b: pointer to the second element to swap |
| * @n: element size (must be a multiple of 4) |
| * |
| * Exchange the two objects in memory. This exploits base+index addressing, |
| * which basically all CPUs have, to minimize loop overhead computations. |
| * |
| * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the |
| * bottom of the loop, even though the zero flag is still valid from the |
| * subtract (since the intervening mov instructions don't alter the flags). |
| * Gcc 8.1.0 doesn't have that problem. |
| */ |
| static void swap_words_32(void *a, void *b, size_t n) |
| { |
| do { |
| u32 t = *(u32 *)(a + (n -= 4)); |
| *(u32 *)(a + n) = *(u32 *)(b + n); |
| *(u32 *)(b + n) = t; |
| } while (n); |
| } |
| |
| /** |
| * swap_words_64 - swap two elements in 64-bit chunks |
| * @a: pointer to the first element to swap |
| * @b: pointer to the second element to swap |
| * @n: element size (must be a multiple of 8) |
| * |
| * Exchange the two objects in memory. This exploits base+index |
| * addressing, which basically all CPUs have, to minimize loop overhead |
| * computations. |
| * |
| * We'd like to use 64-bit loads if possible. If they're not, emulating |
| * one requires base+index+4 addressing which x86 has but most other |
| * processors do not. If CONFIG_64BIT, we definitely have 64-bit loads, |
| * but it's possible to have 64-bit loads without 64-bit pointers (e.g. |
| * x32 ABI). Are there any cases the kernel needs to worry about? |
| */ |
| static void swap_words_64(void *a, void *b, size_t n) |
| { |
| do { |
| #ifdef CONFIG_64BIT |
| u64 t = *(u64 *)(a + (n -= 8)); |
| *(u64 *)(a + n) = *(u64 *)(b + n); |
| *(u64 *)(b + n) = t; |
| #else |
| /* Use two 32-bit transfers to avoid base+index+4 addressing */ |
| u32 t = *(u32 *)(a + (n -= 4)); |
| *(u32 *)(a + n) = *(u32 *)(b + n); |
| *(u32 *)(b + n) = t; |
| |
| t = *(u32 *)(a + (n -= 4)); |
| *(u32 *)(a + n) = *(u32 *)(b + n); |
| *(u32 *)(b + n) = t; |
| #endif |
| } while (n); |
| } |
| |
| /** |
| * swap_bytes - swap two elements a byte at a time |
| * @a: pointer to the first element to swap |
| * @b: pointer to the second element to swap |
| * @n: element size |
| * |
| * This is the fallback if alignment doesn't allow using larger chunks. |
| */ |
| static void swap_bytes(void *a, void *b, size_t n) |
| { |
| do { |
| char t = ((char *)a)[--n]; |
| ((char *)a)[n] = ((char *)b)[n]; |
| ((char *)b)[n] = t; |
| } while (n); |
| } |
| |
| /* |
| * The values are arbitrary as long as they can't be confused with |
| * a pointer, but small integers make for the smallest compare |
| * instructions. |
| */ |
| #define SWAP_WORDS_64 (swap_r_func_t)0 |
| #define SWAP_WORDS_32 (swap_r_func_t)1 |
| #define SWAP_BYTES (swap_r_func_t)2 |
| #define SWAP_WRAPPER (swap_r_func_t)3 |
| |
| struct wrapper { |
| cmp_func_t cmp; |
| swap_func_t swap_func; |
| }; |
| |
| /* |
| * The function pointer is last to make tail calls most efficient if the |
| * compiler decides not to inline this function. |
| */ |
| static void do_swap(void *a, void *b, size_t size, swap_r_func_t swap_func, const void *priv) |
| { |
| if (swap_func == SWAP_WRAPPER) { |
| ((const struct wrapper *)priv)->swap_func(a, b, (int)size); |
| return; |
| } |
| |
| if (swap_func == SWAP_WORDS_64) |
| swap_words_64(a, b, size); |
| else if (swap_func == SWAP_WORDS_32) |
| swap_words_32(a, b, size); |
| else if (swap_func == SWAP_BYTES) |
| swap_bytes(a, b, size); |
| else |
| swap_func(a, b, (int)size, priv); |
| } |
| |
| #define _CMP_WRAPPER ((cmp_r_func_t)0L) |
| |
| static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv) |
| { |
| if (cmp == _CMP_WRAPPER) |
| return ((const struct wrapper *)priv)->cmp(a, b); |
| return cmp(a, b, priv); |
| } |
| |
| static inline int eytzinger0_do_cmp(void *base, size_t n, size_t size, |
| cmp_r_func_t cmp_func, const void *priv, |
| size_t l, size_t r) |
| { |
| return do_cmp(base + inorder_to_eytzinger0(l, n) * size, |
| base + inorder_to_eytzinger0(r, n) * size, |
| cmp_func, priv); |
| } |
| |
| static inline void eytzinger0_do_swap(void *base, size_t n, size_t size, |
| swap_r_func_t swap_func, const void *priv, |
| size_t l, size_t r) |
| { |
| do_swap(base + inorder_to_eytzinger0(l, n) * size, |
| base + inorder_to_eytzinger0(r, n) * size, |
| size, swap_func, priv); |
| } |
| |
| void eytzinger0_sort_r(void *base, size_t n, size_t size, |
| cmp_r_func_t cmp_func, |
| swap_r_func_t swap_func, |
| const void *priv) |
| { |
| int i, j, k; |
| |
| /* called from 'sort' without swap function, let's pick the default */ |
| if (swap_func == SWAP_WRAPPER && !((struct wrapper *)priv)->swap_func) |
| swap_func = NULL; |
| |
| if (!swap_func) { |
| if (is_aligned(base, size, 8)) |
| swap_func = SWAP_WORDS_64; |
| else if (is_aligned(base, size, 4)) |
| swap_func = SWAP_WORDS_32; |
| else |
| swap_func = SWAP_BYTES; |
| } |
| |
| /* heapify */ |
| for (i = n / 2 - 1; i >= 0; --i) { |
| /* Find the sift-down path all the way to the leaves. */ |
| for (j = i; k = j * 2 + 1, k + 1 < n;) |
| j = eytzinger0_do_cmp(base, n, size, cmp_func, priv, k, k + 1) > 0 ? k : k + 1; |
| |
| /* Special case for the last leaf with no sibling. */ |
| if (j * 2 + 2 == n) |
| j = j * 2 + 1; |
| |
| /* Backtrack to the correct location. */ |
| while (j != i && eytzinger0_do_cmp(base, n, size, cmp_func, priv, i, j) >= 0) |
| j = (j - 1) / 2; |
| |
| /* Shift the element into its correct place. */ |
| for (k = j; j != i;) { |
| j = (j - 1) / 2; |
| eytzinger0_do_swap(base, n, size, swap_func, priv, j, k); |
| } |
| } |
| |
| /* sort */ |
| for (i = n - 1; i > 0; --i) { |
| eytzinger0_do_swap(base, n, size, swap_func, priv, 0, i); |
| |
| /* Find the sift-down path all the way to the leaves. */ |
| for (j = 0; k = j * 2 + 1, k + 1 < i;) |
| j = eytzinger0_do_cmp(base, n, size, cmp_func, priv, k, k + 1) > 0 ? k : k + 1; |
| |
| /* Special case for the last leaf with no sibling. */ |
| if (j * 2 + 2 == i) |
| j = j * 2 + 1; |
| |
| /* Backtrack to the correct location. */ |
| while (j && eytzinger0_do_cmp(base, n, size, cmp_func, priv, 0, j) >= 0) |
| j = (j - 1) / 2; |
| |
| /* Shift the element into its correct place. */ |
| for (k = j; j;) { |
| j = (j - 1) / 2; |
| eytzinger0_do_swap(base, n, size, swap_func, priv, j, k); |
| } |
| } |
| } |
| |
| void eytzinger0_sort(void *base, size_t n, size_t size, |
| cmp_func_t cmp_func, |
| swap_func_t swap_func) |
| { |
| struct wrapper w = { |
| .cmp = cmp_func, |
| .swap_func = swap_func, |
| }; |
| |
| return eytzinger0_sort_r(base, n, size, _CMP_WRAPPER, SWAP_WRAPPER, &w); |
| } |
| |
| #if 0 |
| #include <linux/slab.h> |
| #include <linux/random.h> |
| #include <linux/ktime.h> |
| |
| static u64 cmp_count; |
| |
| static int mycmp(const void *a, const void *b) |
| { |
| u32 _a = *(u32 *)a; |
| u32 _b = *(u32 *)b; |
| |
| cmp_count++; |
| if (_a < _b) |
| return -1; |
| else if (_a > _b) |
| return 1; |
| else |
| return 0; |
| } |
| |
| static int test(void) |
| { |
| size_t N, i; |
| ktime_t start, end; |
| s64 delta; |
| u32 *arr; |
| |
| for (N = 10000; N <= 100000; N += 10000) { |
| arr = kmalloc_array(N, sizeof(u32), GFP_KERNEL); |
| cmp_count = 0; |
| |
| for (i = 0; i < N; i++) |
| arr[i] = get_random_u32(); |
| |
| start = ktime_get(); |
| eytzinger0_sort(arr, N, sizeof(u32), mycmp, NULL); |
| end = ktime_get(); |
| |
| delta = ktime_us_delta(end, start); |
| printk(KERN_INFO "time: %lld\n", delta); |
| printk(KERN_INFO "comparisons: %lld\n", cmp_count); |
| |
| u32 prev = 0; |
| |
| eytzinger0_for_each(i, N) { |
| if (prev > arr[i]) |
| goto err; |
| prev = arr[i]; |
| } |
| |
| kfree(arr); |
| } |
| return 0; |
| |
| err: |
| kfree(arr); |
| return -1; |
| } |
| #endif |