blob: 5f4fecb358da03e0b64c95c12ce174bc29beb24b [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "buckets.h"
#include "debug.h"
#include "extents.h"
#include "extent_update.h"
/*
* This counts the number of iterators to the alloc & ec btrees we'll need
* inserting/removing this extent:
*/
static unsigned bch2_bkey_nr_alloc_ptrs(struct bkey_s_c k)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
unsigned ret = 0, lru = 0;
bkey_extent_entry_for_each(ptrs, entry) {
switch (__extent_entry_type(entry)) {
case BCH_EXTENT_ENTRY_ptr:
/* Might also be updating LRU btree */
if (entry->ptr.cached)
lru++;
fallthrough;
case BCH_EXTENT_ENTRY_stripe_ptr:
ret++;
}
}
/*
* Updating keys in the alloc btree may also update keys in the
* freespace or discard btrees:
*/
return lru + ret * 2;
}
static int count_iters_for_insert(struct btree_trans *trans,
struct bkey_s_c k,
unsigned offset,
struct bpos *end,
unsigned *nr_iters,
unsigned max_iters)
{
int ret = 0, ret2 = 0;
if (*nr_iters >= max_iters) {
*end = bpos_min(*end, k.k->p);
ret = 1;
}
switch (k.k->type) {
case KEY_TYPE_extent:
case KEY_TYPE_reflink_v:
*nr_iters += bch2_bkey_nr_alloc_ptrs(k);
if (*nr_iters >= max_iters) {
*end = bpos_min(*end, k.k->p);
ret = 1;
}
break;
case KEY_TYPE_reflink_p: {
struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k);
u64 idx = le64_to_cpu(p.v->idx);
unsigned sectors = bpos_min(*end, p.k->p).offset -
bkey_start_offset(p.k);
struct btree_iter iter;
struct bkey_s_c r_k;
for_each_btree_key_norestart(trans, iter,
BTREE_ID_reflink, POS(0, idx + offset),
BTREE_ITER_slots, r_k, ret2) {
if (bkey_ge(bkey_start_pos(r_k.k), POS(0, idx + sectors)))
break;
/* extent_update_to_keys(), for the reflink_v update */
*nr_iters += 1;
*nr_iters += 1 + bch2_bkey_nr_alloc_ptrs(r_k);
if (*nr_iters >= max_iters) {
struct bpos pos = bkey_start_pos(k.k);
pos.offset += min_t(u64, k.k->size,
r_k.k->p.offset - idx);
*end = bpos_min(*end, pos);
ret = 1;
break;
}
}
bch2_trans_iter_exit(trans, &iter);
break;
}
}
return ret2 ?: ret;
}
#define EXTENT_ITERS_MAX (BTREE_ITER_INITIAL / 3)
int bch2_extent_atomic_end(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *insert,
struct bpos *end)
{
struct btree_iter copy;
struct bkey_s_c k;
unsigned nr_iters = 0;
int ret;
ret = bch2_btree_iter_traverse(iter);
if (ret)
return ret;
*end = insert->k.p;
/* extent_update_to_keys(): */
nr_iters += 1;
ret = count_iters_for_insert(trans, bkey_i_to_s_c(insert), 0, end,
&nr_iters, EXTENT_ITERS_MAX / 2);
if (ret < 0)
return ret;
bch2_trans_copy_iter(&copy, iter);
for_each_btree_key_upto_continue_norestart(copy, insert->k.p, 0, k, ret) {
unsigned offset = 0;
if (bkey_gt(bkey_start_pos(&insert->k), bkey_start_pos(k.k)))
offset = bkey_start_offset(&insert->k) -
bkey_start_offset(k.k);
/* extent_handle_overwrites(): */
switch (bch2_extent_overlap(&insert->k, k.k)) {
case BCH_EXTENT_OVERLAP_ALL:
case BCH_EXTENT_OVERLAP_FRONT:
nr_iters += 1;
break;
case BCH_EXTENT_OVERLAP_BACK:
case BCH_EXTENT_OVERLAP_MIDDLE:
nr_iters += 2;
break;
}
ret = count_iters_for_insert(trans, k, offset, end,
&nr_iters, EXTENT_ITERS_MAX);
if (ret)
break;
}
bch2_trans_iter_exit(trans, &copy);
return ret < 0 ? ret : 0;
}
int bch2_extent_trim_atomic(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *k)
{
struct bpos end;
int ret;
ret = bch2_extent_atomic_end(trans, iter, k, &end);
if (ret)
return ret;
bch2_cut_back(end, k);
return 0;
}