| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com> |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/i2c.h> |
| #include <linux/iopoll.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| |
| #define UNIPHIER_FI2C_CR 0x00 /* control register */ |
| #define UNIPHIER_FI2C_CR_MST BIT(3) /* master mode */ |
| #define UNIPHIER_FI2C_CR_STA BIT(2) /* start condition */ |
| #define UNIPHIER_FI2C_CR_STO BIT(1) /* stop condition */ |
| #define UNIPHIER_FI2C_CR_NACK BIT(0) /* do not return ACK */ |
| #define UNIPHIER_FI2C_DTTX 0x04 /* TX FIFO */ |
| #define UNIPHIER_FI2C_DTTX_CMD BIT(8) /* send command (slave addr) */ |
| #define UNIPHIER_FI2C_DTTX_RD BIT(0) /* read transaction */ |
| #define UNIPHIER_FI2C_DTRX 0x04 /* RX FIFO */ |
| #define UNIPHIER_FI2C_SLAD 0x0c /* slave address */ |
| #define UNIPHIER_FI2C_CYC 0x10 /* clock cycle control */ |
| #define UNIPHIER_FI2C_LCTL 0x14 /* clock low period control */ |
| #define UNIPHIER_FI2C_SSUT 0x18 /* restart/stop setup time control */ |
| #define UNIPHIER_FI2C_DSUT 0x1c /* data setup time control */ |
| #define UNIPHIER_FI2C_INT 0x20 /* interrupt status */ |
| #define UNIPHIER_FI2C_IE 0x24 /* interrupt enable */ |
| #define UNIPHIER_FI2C_IC 0x28 /* interrupt clear */ |
| #define UNIPHIER_FI2C_INT_TE BIT(9) /* TX FIFO empty */ |
| #define UNIPHIER_FI2C_INT_RF BIT(8) /* RX FIFO full */ |
| #define UNIPHIER_FI2C_INT_TC BIT(7) /* send complete (STOP) */ |
| #define UNIPHIER_FI2C_INT_RC BIT(6) /* receive complete (STOP) */ |
| #define UNIPHIER_FI2C_INT_TB BIT(5) /* sent specified bytes */ |
| #define UNIPHIER_FI2C_INT_RB BIT(4) /* received specified bytes */ |
| #define UNIPHIER_FI2C_INT_NA BIT(2) /* no ACK */ |
| #define UNIPHIER_FI2C_INT_AL BIT(1) /* arbitration lost */ |
| #define UNIPHIER_FI2C_SR 0x2c /* status register */ |
| #define UNIPHIER_FI2C_SR_DB BIT(12) /* device busy */ |
| #define UNIPHIER_FI2C_SR_STS BIT(11) /* stop condition detected */ |
| #define UNIPHIER_FI2C_SR_BB BIT(8) /* bus busy */ |
| #define UNIPHIER_FI2C_SR_RFF BIT(3) /* RX FIFO full */ |
| #define UNIPHIER_FI2C_SR_RNE BIT(2) /* RX FIFO not empty */ |
| #define UNIPHIER_FI2C_SR_TNF BIT(1) /* TX FIFO not full */ |
| #define UNIPHIER_FI2C_SR_TFE BIT(0) /* TX FIFO empty */ |
| #define UNIPHIER_FI2C_RST 0x34 /* reset control */ |
| #define UNIPHIER_FI2C_RST_TBRST BIT(2) /* clear TX FIFO */ |
| #define UNIPHIER_FI2C_RST_RBRST BIT(1) /* clear RX FIFO */ |
| #define UNIPHIER_FI2C_RST_RST BIT(0) /* forcible bus reset */ |
| #define UNIPHIER_FI2C_BM 0x38 /* bus monitor */ |
| #define UNIPHIER_FI2C_BM_SDAO BIT(3) /* output for SDA line */ |
| #define UNIPHIER_FI2C_BM_SDAS BIT(2) /* readback of SDA line */ |
| #define UNIPHIER_FI2C_BM_SCLO BIT(1) /* output for SCL line */ |
| #define UNIPHIER_FI2C_BM_SCLS BIT(0) /* readback of SCL line */ |
| #define UNIPHIER_FI2C_NOISE 0x3c /* noise filter control */ |
| #define UNIPHIER_FI2C_TBC 0x40 /* TX byte count setting */ |
| #define UNIPHIER_FI2C_RBC 0x44 /* RX byte count setting */ |
| #define UNIPHIER_FI2C_TBCM 0x48 /* TX byte count monitor */ |
| #define UNIPHIER_FI2C_RBCM 0x4c /* RX byte count monitor */ |
| #define UNIPHIER_FI2C_BRST 0x50 /* bus reset */ |
| #define UNIPHIER_FI2C_BRST_FOEN BIT(1) /* normal operation */ |
| #define UNIPHIER_FI2C_BRST_RSCL BIT(0) /* release SCL */ |
| |
| #define UNIPHIER_FI2C_INT_FAULTS \ |
| (UNIPHIER_FI2C_INT_NA | UNIPHIER_FI2C_INT_AL) |
| #define UNIPHIER_FI2C_INT_STOP \ |
| (UNIPHIER_FI2C_INT_TC | UNIPHIER_FI2C_INT_RC) |
| |
| #define UNIPHIER_FI2C_RD BIT(0) |
| #define UNIPHIER_FI2C_STOP BIT(1) |
| #define UNIPHIER_FI2C_MANUAL_NACK BIT(2) |
| #define UNIPHIER_FI2C_BYTE_WISE BIT(3) |
| #define UNIPHIER_FI2C_DEFER_STOP_COMP BIT(4) |
| |
| #define UNIPHIER_FI2C_FIFO_SIZE 8 |
| |
| struct uniphier_fi2c_priv { |
| struct completion comp; |
| struct i2c_adapter adap; |
| void __iomem *membase; |
| struct clk *clk; |
| unsigned int len; |
| u8 *buf; |
| u32 enabled_irqs; |
| int error; |
| unsigned int flags; |
| unsigned int busy_cnt; |
| unsigned int clk_cycle; |
| spinlock_t lock; /* IRQ synchronization */ |
| }; |
| |
| static void uniphier_fi2c_fill_txfifo(struct uniphier_fi2c_priv *priv, |
| bool first) |
| { |
| int fifo_space = UNIPHIER_FI2C_FIFO_SIZE; |
| |
| /* |
| * TX-FIFO stores slave address in it for the first access. |
| * Decrement the counter. |
| */ |
| if (first) |
| fifo_space--; |
| |
| while (priv->len) { |
| if (fifo_space-- <= 0) |
| break; |
| |
| writel(*priv->buf++, priv->membase + UNIPHIER_FI2C_DTTX); |
| priv->len--; |
| } |
| } |
| |
| static void uniphier_fi2c_drain_rxfifo(struct uniphier_fi2c_priv *priv) |
| { |
| int fifo_left = priv->flags & UNIPHIER_FI2C_BYTE_WISE ? |
| 1 : UNIPHIER_FI2C_FIFO_SIZE; |
| |
| while (priv->len) { |
| if (fifo_left-- <= 0) |
| break; |
| |
| *priv->buf++ = readl(priv->membase + UNIPHIER_FI2C_DTRX); |
| priv->len--; |
| } |
| } |
| |
| static void uniphier_fi2c_set_irqs(struct uniphier_fi2c_priv *priv) |
| { |
| writel(priv->enabled_irqs, priv->membase + UNIPHIER_FI2C_IE); |
| } |
| |
| static void uniphier_fi2c_clear_irqs(struct uniphier_fi2c_priv *priv, |
| u32 mask) |
| { |
| writel(mask, priv->membase + UNIPHIER_FI2C_IC); |
| } |
| |
| static void uniphier_fi2c_stop(struct uniphier_fi2c_priv *priv) |
| { |
| priv->enabled_irqs |= UNIPHIER_FI2C_INT_STOP; |
| uniphier_fi2c_set_irqs(priv); |
| writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STO, |
| priv->membase + UNIPHIER_FI2C_CR); |
| } |
| |
| static irqreturn_t uniphier_fi2c_interrupt(int irq, void *dev_id) |
| { |
| struct uniphier_fi2c_priv *priv = dev_id; |
| u32 irq_status; |
| |
| spin_lock(&priv->lock); |
| |
| irq_status = readl(priv->membase + UNIPHIER_FI2C_INT); |
| irq_status &= priv->enabled_irqs; |
| |
| if (irq_status & UNIPHIER_FI2C_INT_STOP) |
| goto complete; |
| |
| if (unlikely(irq_status & UNIPHIER_FI2C_INT_AL)) { |
| priv->error = -EAGAIN; |
| goto complete; |
| } |
| |
| if (unlikely(irq_status & UNIPHIER_FI2C_INT_NA)) { |
| priv->error = -ENXIO; |
| if (priv->flags & UNIPHIER_FI2C_RD) { |
| /* |
| * work around a hardware bug: |
| * The receive-completed interrupt is never set even if |
| * STOP condition is detected after the address phase |
| * of read transaction fails to get ACK. |
| * To avoid time-out error, we issue STOP here, |
| * but do not wait for its completion. |
| * It should be checked after exiting this handler. |
| */ |
| uniphier_fi2c_stop(priv); |
| priv->flags |= UNIPHIER_FI2C_DEFER_STOP_COMP; |
| goto complete; |
| } |
| goto stop; |
| } |
| |
| if (irq_status & UNIPHIER_FI2C_INT_TE) { |
| if (!priv->len) |
| goto data_done; |
| |
| uniphier_fi2c_fill_txfifo(priv, false); |
| goto handled; |
| } |
| |
| if (irq_status & (UNIPHIER_FI2C_INT_RF | UNIPHIER_FI2C_INT_RB)) { |
| uniphier_fi2c_drain_rxfifo(priv); |
| /* |
| * If the number of bytes to read is multiple of the FIFO size |
| * (msg->len == 8, 16, 24, ...), the INT_RF bit is set a little |
| * earlier than INT_RB. We wait for INT_RB to confirm the |
| * completion of the current message. |
| */ |
| if (!priv->len && (irq_status & UNIPHIER_FI2C_INT_RB)) |
| goto data_done; |
| |
| if (unlikely(priv->flags & UNIPHIER_FI2C_MANUAL_NACK)) { |
| if (priv->len <= UNIPHIER_FI2C_FIFO_SIZE && |
| !(priv->flags & UNIPHIER_FI2C_BYTE_WISE)) { |
| priv->enabled_irqs |= UNIPHIER_FI2C_INT_RB; |
| uniphier_fi2c_set_irqs(priv); |
| priv->flags |= UNIPHIER_FI2C_BYTE_WISE; |
| } |
| if (priv->len <= 1) |
| writel(UNIPHIER_FI2C_CR_MST | |
| UNIPHIER_FI2C_CR_NACK, |
| priv->membase + UNIPHIER_FI2C_CR); |
| } |
| |
| goto handled; |
| } |
| |
| spin_unlock(&priv->lock); |
| |
| return IRQ_NONE; |
| |
| data_done: |
| if (priv->flags & UNIPHIER_FI2C_STOP) { |
| stop: |
| uniphier_fi2c_stop(priv); |
| } else { |
| complete: |
| priv->enabled_irqs = 0; |
| uniphier_fi2c_set_irqs(priv); |
| complete(&priv->comp); |
| } |
| |
| handled: |
| /* |
| * This controller makes a pause while any bit of the IRQ status is |
| * asserted. Clear the asserted bit to kick the controller just before |
| * exiting the handler. |
| */ |
| uniphier_fi2c_clear_irqs(priv, irq_status); |
| |
| spin_unlock(&priv->lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void uniphier_fi2c_tx_init(struct uniphier_fi2c_priv *priv, u16 addr, |
| bool repeat) |
| { |
| priv->enabled_irqs |= UNIPHIER_FI2C_INT_TE; |
| uniphier_fi2c_set_irqs(priv); |
| |
| /* do not use TX byte counter */ |
| writel(0, priv->membase + UNIPHIER_FI2C_TBC); |
| /* set slave address */ |
| writel(UNIPHIER_FI2C_DTTX_CMD | addr << 1, |
| priv->membase + UNIPHIER_FI2C_DTTX); |
| /* |
| * First chunk of data. For a repeated START condition, do not write |
| * data to the TX fifo here to avoid the timing issue. |
| */ |
| if (!repeat) |
| uniphier_fi2c_fill_txfifo(priv, true); |
| } |
| |
| static void uniphier_fi2c_rx_init(struct uniphier_fi2c_priv *priv, u16 addr) |
| { |
| priv->flags |= UNIPHIER_FI2C_RD; |
| |
| if (likely(priv->len < 256)) { |
| /* |
| * If possible, use RX byte counter. |
| * It can automatically handle NACK for the last byte. |
| */ |
| writel(priv->len, priv->membase + UNIPHIER_FI2C_RBC); |
| priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF | |
| UNIPHIER_FI2C_INT_RB; |
| } else { |
| /* |
| * The byte counter can not count over 256. In this case, |
| * do not use it at all. Drain data when FIFO gets full, |
| * but treat the last portion as a special case. |
| */ |
| writel(0, priv->membase + UNIPHIER_FI2C_RBC); |
| priv->flags |= UNIPHIER_FI2C_MANUAL_NACK; |
| priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF; |
| } |
| |
| uniphier_fi2c_set_irqs(priv); |
| |
| /* set slave address with RD bit */ |
| writel(UNIPHIER_FI2C_DTTX_CMD | UNIPHIER_FI2C_DTTX_RD | addr << 1, |
| priv->membase + UNIPHIER_FI2C_DTTX); |
| } |
| |
| static void uniphier_fi2c_reset(struct uniphier_fi2c_priv *priv) |
| { |
| writel(UNIPHIER_FI2C_RST_RST, priv->membase + UNIPHIER_FI2C_RST); |
| } |
| |
| static void uniphier_fi2c_prepare_operation(struct uniphier_fi2c_priv *priv) |
| { |
| writel(UNIPHIER_FI2C_BRST_FOEN | UNIPHIER_FI2C_BRST_RSCL, |
| priv->membase + UNIPHIER_FI2C_BRST); |
| } |
| |
| static void uniphier_fi2c_recover(struct uniphier_fi2c_priv *priv) |
| { |
| uniphier_fi2c_reset(priv); |
| i2c_recover_bus(&priv->adap); |
| } |
| |
| static int uniphier_fi2c_master_xfer_one(struct i2c_adapter *adap, |
| struct i2c_msg *msg, bool repeat, |
| bool stop) |
| { |
| struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); |
| bool is_read = msg->flags & I2C_M_RD; |
| unsigned long time_left, flags; |
| |
| priv->len = msg->len; |
| priv->buf = msg->buf; |
| priv->enabled_irqs = UNIPHIER_FI2C_INT_FAULTS; |
| priv->error = 0; |
| priv->flags = 0; |
| |
| if (stop) |
| priv->flags |= UNIPHIER_FI2C_STOP; |
| |
| reinit_completion(&priv->comp); |
| uniphier_fi2c_clear_irqs(priv, U32_MAX); |
| writel(UNIPHIER_FI2C_RST_TBRST | UNIPHIER_FI2C_RST_RBRST, |
| priv->membase + UNIPHIER_FI2C_RST); /* reset TX/RX FIFO */ |
| |
| spin_lock_irqsave(&priv->lock, flags); |
| |
| if (is_read) |
| uniphier_fi2c_rx_init(priv, msg->addr); |
| else |
| uniphier_fi2c_tx_init(priv, msg->addr, repeat); |
| |
| /* |
| * For a repeated START condition, writing a slave address to the FIFO |
| * kicks the controller. So, the UNIPHIER_FI2C_CR register should be |
| * written only for a non-repeated START condition. |
| */ |
| if (!repeat) |
| writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STA, |
| priv->membase + UNIPHIER_FI2C_CR); |
| |
| spin_unlock_irqrestore(&priv->lock, flags); |
| |
| time_left = wait_for_completion_timeout(&priv->comp, adap->timeout); |
| |
| spin_lock_irqsave(&priv->lock, flags); |
| priv->enabled_irqs = 0; |
| uniphier_fi2c_set_irqs(priv); |
| spin_unlock_irqrestore(&priv->lock, flags); |
| |
| if (!time_left) { |
| dev_err(&adap->dev, "transaction timeout.\n"); |
| uniphier_fi2c_recover(priv); |
| return -ETIMEDOUT; |
| } |
| |
| if (unlikely(priv->flags & UNIPHIER_FI2C_DEFER_STOP_COMP)) { |
| u32 status; |
| int ret; |
| |
| ret = readl_poll_timeout(priv->membase + UNIPHIER_FI2C_SR, |
| status, |
| (status & UNIPHIER_FI2C_SR_STS) && |
| !(status & UNIPHIER_FI2C_SR_BB), |
| 1, 20); |
| if (ret) { |
| dev_err(&adap->dev, |
| "stop condition was not completed.\n"); |
| uniphier_fi2c_recover(priv); |
| return ret; |
| } |
| } |
| |
| return priv->error; |
| } |
| |
| static int uniphier_fi2c_check_bus_busy(struct i2c_adapter *adap) |
| { |
| struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); |
| |
| if (readl(priv->membase + UNIPHIER_FI2C_SR) & UNIPHIER_FI2C_SR_DB) { |
| if (priv->busy_cnt++ > 3) { |
| /* |
| * If bus busy continues too long, it is probably |
| * in a wrong state. Try bus recovery. |
| */ |
| uniphier_fi2c_recover(priv); |
| priv->busy_cnt = 0; |
| } |
| |
| return -EAGAIN; |
| } |
| |
| priv->busy_cnt = 0; |
| return 0; |
| } |
| |
| static int uniphier_fi2c_master_xfer(struct i2c_adapter *adap, |
| struct i2c_msg *msgs, int num) |
| { |
| struct i2c_msg *msg, *emsg = msgs + num; |
| bool repeat = false; |
| int ret; |
| |
| ret = uniphier_fi2c_check_bus_busy(adap); |
| if (ret) |
| return ret; |
| |
| for (msg = msgs; msg < emsg; msg++) { |
| /* Emit STOP if it is the last message or I2C_M_STOP is set. */ |
| bool stop = (msg + 1 == emsg) || (msg->flags & I2C_M_STOP); |
| |
| ret = uniphier_fi2c_master_xfer_one(adap, msg, repeat, stop); |
| if (ret) |
| return ret; |
| |
| repeat = !stop; |
| } |
| |
| return num; |
| } |
| |
| static u32 uniphier_fi2c_functionality(struct i2c_adapter *adap) |
| { |
| return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; |
| } |
| |
| static const struct i2c_algorithm uniphier_fi2c_algo = { |
| .master_xfer = uniphier_fi2c_master_xfer, |
| .functionality = uniphier_fi2c_functionality, |
| }; |
| |
| static int uniphier_fi2c_get_scl(struct i2c_adapter *adap) |
| { |
| struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); |
| |
| return !!(readl(priv->membase + UNIPHIER_FI2C_BM) & |
| UNIPHIER_FI2C_BM_SCLS); |
| } |
| |
| static void uniphier_fi2c_set_scl(struct i2c_adapter *adap, int val) |
| { |
| struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); |
| |
| writel(val ? UNIPHIER_FI2C_BRST_RSCL : 0, |
| priv->membase + UNIPHIER_FI2C_BRST); |
| } |
| |
| static int uniphier_fi2c_get_sda(struct i2c_adapter *adap) |
| { |
| struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); |
| |
| return !!(readl(priv->membase + UNIPHIER_FI2C_BM) & |
| UNIPHIER_FI2C_BM_SDAS); |
| } |
| |
| static void uniphier_fi2c_unprepare_recovery(struct i2c_adapter *adap) |
| { |
| uniphier_fi2c_prepare_operation(i2c_get_adapdata(adap)); |
| } |
| |
| static struct i2c_bus_recovery_info uniphier_fi2c_bus_recovery_info = { |
| .recover_bus = i2c_generic_scl_recovery, |
| .get_scl = uniphier_fi2c_get_scl, |
| .set_scl = uniphier_fi2c_set_scl, |
| .get_sda = uniphier_fi2c_get_sda, |
| .unprepare_recovery = uniphier_fi2c_unprepare_recovery, |
| }; |
| |
| static void uniphier_fi2c_hw_init(struct uniphier_fi2c_priv *priv) |
| { |
| unsigned int cyc = priv->clk_cycle; |
| u32 tmp; |
| |
| tmp = readl(priv->membase + UNIPHIER_FI2C_CR); |
| tmp |= UNIPHIER_FI2C_CR_MST; |
| writel(tmp, priv->membase + UNIPHIER_FI2C_CR); |
| |
| uniphier_fi2c_reset(priv); |
| |
| /* |
| * Standard-mode: tLOW + tHIGH = 10 us |
| * Fast-mode: tLOW + tHIGH = 2.5 us |
| */ |
| writel(cyc, priv->membase + UNIPHIER_FI2C_CYC); |
| /* |
| * Standard-mode: tLOW = 4.7 us, tHIGH = 4.0 us, tBUF = 4.7 us |
| * Fast-mode: tLOW = 1.3 us, tHIGH = 0.6 us, tBUF = 1.3 us |
| * "tLow/tHIGH = 5/4" meets both. |
| */ |
| writel(cyc * 5 / 9, priv->membase + UNIPHIER_FI2C_LCTL); |
| /* |
| * Standard-mode: tHD;STA = 4.0 us, tSU;STA = 4.7 us, tSU;STO = 4.0 us |
| * Fast-mode: tHD;STA = 0.6 us, tSU;STA = 0.6 us, tSU;STO = 0.6 us |
| */ |
| writel(cyc / 2, priv->membase + UNIPHIER_FI2C_SSUT); |
| /* |
| * Standard-mode: tSU;DAT = 250 ns |
| * Fast-mode: tSU;DAT = 100 ns |
| */ |
| writel(cyc / 16, priv->membase + UNIPHIER_FI2C_DSUT); |
| |
| uniphier_fi2c_prepare_operation(priv); |
| } |
| |
| static int uniphier_fi2c_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct uniphier_fi2c_priv *priv; |
| u32 bus_speed; |
| unsigned long clk_rate; |
| int irq, ret; |
| |
| priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| priv->membase = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(priv->membase)) |
| return PTR_ERR(priv->membase); |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| if (of_property_read_u32(dev->of_node, "clock-frequency", &bus_speed)) |
| bus_speed = I2C_MAX_STANDARD_MODE_FREQ; |
| |
| if (!bus_speed || bus_speed > I2C_MAX_FAST_MODE_FREQ) { |
| dev_err(dev, "invalid clock-frequency %d\n", bus_speed); |
| return -EINVAL; |
| } |
| |
| priv->clk = devm_clk_get(dev, NULL); |
| if (IS_ERR(priv->clk)) { |
| dev_err(dev, "failed to get clock\n"); |
| return PTR_ERR(priv->clk); |
| } |
| |
| ret = clk_prepare_enable(priv->clk); |
| if (ret) |
| return ret; |
| |
| clk_rate = clk_get_rate(priv->clk); |
| if (!clk_rate) { |
| dev_err(dev, "input clock rate should not be zero\n"); |
| ret = -EINVAL; |
| goto disable_clk; |
| } |
| |
| priv->clk_cycle = clk_rate / bus_speed; |
| init_completion(&priv->comp); |
| spin_lock_init(&priv->lock); |
| priv->adap.owner = THIS_MODULE; |
| priv->adap.algo = &uniphier_fi2c_algo; |
| priv->adap.dev.parent = dev; |
| priv->adap.dev.of_node = dev->of_node; |
| strscpy(priv->adap.name, "UniPhier FI2C", sizeof(priv->adap.name)); |
| priv->adap.bus_recovery_info = &uniphier_fi2c_bus_recovery_info; |
| i2c_set_adapdata(&priv->adap, priv); |
| platform_set_drvdata(pdev, priv); |
| |
| uniphier_fi2c_hw_init(priv); |
| |
| ret = devm_request_irq(dev, irq, uniphier_fi2c_interrupt, 0, |
| pdev->name, priv); |
| if (ret) { |
| dev_err(dev, "failed to request irq %d\n", irq); |
| goto disable_clk; |
| } |
| |
| ret = i2c_add_adapter(&priv->adap); |
| disable_clk: |
| if (ret) |
| clk_disable_unprepare(priv->clk); |
| |
| return ret; |
| } |
| |
| static int uniphier_fi2c_remove(struct platform_device *pdev) |
| { |
| struct uniphier_fi2c_priv *priv = platform_get_drvdata(pdev); |
| |
| i2c_del_adapter(&priv->adap); |
| clk_disable_unprepare(priv->clk); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused uniphier_fi2c_suspend(struct device *dev) |
| { |
| struct uniphier_fi2c_priv *priv = dev_get_drvdata(dev); |
| |
| clk_disable_unprepare(priv->clk); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused uniphier_fi2c_resume(struct device *dev) |
| { |
| struct uniphier_fi2c_priv *priv = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = clk_prepare_enable(priv->clk); |
| if (ret) |
| return ret; |
| |
| uniphier_fi2c_hw_init(priv); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops uniphier_fi2c_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(uniphier_fi2c_suspend, uniphier_fi2c_resume) |
| }; |
| |
| static const struct of_device_id uniphier_fi2c_match[] = { |
| { .compatible = "socionext,uniphier-fi2c" }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, uniphier_fi2c_match); |
| |
| static struct platform_driver uniphier_fi2c_drv = { |
| .probe = uniphier_fi2c_probe, |
| .remove = uniphier_fi2c_remove, |
| .driver = { |
| .name = "uniphier-fi2c", |
| .of_match_table = uniphier_fi2c_match, |
| .pm = &uniphier_fi2c_pm_ops, |
| }, |
| }; |
| module_platform_driver(uniphier_fi2c_drv); |
| |
| MODULE_AUTHOR("Masahiro Yamada <yamada.masahiro@socionext.com>"); |
| MODULE_DESCRIPTION("UniPhier FIFO-builtin I2C bus driver"); |
| MODULE_LICENSE("GPL"); |