| /* |
| * fs/f2fs/segment.h |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/blkdev.h> |
| #include <linux/backing-dev.h> |
| |
| /* constant macro */ |
| #define NULL_SEGNO ((unsigned int)(~0)) |
| #define NULL_SECNO ((unsigned int)(~0)) |
| |
| #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ |
| #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ |
| |
| #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ |
| |
| /* L: Logical segment # in volume, R: Relative segment # in main area */ |
| #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) |
| #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) |
| |
| #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) |
| #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE) |
| |
| #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) |
| #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) |
| #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) |
| |
| #define IS_CURSEG(sbi, seg) \ |
| (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ |
| ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ |
| ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ |
| ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ |
| ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ |
| ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) |
| |
| #define IS_CURSEC(sbi, secno) \ |
| (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ |
| (sbi)->segs_per_sec) || \ |
| ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ |
| (sbi)->segs_per_sec) || \ |
| ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ |
| (sbi)->segs_per_sec) || \ |
| ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ |
| (sbi)->segs_per_sec) || \ |
| ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ |
| (sbi)->segs_per_sec) || \ |
| ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ |
| (sbi)->segs_per_sec)) \ |
| |
| #define MAIN_BLKADDR(sbi) \ |
| (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ |
| le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) |
| #define SEG0_BLKADDR(sbi) \ |
| (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ |
| le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) |
| |
| #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) |
| #define MAIN_SECS(sbi) ((sbi)->total_sections) |
| |
| #define TOTAL_SEGS(sbi) \ |
| (SM_I(sbi) ? SM_I(sbi)->segment_count : \ |
| le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) |
| #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) |
| |
| #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) |
| #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ |
| (sbi)->log_blocks_per_seg)) |
| |
| #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ |
| (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) |
| |
| #define NEXT_FREE_BLKADDR(sbi, curseg) \ |
| (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) |
| |
| #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) |
| #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ |
| (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) |
| #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ |
| (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1)) |
| |
| #define GET_SEGNO(sbi, blk_addr) \ |
| ((!is_valid_blkaddr(blk_addr)) ? \ |
| NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ |
| GET_SEGNO_FROM_SEG0(sbi, blk_addr))) |
| #define BLKS_PER_SEC(sbi) \ |
| ((sbi)->segs_per_sec * (sbi)->blocks_per_seg) |
| #define GET_SEC_FROM_SEG(sbi, segno) \ |
| ((segno) / (sbi)->segs_per_sec) |
| #define GET_SEG_FROM_SEC(sbi, secno) \ |
| ((secno) * (sbi)->segs_per_sec) |
| #define GET_ZONE_FROM_SEC(sbi, secno) \ |
| ((secno) / (sbi)->secs_per_zone) |
| #define GET_ZONE_FROM_SEG(sbi, segno) \ |
| GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) |
| |
| #define GET_SUM_BLOCK(sbi, segno) \ |
| ((sbi)->sm_info->ssa_blkaddr + (segno)) |
| |
| #define GET_SUM_TYPE(footer) ((footer)->entry_type) |
| #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) |
| |
| #define SIT_ENTRY_OFFSET(sit_i, segno) \ |
| ((segno) % (sit_i)->sents_per_block) |
| #define SIT_BLOCK_OFFSET(segno) \ |
| ((segno) / SIT_ENTRY_PER_BLOCK) |
| #define START_SEGNO(segno) \ |
| (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) |
| #define SIT_BLK_CNT(sbi) \ |
| ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) |
| #define f2fs_bitmap_size(nr) \ |
| (BITS_TO_LONGS(nr) * sizeof(unsigned long)) |
| |
| #define SECTOR_FROM_BLOCK(blk_addr) \ |
| (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) |
| #define SECTOR_TO_BLOCK(sectors) \ |
| ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) |
| |
| /* |
| * indicate a block allocation direction: RIGHT and LEFT. |
| * RIGHT means allocating new sections towards the end of volume. |
| * LEFT means the opposite direction. |
| */ |
| enum { |
| ALLOC_RIGHT = 0, |
| ALLOC_LEFT |
| }; |
| |
| /* |
| * In the victim_sel_policy->alloc_mode, there are two block allocation modes. |
| * LFS writes data sequentially with cleaning operations. |
| * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. |
| */ |
| enum { |
| LFS = 0, |
| SSR |
| }; |
| |
| /* |
| * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. |
| * GC_CB is based on cost-benefit algorithm. |
| * GC_GREEDY is based on greedy algorithm. |
| */ |
| enum { |
| GC_CB = 0, |
| GC_GREEDY, |
| ALLOC_NEXT, |
| FLUSH_DEVICE, |
| MAX_GC_POLICY, |
| }; |
| |
| /* |
| * BG_GC means the background cleaning job. |
| * FG_GC means the on-demand cleaning job. |
| * FORCE_FG_GC means on-demand cleaning job in background. |
| */ |
| enum { |
| BG_GC = 0, |
| FG_GC, |
| FORCE_FG_GC, |
| }; |
| |
| /* for a function parameter to select a victim segment */ |
| struct victim_sel_policy { |
| int alloc_mode; /* LFS or SSR */ |
| int gc_mode; /* GC_CB or GC_GREEDY */ |
| unsigned long *dirty_segmap; /* dirty segment bitmap */ |
| unsigned int max_search; /* maximum # of segments to search */ |
| unsigned int offset; /* last scanned bitmap offset */ |
| unsigned int ofs_unit; /* bitmap search unit */ |
| unsigned int min_cost; /* minimum cost */ |
| unsigned int min_segno; /* segment # having min. cost */ |
| }; |
| |
| struct seg_entry { |
| unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ |
| unsigned int valid_blocks:10; /* # of valid blocks */ |
| unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ |
| unsigned int padding:6; /* padding */ |
| unsigned char *cur_valid_map; /* validity bitmap of blocks */ |
| #ifdef CONFIG_F2FS_CHECK_FS |
| unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ |
| #endif |
| /* |
| * # of valid blocks and the validity bitmap stored in the the last |
| * checkpoint pack. This information is used by the SSR mode. |
| */ |
| unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ |
| unsigned char *discard_map; |
| unsigned long long mtime; /* modification time of the segment */ |
| }; |
| |
| struct sec_entry { |
| unsigned int valid_blocks; /* # of valid blocks in a section */ |
| }; |
| |
| struct segment_allocation { |
| void (*allocate_segment)(struct f2fs_sb_info *, int, bool); |
| }; |
| |
| /* |
| * this value is set in page as a private data which indicate that |
| * the page is atomically written, and it is in inmem_pages list. |
| */ |
| #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1) |
| #define DUMMY_WRITTEN_PAGE ((unsigned long)-2) |
| |
| #define IS_ATOMIC_WRITTEN_PAGE(page) \ |
| (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE) |
| #define IS_DUMMY_WRITTEN_PAGE(page) \ |
| (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE) |
| |
| #define MAX_SKIP_ATOMIC_COUNT 16 |
| |
| struct inmem_pages { |
| struct list_head list; |
| struct page *page; |
| block_t old_addr; /* for revoking when fail to commit */ |
| }; |
| |
| struct sit_info { |
| const struct segment_allocation *s_ops; |
| |
| block_t sit_base_addr; /* start block address of SIT area */ |
| block_t sit_blocks; /* # of blocks used by SIT area */ |
| block_t written_valid_blocks; /* # of valid blocks in main area */ |
| char *sit_bitmap; /* SIT bitmap pointer */ |
| #ifdef CONFIG_F2FS_CHECK_FS |
| char *sit_bitmap_mir; /* SIT bitmap mirror */ |
| #endif |
| unsigned int bitmap_size; /* SIT bitmap size */ |
| |
| unsigned long *tmp_map; /* bitmap for temporal use */ |
| unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ |
| unsigned int dirty_sentries; /* # of dirty sentries */ |
| unsigned int sents_per_block; /* # of SIT entries per block */ |
| struct rw_semaphore sentry_lock; /* to protect SIT cache */ |
| struct seg_entry *sentries; /* SIT segment-level cache */ |
| struct sec_entry *sec_entries; /* SIT section-level cache */ |
| |
| /* for cost-benefit algorithm in cleaning procedure */ |
| unsigned long long elapsed_time; /* elapsed time after mount */ |
| unsigned long long mounted_time; /* mount time */ |
| unsigned long long min_mtime; /* min. modification time */ |
| unsigned long long max_mtime; /* max. modification time */ |
| |
| unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ |
| }; |
| |
| struct free_segmap_info { |
| unsigned int start_segno; /* start segment number logically */ |
| unsigned int free_segments; /* # of free segments */ |
| unsigned int free_sections; /* # of free sections */ |
| spinlock_t segmap_lock; /* free segmap lock */ |
| unsigned long *free_segmap; /* free segment bitmap */ |
| unsigned long *free_secmap; /* free section bitmap */ |
| }; |
| |
| /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ |
| enum dirty_type { |
| DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ |
| DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ |
| DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ |
| DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ |
| DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ |
| DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ |
| DIRTY, /* to count # of dirty segments */ |
| PRE, /* to count # of entirely obsolete segments */ |
| NR_DIRTY_TYPE |
| }; |
| |
| struct dirty_seglist_info { |
| const struct victim_selection *v_ops; /* victim selction operation */ |
| unsigned long *dirty_segmap[NR_DIRTY_TYPE]; |
| struct mutex seglist_lock; /* lock for segment bitmaps */ |
| int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ |
| unsigned long *victim_secmap; /* background GC victims */ |
| }; |
| |
| /* victim selection function for cleaning and SSR */ |
| struct victim_selection { |
| int (*get_victim)(struct f2fs_sb_info *, unsigned int *, |
| int, int, char); |
| }; |
| |
| /* for active log information */ |
| struct curseg_info { |
| struct mutex curseg_mutex; /* lock for consistency */ |
| struct f2fs_summary_block *sum_blk; /* cached summary block */ |
| struct rw_semaphore journal_rwsem; /* protect journal area */ |
| struct f2fs_journal *journal; /* cached journal info */ |
| unsigned char alloc_type; /* current allocation type */ |
| unsigned int segno; /* current segment number */ |
| unsigned short next_blkoff; /* next block offset to write */ |
| unsigned int zone; /* current zone number */ |
| unsigned int next_segno; /* preallocated segment */ |
| }; |
| |
| struct sit_entry_set { |
| struct list_head set_list; /* link with all sit sets */ |
| unsigned int start_segno; /* start segno of sits in set */ |
| unsigned int entry_cnt; /* the # of sit entries in set */ |
| }; |
| |
| /* |
| * inline functions |
| */ |
| static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) |
| { |
| return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); |
| } |
| |
| static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, |
| unsigned int segno) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| return &sit_i->sentries[segno]; |
| } |
| |
| static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, |
| unsigned int segno) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; |
| } |
| |
| static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, |
| unsigned int segno, bool use_section) |
| { |
| /* |
| * In order to get # of valid blocks in a section instantly from many |
| * segments, f2fs manages two counting structures separately. |
| */ |
| if (use_section && sbi->segs_per_sec > 1) |
| return get_sec_entry(sbi, segno)->valid_blocks; |
| else |
| return get_seg_entry(sbi, segno)->valid_blocks; |
| } |
| |
| static inline void seg_info_from_raw_sit(struct seg_entry *se, |
| struct f2fs_sit_entry *rs) |
| { |
| se->valid_blocks = GET_SIT_VBLOCKS(rs); |
| se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); |
| memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
| memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
| #ifdef CONFIG_F2FS_CHECK_FS |
| memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
| #endif |
| se->type = GET_SIT_TYPE(rs); |
| se->mtime = le64_to_cpu(rs->mtime); |
| } |
| |
| static inline void __seg_info_to_raw_sit(struct seg_entry *se, |
| struct f2fs_sit_entry *rs) |
| { |
| unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | |
| se->valid_blocks; |
| rs->vblocks = cpu_to_le16(raw_vblocks); |
| memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); |
| rs->mtime = cpu_to_le64(se->mtime); |
| } |
| |
| static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi, |
| struct page *page, unsigned int start) |
| { |
| struct f2fs_sit_block *raw_sit; |
| struct seg_entry *se; |
| struct f2fs_sit_entry *rs; |
| unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, |
| (unsigned long)MAIN_SEGS(sbi)); |
| int i; |
| |
| raw_sit = (struct f2fs_sit_block *)page_address(page); |
| memset(raw_sit, 0, PAGE_SIZE); |
| for (i = 0; i < end - start; i++) { |
| rs = &raw_sit->entries[i]; |
| se = get_seg_entry(sbi, start + i); |
| __seg_info_to_raw_sit(se, rs); |
| } |
| } |
| |
| static inline void seg_info_to_raw_sit(struct seg_entry *se, |
| struct f2fs_sit_entry *rs) |
| { |
| __seg_info_to_raw_sit(se, rs); |
| |
| memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
| se->ckpt_valid_blocks = se->valid_blocks; |
| } |
| |
| static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, |
| unsigned int max, unsigned int segno) |
| { |
| unsigned int ret; |
| spin_lock(&free_i->segmap_lock); |
| ret = find_next_bit(free_i->free_segmap, max, segno); |
| spin_unlock(&free_i->segmap_lock); |
| return ret; |
| } |
| |
| static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
| unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); |
| unsigned int next; |
| |
| spin_lock(&free_i->segmap_lock); |
| clear_bit(segno, free_i->free_segmap); |
| free_i->free_segments++; |
| |
| next = find_next_bit(free_i->free_segmap, |
| start_segno + sbi->segs_per_sec, start_segno); |
| if (next >= start_segno + sbi->segs_per_sec) { |
| clear_bit(secno, free_i->free_secmap); |
| free_i->free_sections++; |
| } |
| spin_unlock(&free_i->segmap_lock); |
| } |
| |
| static inline void __set_inuse(struct f2fs_sb_info *sbi, |
| unsigned int segno) |
| { |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
| |
| set_bit(segno, free_i->free_segmap); |
| free_i->free_segments--; |
| if (!test_and_set_bit(secno, free_i->free_secmap)) |
| free_i->free_sections--; |
| } |
| |
| static inline void __set_test_and_free(struct f2fs_sb_info *sbi, |
| unsigned int segno) |
| { |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
| unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); |
| unsigned int next; |
| |
| spin_lock(&free_i->segmap_lock); |
| if (test_and_clear_bit(segno, free_i->free_segmap)) { |
| free_i->free_segments++; |
| |
| next = find_next_bit(free_i->free_segmap, |
| start_segno + sbi->segs_per_sec, start_segno); |
| if (next >= start_segno + sbi->segs_per_sec) { |
| if (test_and_clear_bit(secno, free_i->free_secmap)) |
| free_i->free_sections++; |
| } |
| } |
| spin_unlock(&free_i->segmap_lock); |
| } |
| |
| static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, |
| unsigned int segno) |
| { |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
| |
| spin_lock(&free_i->segmap_lock); |
| if (!test_and_set_bit(segno, free_i->free_segmap)) { |
| free_i->free_segments--; |
| if (!test_and_set_bit(secno, free_i->free_secmap)) |
| free_i->free_sections--; |
| } |
| spin_unlock(&free_i->segmap_lock); |
| } |
| |
| static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, |
| void *dst_addr) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| |
| #ifdef CONFIG_F2FS_CHECK_FS |
| if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, |
| sit_i->bitmap_size)) |
| f2fs_bug_on(sbi, 1); |
| #endif |
| memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); |
| } |
| |
| static inline block_t written_block_count(struct f2fs_sb_info *sbi) |
| { |
| return SIT_I(sbi)->written_valid_blocks; |
| } |
| |
| static inline unsigned int free_segments(struct f2fs_sb_info *sbi) |
| { |
| return FREE_I(sbi)->free_segments; |
| } |
| |
| static inline int reserved_segments(struct f2fs_sb_info *sbi) |
| { |
| return SM_I(sbi)->reserved_segments; |
| } |
| |
| static inline unsigned int free_sections(struct f2fs_sb_info *sbi) |
| { |
| return FREE_I(sbi)->free_sections; |
| } |
| |
| static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) |
| { |
| return DIRTY_I(sbi)->nr_dirty[PRE]; |
| } |
| |
| static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) |
| { |
| return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + |
| DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + |
| DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + |
| DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + |
| DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + |
| DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; |
| } |
| |
| static inline int overprovision_segments(struct f2fs_sb_info *sbi) |
| { |
| return SM_I(sbi)->ovp_segments; |
| } |
| |
| static inline int reserved_sections(struct f2fs_sb_info *sbi) |
| { |
| return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi)); |
| } |
| |
| static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi) |
| { |
| unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + |
| get_pages(sbi, F2FS_DIRTY_DENTS); |
| unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); |
| unsigned int segno, left_blocks; |
| int i; |
| |
| /* check current node segment */ |
| for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { |
| segno = CURSEG_I(sbi, i)->segno; |
| left_blocks = sbi->blocks_per_seg - |
| get_seg_entry(sbi, segno)->ckpt_valid_blocks; |
| |
| if (node_blocks > left_blocks) |
| return false; |
| } |
| |
| /* check current data segment */ |
| segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; |
| left_blocks = sbi->blocks_per_seg - |
| get_seg_entry(sbi, segno)->ckpt_valid_blocks; |
| if (dent_blocks > left_blocks) |
| return false; |
| return true; |
| } |
| |
| static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, |
| int freed, int needed) |
| { |
| int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); |
| int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); |
| int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); |
| |
| if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| return false; |
| |
| if (free_sections(sbi) + freed == reserved_sections(sbi) + needed && |
| has_curseg_enough_space(sbi)) |
| return false; |
| return (free_sections(sbi) + freed) <= |
| (node_secs + 2 * dent_secs + imeta_secs + |
| reserved_sections(sbi) + needed); |
| } |
| |
| static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) |
| { |
| return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; |
| } |
| |
| static inline int utilization(struct f2fs_sb_info *sbi) |
| { |
| return div_u64((u64)valid_user_blocks(sbi) * 100, |
| sbi->user_block_count); |
| } |
| |
| /* |
| * Sometimes f2fs may be better to drop out-of-place update policy. |
| * And, users can control the policy through sysfs entries. |
| * There are five policies with triggering conditions as follows. |
| * F2FS_IPU_FORCE - all the time, |
| * F2FS_IPU_SSR - if SSR mode is activated, |
| * F2FS_IPU_UTIL - if FS utilization is over threashold, |
| * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over |
| * threashold, |
| * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash |
| * storages. IPU will be triggered only if the # of dirty |
| * pages over min_fsync_blocks. |
| * F2FS_IPUT_DISABLE - disable IPU. (=default option) |
| */ |
| #define DEF_MIN_IPU_UTIL 70 |
| #define DEF_MIN_FSYNC_BLOCKS 8 |
| #define DEF_MIN_HOT_BLOCKS 16 |
| |
| #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ |
| |
| enum { |
| F2FS_IPU_FORCE, |
| F2FS_IPU_SSR, |
| F2FS_IPU_UTIL, |
| F2FS_IPU_SSR_UTIL, |
| F2FS_IPU_FSYNC, |
| F2FS_IPU_ASYNC, |
| }; |
| |
| static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, |
| int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| return curseg->segno; |
| } |
| |
| static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, |
| int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| return curseg->alloc_type; |
| } |
| |
| static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| return curseg->next_blkoff; |
| } |
| |
| static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); |
| } |
| |
| static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr) |
| { |
| struct f2fs_sb_info *sbi = fio->sbi; |
| |
| if (PAGE_TYPE_OF_BIO(fio->type) == META && |
| (!is_read_io(fio->op) || fio->is_meta)) |
| BUG_ON(blk_addr < SEG0_BLKADDR(sbi) || |
| blk_addr >= MAIN_BLKADDR(sbi)); |
| else |
| BUG_ON(blk_addr < MAIN_BLKADDR(sbi) || |
| blk_addr >= MAX_BLKADDR(sbi)); |
| } |
| |
| /* |
| * Summary block is always treated as an invalid block |
| */ |
| static inline int check_block_count(struct f2fs_sb_info *sbi, |
| int segno, struct f2fs_sit_entry *raw_sit) |
| { |
| #ifdef CONFIG_F2FS_CHECK_FS |
| bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; |
| int valid_blocks = 0; |
| int cur_pos = 0, next_pos; |
| |
| /* check bitmap with valid block count */ |
| do { |
| if (is_valid) { |
| next_pos = find_next_zero_bit_le(&raw_sit->valid_map, |
| sbi->blocks_per_seg, |
| cur_pos); |
| valid_blocks += next_pos - cur_pos; |
| } else |
| next_pos = find_next_bit_le(&raw_sit->valid_map, |
| sbi->blocks_per_seg, |
| cur_pos); |
| cur_pos = next_pos; |
| is_valid = !is_valid; |
| } while (cur_pos < sbi->blocks_per_seg); |
| |
| if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Mismatch valid blocks %d vs. %d", |
| GET_SIT_VBLOCKS(raw_sit), valid_blocks); |
| set_sbi_flag(sbi, SBI_NEED_FSCK); |
| return -EINVAL; |
| } |
| #endif |
| /* check segment usage, and check boundary of a given segment number */ |
| if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg |
| || segno > TOTAL_SEGS(sbi) - 1)) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Wrong valid blocks %d or segno %u", |
| GET_SIT_VBLOCKS(raw_sit), segno); |
| set_sbi_flag(sbi, SBI_NEED_FSCK); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, |
| unsigned int start) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int offset = SIT_BLOCK_OFFSET(start); |
| block_t blk_addr = sit_i->sit_base_addr + offset; |
| |
| check_seg_range(sbi, start); |
| |
| #ifdef CONFIG_F2FS_CHECK_FS |
| if (f2fs_test_bit(offset, sit_i->sit_bitmap) != |
| f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) |
| f2fs_bug_on(sbi, 1); |
| #endif |
| |
| /* calculate sit block address */ |
| if (f2fs_test_bit(offset, sit_i->sit_bitmap)) |
| blk_addr += sit_i->sit_blocks; |
| |
| return blk_addr; |
| } |
| |
| static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, |
| pgoff_t block_addr) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| block_addr -= sit_i->sit_base_addr; |
| if (block_addr < sit_i->sit_blocks) |
| block_addr += sit_i->sit_blocks; |
| else |
| block_addr -= sit_i->sit_blocks; |
| |
| return block_addr + sit_i->sit_base_addr; |
| } |
| |
| static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) |
| { |
| unsigned int block_off = SIT_BLOCK_OFFSET(start); |
| |
| f2fs_change_bit(block_off, sit_i->sit_bitmap); |
| #ifdef CONFIG_F2FS_CHECK_FS |
| f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); |
| #endif |
| } |
| |
| static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, |
| bool base_time) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| time64_t diff, now = ktime_get_real_seconds(); |
| |
| if (now >= sit_i->mounted_time) |
| return sit_i->elapsed_time + now - sit_i->mounted_time; |
| |
| /* system time is set to the past */ |
| if (!base_time) { |
| diff = sit_i->mounted_time - now; |
| if (sit_i->elapsed_time >= diff) |
| return sit_i->elapsed_time - diff; |
| return 0; |
| } |
| return sit_i->elapsed_time; |
| } |
| |
| static inline void set_summary(struct f2fs_summary *sum, nid_t nid, |
| unsigned int ofs_in_node, unsigned char version) |
| { |
| sum->nid = cpu_to_le32(nid); |
| sum->ofs_in_node = cpu_to_le16(ofs_in_node); |
| sum->version = version; |
| } |
| |
| static inline block_t start_sum_block(struct f2fs_sb_info *sbi) |
| { |
| return __start_cp_addr(sbi) + |
| le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); |
| } |
| |
| static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) |
| { |
| return __start_cp_addr(sbi) + |
| le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) |
| - (base + 1) + type; |
| } |
| |
| static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) |
| { |
| if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) |
| return true; |
| return false; |
| } |
| |
| /* |
| * It is very important to gather dirty pages and write at once, so that we can |
| * submit a big bio without interfering other data writes. |
| * By default, 512 pages for directory data, |
| * 512 pages (2MB) * 8 for nodes, and |
| * 256 pages * 8 for meta are set. |
| */ |
| static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) |
| { |
| if (sbi->sb->s_bdi->wb.dirty_exceeded) |
| return 0; |
| |
| if (type == DATA) |
| return sbi->blocks_per_seg; |
| else if (type == NODE) |
| return 8 * sbi->blocks_per_seg; |
| else if (type == META) |
| return 8 * BIO_MAX_PAGES; |
| else |
| return 0; |
| } |
| |
| /* |
| * When writing pages, it'd better align nr_to_write for segment size. |
| */ |
| static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, |
| struct writeback_control *wbc) |
| { |
| long nr_to_write, desired; |
| |
| if (wbc->sync_mode != WB_SYNC_NONE) |
| return 0; |
| |
| nr_to_write = wbc->nr_to_write; |
| desired = BIO_MAX_PAGES; |
| if (type == NODE) |
| desired <<= 1; |
| |
| wbc->nr_to_write = desired; |
| return desired - nr_to_write; |
| } |
| |
| static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| bool wakeup = false; |
| int i; |
| |
| if (force) |
| goto wake_up; |
| |
| mutex_lock(&dcc->cmd_lock); |
| for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { |
| if (i + 1 < dcc->discard_granularity) |
| break; |
| if (!list_empty(&dcc->pend_list[i])) { |
| wakeup = true; |
| break; |
| } |
| } |
| mutex_unlock(&dcc->cmd_lock); |
| if (!wakeup) |
| return; |
| wake_up: |
| dcc->discard_wake = 1; |
| wake_up_interruptible_all(&dcc->discard_wait_queue); |
| } |