| // SPDX-License-Identifier: GPL-2.0-only |
| // Copyright (C) 2014 Broadcom Corporation |
| |
| #include <linux/delay.h> |
| #include <linux/i2c.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| |
| #define IDM_CTRL_DIRECT_OFFSET 0x00 |
| #define CFG_OFFSET 0x00 |
| #define CFG_RESET_SHIFT 31 |
| #define CFG_EN_SHIFT 30 |
| #define CFG_SLAVE_ADDR_0_SHIFT 28 |
| #define CFG_M_RETRY_CNT_SHIFT 16 |
| #define CFG_M_RETRY_CNT_MASK 0x0f |
| |
| #define TIM_CFG_OFFSET 0x04 |
| #define TIM_CFG_MODE_400_SHIFT 31 |
| #define TIM_RAND_SLAVE_STRETCH_SHIFT 24 |
| #define TIM_RAND_SLAVE_STRETCH_MASK 0x7f |
| #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT 16 |
| #define TIM_PERIODIC_SLAVE_STRETCH_MASK 0x7f |
| |
| #define S_CFG_SMBUS_ADDR_OFFSET 0x08 |
| #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT 31 |
| #define S_CFG_NIC_SMB_ADDR3_SHIFT 24 |
| #define S_CFG_NIC_SMB_ADDR3_MASK 0x7f |
| #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT 23 |
| #define S_CFG_NIC_SMB_ADDR2_SHIFT 16 |
| #define S_CFG_NIC_SMB_ADDR2_MASK 0x7f |
| #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT 15 |
| #define S_CFG_NIC_SMB_ADDR1_SHIFT 8 |
| #define S_CFG_NIC_SMB_ADDR1_MASK 0x7f |
| #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT 7 |
| #define S_CFG_NIC_SMB_ADDR0_SHIFT 0 |
| #define S_CFG_NIC_SMB_ADDR0_MASK 0x7f |
| |
| #define M_FIFO_CTRL_OFFSET 0x0c |
| #define M_FIFO_RX_FLUSH_SHIFT 31 |
| #define M_FIFO_TX_FLUSH_SHIFT 30 |
| #define M_FIFO_RX_CNT_SHIFT 16 |
| #define M_FIFO_RX_CNT_MASK 0x7f |
| #define M_FIFO_RX_THLD_SHIFT 8 |
| #define M_FIFO_RX_THLD_MASK 0x3f |
| |
| #define S_FIFO_CTRL_OFFSET 0x10 |
| #define S_FIFO_RX_FLUSH_SHIFT 31 |
| #define S_FIFO_TX_FLUSH_SHIFT 30 |
| #define S_FIFO_RX_CNT_SHIFT 16 |
| #define S_FIFO_RX_CNT_MASK 0x7f |
| #define S_FIFO_RX_THLD_SHIFT 8 |
| #define S_FIFO_RX_THLD_MASK 0x3f |
| |
| #define M_CMD_OFFSET 0x30 |
| #define M_CMD_START_BUSY_SHIFT 31 |
| #define M_CMD_STATUS_SHIFT 25 |
| #define M_CMD_STATUS_MASK 0x07 |
| #define M_CMD_STATUS_SUCCESS 0x0 |
| #define M_CMD_STATUS_LOST_ARB 0x1 |
| #define M_CMD_STATUS_NACK_ADDR 0x2 |
| #define M_CMD_STATUS_NACK_DATA 0x3 |
| #define M_CMD_STATUS_TIMEOUT 0x4 |
| #define M_CMD_STATUS_FIFO_UNDERRUN 0x5 |
| #define M_CMD_STATUS_RX_FIFO_FULL 0x6 |
| #define M_CMD_PROTOCOL_SHIFT 9 |
| #define M_CMD_PROTOCOL_MASK 0xf |
| #define M_CMD_PROTOCOL_QUICK 0x0 |
| #define M_CMD_PROTOCOL_BLK_WR 0x7 |
| #define M_CMD_PROTOCOL_BLK_RD 0x8 |
| #define M_CMD_PROTOCOL_PROCESS 0xa |
| #define M_CMD_PEC_SHIFT 8 |
| #define M_CMD_RD_CNT_SHIFT 0 |
| #define M_CMD_RD_CNT_MASK 0xff |
| |
| #define S_CMD_OFFSET 0x34 |
| #define S_CMD_START_BUSY_SHIFT 31 |
| #define S_CMD_STATUS_SHIFT 23 |
| #define S_CMD_STATUS_MASK 0x07 |
| #define S_CMD_STATUS_SUCCESS 0x0 |
| #define S_CMD_STATUS_TIMEOUT 0x5 |
| #define S_CMD_STATUS_MASTER_ABORT 0x7 |
| |
| #define IE_OFFSET 0x38 |
| #define IE_M_RX_FIFO_FULL_SHIFT 31 |
| #define IE_M_RX_THLD_SHIFT 30 |
| #define IE_M_START_BUSY_SHIFT 28 |
| #define IE_M_TX_UNDERRUN_SHIFT 27 |
| #define IE_S_RX_FIFO_FULL_SHIFT 26 |
| #define IE_S_RX_THLD_SHIFT 25 |
| #define IE_S_RX_EVENT_SHIFT 24 |
| #define IE_S_START_BUSY_SHIFT 23 |
| #define IE_S_TX_UNDERRUN_SHIFT 22 |
| #define IE_S_RD_EVENT_SHIFT 21 |
| |
| #define IS_OFFSET 0x3c |
| #define IS_M_RX_FIFO_FULL_SHIFT 31 |
| #define IS_M_RX_THLD_SHIFT 30 |
| #define IS_M_START_BUSY_SHIFT 28 |
| #define IS_M_TX_UNDERRUN_SHIFT 27 |
| #define IS_S_RX_FIFO_FULL_SHIFT 26 |
| #define IS_S_RX_THLD_SHIFT 25 |
| #define IS_S_RX_EVENT_SHIFT 24 |
| #define IS_S_START_BUSY_SHIFT 23 |
| #define IS_S_TX_UNDERRUN_SHIFT 22 |
| #define IS_S_RD_EVENT_SHIFT 21 |
| |
| #define M_TX_OFFSET 0x40 |
| #define M_TX_WR_STATUS_SHIFT 31 |
| #define M_TX_DATA_SHIFT 0 |
| #define M_TX_DATA_MASK 0xff |
| |
| #define M_RX_OFFSET 0x44 |
| #define M_RX_STATUS_SHIFT 30 |
| #define M_RX_STATUS_MASK 0x03 |
| #define M_RX_PEC_ERR_SHIFT 29 |
| #define M_RX_DATA_SHIFT 0 |
| #define M_RX_DATA_MASK 0xff |
| |
| #define S_TX_OFFSET 0x48 |
| #define S_TX_WR_STATUS_SHIFT 31 |
| #define S_TX_DATA_SHIFT 0 |
| #define S_TX_DATA_MASK 0xff |
| |
| #define S_RX_OFFSET 0x4c |
| #define S_RX_STATUS_SHIFT 30 |
| #define S_RX_STATUS_MASK 0x03 |
| #define S_RX_PEC_ERR_SHIFT 29 |
| #define S_RX_DATA_SHIFT 0 |
| #define S_RX_DATA_MASK 0xff |
| |
| #define I2C_TIMEOUT_MSEC 50000 |
| #define M_TX_RX_FIFO_SIZE 64 |
| #define M_RX_FIFO_MAX_THLD_VALUE (M_TX_RX_FIFO_SIZE - 1) |
| |
| #define M_RX_MAX_READ_LEN 255 |
| #define M_RX_FIFO_THLD_VALUE 50 |
| |
| #define IE_M_ALL_INTERRUPT_SHIFT 27 |
| #define IE_M_ALL_INTERRUPT_MASK 0x1e |
| |
| #define SLAVE_READ_WRITE_BIT_MASK 0x1 |
| #define SLAVE_READ_WRITE_BIT_SHIFT 0x1 |
| #define SLAVE_MAX_SIZE_TRANSACTION 64 |
| #define SLAVE_CLOCK_STRETCH_TIME 25 |
| |
| #define IE_S_ALL_INTERRUPT_SHIFT 21 |
| #define IE_S_ALL_INTERRUPT_MASK 0x3f |
| /* |
| * It takes ~18us to reading 10bytes of data, hence to keep tasklet |
| * running for less time, max slave read per tasklet is set to 10 bytes. |
| */ |
| #define MAX_SLAVE_RX_PER_INT 10 |
| |
| enum i2c_slave_read_status { |
| I2C_SLAVE_RX_FIFO_EMPTY = 0, |
| I2C_SLAVE_RX_START, |
| I2C_SLAVE_RX_DATA, |
| I2C_SLAVE_RX_END, |
| }; |
| |
| enum bus_speed_index { |
| I2C_SPD_100K = 0, |
| I2C_SPD_400K, |
| }; |
| |
| enum bcm_iproc_i2c_type { |
| IPROC_I2C, |
| IPROC_I2C_NIC |
| }; |
| |
| struct bcm_iproc_i2c_dev { |
| struct device *device; |
| enum bcm_iproc_i2c_type type; |
| int irq; |
| |
| void __iomem *base; |
| void __iomem *idm_base; |
| |
| u32 ape_addr_mask; |
| |
| /* lock for indirect access through IDM */ |
| spinlock_t idm_lock; |
| |
| struct i2c_adapter adapter; |
| unsigned int bus_speed; |
| |
| struct completion done; |
| int xfer_is_done; |
| |
| struct i2c_msg *msg; |
| |
| struct i2c_client *slave; |
| |
| /* bytes that have been transferred */ |
| unsigned int tx_bytes; |
| /* bytes that have been read */ |
| unsigned int rx_bytes; |
| unsigned int thld_bytes; |
| |
| bool slave_rx_only; |
| bool rx_start_rcvd; |
| bool slave_read_complete; |
| u32 tx_underrun; |
| u32 slave_int_mask; |
| struct tasklet_struct slave_rx_tasklet; |
| }; |
| |
| /* tasklet to process slave rx data */ |
| static void slave_rx_tasklet_fn(unsigned long); |
| |
| /* |
| * Can be expanded in the future if more interrupt status bits are utilized |
| */ |
| #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\ |
| | BIT(IS_M_RX_THLD_SHIFT)) |
| |
| #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\ |
| | BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\ |
| | BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\ |
| | BIT(IS_S_RX_THLD_SHIFT)) |
| |
| static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave); |
| static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave); |
| static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c, |
| bool enable); |
| |
| static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c, |
| u32 offset) |
| { |
| u32 val; |
| |
| if (iproc_i2c->idm_base) { |
| spin_lock(&iproc_i2c->idm_lock); |
| writel(iproc_i2c->ape_addr_mask, |
| iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET); |
| val = readl(iproc_i2c->base + offset); |
| spin_unlock(&iproc_i2c->idm_lock); |
| } else { |
| val = readl(iproc_i2c->base + offset); |
| } |
| |
| return val; |
| } |
| |
| static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c, |
| u32 offset, u32 val) |
| { |
| if (iproc_i2c->idm_base) { |
| spin_lock(&iproc_i2c->idm_lock); |
| writel(iproc_i2c->ape_addr_mask, |
| iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET); |
| writel(val, iproc_i2c->base + offset); |
| spin_unlock(&iproc_i2c->idm_lock); |
| } else { |
| writel(val, iproc_i2c->base + offset); |
| } |
| } |
| |
| static void bcm_iproc_i2c_slave_init( |
| struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset) |
| { |
| u32 val; |
| |
| iproc_i2c->tx_underrun = 0; |
| if (need_reset) { |
| /* put controller in reset */ |
| val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET); |
| val |= BIT(CFG_RESET_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val); |
| |
| /* wait 100 usec per spec */ |
| udelay(100); |
| |
| /* bring controller out of reset */ |
| val &= ~(BIT(CFG_RESET_SHIFT)); |
| iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val); |
| } |
| |
| /* flush TX/RX FIFOs */ |
| val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT)); |
| iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val); |
| |
| /* Maximum slave stretch time */ |
| val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET); |
| val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT); |
| val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val); |
| |
| /* Configure the slave address */ |
| val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET); |
| val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT); |
| val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT); |
| val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val); |
| |
| /* clear all pending slave interrupts */ |
| iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE); |
| |
| /* Enable interrupt register to indicate a valid byte in receive fifo */ |
| val = BIT(IE_S_RX_EVENT_SHIFT); |
| /* Enable interrupt register to indicate Slave Rx FIFO Full */ |
| val |= BIT(IE_S_RX_FIFO_FULL_SHIFT); |
| /* Enable interrupt register to indicate a Master read transaction */ |
| val |= BIT(IE_S_RD_EVENT_SHIFT); |
| /* Enable interrupt register for the Slave BUSY command */ |
| val |= BIT(IE_S_START_BUSY_SHIFT); |
| iproc_i2c->slave_int_mask = val; |
| iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val); |
| } |
| |
| static void bcm_iproc_i2c_check_slave_status( |
| struct bcm_iproc_i2c_dev *iproc_i2c) |
| { |
| u32 val; |
| |
| val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET); |
| /* status is valid only when START_BUSY is cleared after it was set */ |
| if (val & BIT(S_CMD_START_BUSY_SHIFT)) |
| return; |
| |
| val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK; |
| if (val == S_CMD_STATUS_TIMEOUT || val == S_CMD_STATUS_MASTER_ABORT) { |
| dev_err(iproc_i2c->device, (val == S_CMD_STATUS_TIMEOUT) ? |
| "slave random stretch time timeout\n" : |
| "Master aborted read transaction\n"); |
| /* re-initialize i2c for recovery */ |
| bcm_iproc_i2c_enable_disable(iproc_i2c, false); |
| bcm_iproc_i2c_slave_init(iproc_i2c, true); |
| bcm_iproc_i2c_enable_disable(iproc_i2c, true); |
| } |
| } |
| |
| static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c) |
| { |
| u8 rx_data, rx_status; |
| u32 rx_bytes = 0; |
| u32 val; |
| |
| while (rx_bytes < MAX_SLAVE_RX_PER_INT) { |
| val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET); |
| rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK; |
| rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK); |
| |
| if (rx_status == I2C_SLAVE_RX_START) { |
| /* Start of SMBUS Master write */ |
| i2c_slave_event(iproc_i2c->slave, |
| I2C_SLAVE_WRITE_REQUESTED, &rx_data); |
| iproc_i2c->rx_start_rcvd = true; |
| iproc_i2c->slave_read_complete = false; |
| } else if (rx_status == I2C_SLAVE_RX_DATA && |
| iproc_i2c->rx_start_rcvd) { |
| /* Middle of SMBUS Master write */ |
| i2c_slave_event(iproc_i2c->slave, |
| I2C_SLAVE_WRITE_RECEIVED, &rx_data); |
| } else if (rx_status == I2C_SLAVE_RX_END && |
| iproc_i2c->rx_start_rcvd) { |
| /* End of SMBUS Master write */ |
| if (iproc_i2c->slave_rx_only) |
| i2c_slave_event(iproc_i2c->slave, |
| I2C_SLAVE_WRITE_RECEIVED, |
| &rx_data); |
| |
| i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, |
| &rx_data); |
| } else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) { |
| iproc_i2c->rx_start_rcvd = false; |
| iproc_i2c->slave_read_complete = true; |
| break; |
| } |
| |
| rx_bytes++; |
| } |
| } |
| |
| static void slave_rx_tasklet_fn(unsigned long data) |
| { |
| struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data; |
| u32 int_clr; |
| |
| bcm_iproc_i2c_slave_read(iproc_i2c); |
| |
| /* clear pending IS_S_RX_EVENT_SHIFT interrupt */ |
| int_clr = BIT(IS_S_RX_EVENT_SHIFT); |
| |
| if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) { |
| /* |
| * In case of single byte master-read request, |
| * IS_S_TX_UNDERRUN_SHIFT event is generated before |
| * IS_S_START_BUSY_SHIFT event. Hence start slave data send |
| * from first IS_S_TX_UNDERRUN_SHIFT event. |
| * |
| * This means don't send any data from slave when |
| * IS_S_RD_EVENT_SHIFT event is generated else it will increment |
| * eeprom or other backend slave driver read pointer twice. |
| */ |
| iproc_i2c->tx_underrun = 0; |
| iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT); |
| |
| /* clear IS_S_RD_EVENT_SHIFT interrupt */ |
| int_clr |= BIT(IS_S_RD_EVENT_SHIFT); |
| } |
| |
| /* clear slave interrupt */ |
| iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr); |
| /* enable slave interrupts */ |
| iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask); |
| } |
| |
| static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c, |
| u32 status) |
| { |
| u32 val; |
| u8 value; |
| |
| /* |
| * Slave events in case of master-write, master-write-read and, |
| * master-read |
| * |
| * Master-write : only IS_S_RX_EVENT_SHIFT event |
| * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT |
| * events |
| * Master-read : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT |
| * events or only IS_S_RD_EVENT_SHIFT |
| * |
| * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt |
| * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes |
| * full. This can happen if Master issues write requests of more than |
| * 64 bytes. |
| */ |
| if (status & BIT(IS_S_RX_EVENT_SHIFT) || |
| status & BIT(IS_S_RD_EVENT_SHIFT) || |
| status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) { |
| /* disable slave interrupts */ |
| val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET); |
| val &= ~iproc_i2c->slave_int_mask; |
| iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val); |
| |
| if (status & BIT(IS_S_RD_EVENT_SHIFT)) |
| /* Master-write-read request */ |
| iproc_i2c->slave_rx_only = false; |
| else |
| /* Master-write request only */ |
| iproc_i2c->slave_rx_only = true; |
| |
| /* schedule tasklet to read data later */ |
| tasklet_schedule(&iproc_i2c->slave_rx_tasklet); |
| |
| /* |
| * clear only IS_S_RX_EVENT_SHIFT and |
| * IS_S_RX_FIFO_FULL_SHIFT interrupt. |
| */ |
| val = BIT(IS_S_RX_EVENT_SHIFT); |
| if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) |
| val |= BIT(IS_S_RX_FIFO_FULL_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val); |
| } |
| |
| if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) { |
| iproc_i2c->tx_underrun++; |
| if (iproc_i2c->tx_underrun == 1) |
| /* Start of SMBUS for Master Read */ |
| i2c_slave_event(iproc_i2c->slave, |
| I2C_SLAVE_READ_REQUESTED, |
| &value); |
| else |
| /* Master read other than start */ |
| i2c_slave_event(iproc_i2c->slave, |
| I2C_SLAVE_READ_PROCESSED, |
| &value); |
| |
| iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value); |
| /* start transfer */ |
| val = BIT(S_CMD_START_BUSY_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val); |
| |
| /* clear interrupt */ |
| iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, |
| BIT(IS_S_TX_UNDERRUN_SHIFT)); |
| } |
| |
| /* Stop received from master in case of master read transaction */ |
| if (status & BIT(IS_S_START_BUSY_SHIFT)) { |
| /* |
| * Disable interrupt for TX FIFO becomes empty and |
| * less than PKT_LENGTH bytes were output on the SMBUS |
| */ |
| iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, |
| iproc_i2c->slave_int_mask); |
| |
| /* End of SMBUS for Master Read */ |
| val = BIT(S_TX_WR_STATUS_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val); |
| |
| val = BIT(S_CMD_START_BUSY_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val); |
| |
| /* flush TX FIFOs */ |
| val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET); |
| val |= (BIT(S_FIFO_TX_FLUSH_SHIFT)); |
| iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val); |
| |
| i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value); |
| |
| /* clear interrupt */ |
| iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, |
| BIT(IS_S_START_BUSY_SHIFT)); |
| } |
| |
| /* check slave transmit status only if slave is transmitting */ |
| if (!iproc_i2c->slave_rx_only) |
| bcm_iproc_i2c_check_slave_status(iproc_i2c); |
| |
| return true; |
| } |
| |
| static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c) |
| { |
| struct i2c_msg *msg = iproc_i2c->msg; |
| uint32_t val; |
| |
| /* Read valid data from RX FIFO */ |
| while (iproc_i2c->rx_bytes < msg->len) { |
| val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET); |
| |
| /* rx fifo empty */ |
| if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK)) |
| break; |
| |
| msg->buf[iproc_i2c->rx_bytes] = |
| (val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK; |
| iproc_i2c->rx_bytes++; |
| } |
| } |
| |
| static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c) |
| { |
| struct i2c_msg *msg = iproc_i2c->msg; |
| unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes; |
| unsigned int i; |
| u32 val; |
| |
| /* can only fill up to the FIFO size */ |
| tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE); |
| for (i = 0; i < tx_bytes; i++) { |
| /* start from where we left over */ |
| unsigned int idx = iproc_i2c->tx_bytes + i; |
| |
| val = msg->buf[idx]; |
| |
| /* mark the last byte */ |
| if (idx == msg->len - 1) { |
| val |= BIT(M_TX_WR_STATUS_SHIFT); |
| |
| if (iproc_i2c->irq) { |
| u32 tmp; |
| |
| /* |
| * Since this is the last byte, we should now |
| * disable TX FIFO underrun interrupt |
| */ |
| tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET); |
| tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, |
| tmp); |
| } |
| } |
| |
| /* load data into TX FIFO */ |
| iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val); |
| } |
| |
| /* update number of transferred bytes */ |
| iproc_i2c->tx_bytes += tx_bytes; |
| } |
| |
| static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c) |
| { |
| struct i2c_msg *msg = iproc_i2c->msg; |
| u32 bytes_left, val; |
| |
| bcm_iproc_i2c_read_valid_bytes(iproc_i2c); |
| bytes_left = msg->len - iproc_i2c->rx_bytes; |
| if (bytes_left == 0) { |
| if (iproc_i2c->irq) { |
| /* finished reading all data, disable rx thld event */ |
| val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET); |
| val &= ~BIT(IS_M_RX_THLD_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val); |
| } |
| } else if (bytes_left < iproc_i2c->thld_bytes) { |
| /* set bytes left as threshold */ |
| val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET); |
| val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT); |
| val |= (bytes_left << M_FIFO_RX_THLD_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val); |
| iproc_i2c->thld_bytes = bytes_left; |
| } |
| /* |
| * bytes_left >= iproc_i2c->thld_bytes, |
| * hence no need to change the THRESHOLD SET. |
| * It will remain as iproc_i2c->thld_bytes itself |
| */ |
| } |
| |
| static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c, |
| u32 status) |
| { |
| /* TX FIFO is empty and we have more data to send */ |
| if (status & BIT(IS_M_TX_UNDERRUN_SHIFT)) |
| bcm_iproc_i2c_send(iproc_i2c); |
| |
| /* RX FIFO threshold is reached and data needs to be read out */ |
| if (status & BIT(IS_M_RX_THLD_SHIFT)) |
| bcm_iproc_i2c_read(iproc_i2c); |
| |
| /* transfer is done */ |
| if (status & BIT(IS_M_START_BUSY_SHIFT)) { |
| iproc_i2c->xfer_is_done = 1; |
| if (iproc_i2c->irq) |
| complete(&iproc_i2c->done); |
| } |
| } |
| |
| static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data) |
| { |
| struct bcm_iproc_i2c_dev *iproc_i2c = data; |
| u32 slave_status; |
| u32 status; |
| bool ret; |
| |
| status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET); |
| /* process only slave interrupt which are enabled */ |
| slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) & |
| ISR_MASK_SLAVE; |
| |
| if (slave_status) { |
| ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status); |
| if (ret) |
| return IRQ_HANDLED; |
| else |
| return IRQ_NONE; |
| } |
| |
| status &= ISR_MASK; |
| if (!status) |
| return IRQ_NONE; |
| |
| /* process all master based events */ |
| bcm_iproc_i2c_process_m_event(iproc_i2c, status); |
| iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c) |
| { |
| u32 val; |
| |
| /* put controller in reset */ |
| val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET); |
| val |= BIT(CFG_RESET_SHIFT); |
| val &= ~(BIT(CFG_EN_SHIFT)); |
| iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val); |
| |
| /* wait 100 usec per spec */ |
| udelay(100); |
| |
| /* bring controller out of reset */ |
| val &= ~(BIT(CFG_RESET_SHIFT)); |
| iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val); |
| |
| /* flush TX/RX FIFOs and set RX FIFO threshold to zero */ |
| val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT)); |
| iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val); |
| /* disable all interrupts */ |
| val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET); |
| val &= ~(IE_M_ALL_INTERRUPT_MASK << |
| IE_M_ALL_INTERRUPT_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val); |
| |
| /* clear all pending interrupts */ |
| iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff); |
| |
| return 0; |
| } |
| |
| static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c, |
| bool enable) |
| { |
| u32 val; |
| |
| val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET); |
| if (enable) |
| val |= BIT(CFG_EN_SHIFT); |
| else |
| val &= ~BIT(CFG_EN_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val); |
| } |
| |
| static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c, |
| struct i2c_msg *msg) |
| { |
| u32 val; |
| |
| val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET); |
| val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK; |
| |
| switch (val) { |
| case M_CMD_STATUS_SUCCESS: |
| return 0; |
| |
| case M_CMD_STATUS_LOST_ARB: |
| dev_dbg(iproc_i2c->device, "lost bus arbitration\n"); |
| return -EAGAIN; |
| |
| case M_CMD_STATUS_NACK_ADDR: |
| dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr); |
| return -ENXIO; |
| |
| case M_CMD_STATUS_NACK_DATA: |
| dev_dbg(iproc_i2c->device, "NAK data\n"); |
| return -ENXIO; |
| |
| case M_CMD_STATUS_TIMEOUT: |
| dev_dbg(iproc_i2c->device, "bus timeout\n"); |
| return -ETIMEDOUT; |
| |
| case M_CMD_STATUS_FIFO_UNDERRUN: |
| dev_dbg(iproc_i2c->device, "FIFO under-run\n"); |
| return -ENXIO; |
| |
| case M_CMD_STATUS_RX_FIFO_FULL: |
| dev_dbg(iproc_i2c->device, "RX FIFO full\n"); |
| return -ETIMEDOUT; |
| |
| default: |
| dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val); |
| |
| /* re-initialize i2c for recovery */ |
| bcm_iproc_i2c_enable_disable(iproc_i2c, false); |
| bcm_iproc_i2c_init(iproc_i2c); |
| bcm_iproc_i2c_enable_disable(iproc_i2c, true); |
| |
| return -EIO; |
| } |
| } |
| |
| static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c, |
| struct i2c_msg *msg, |
| u32 cmd) |
| { |
| unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC); |
| u32 val, status; |
| int ret; |
| |
| iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd); |
| |
| if (iproc_i2c->irq) { |
| time_left = wait_for_completion_timeout(&iproc_i2c->done, |
| time_left); |
| /* disable all interrupts */ |
| iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0); |
| /* read it back to flush the write */ |
| iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET); |
| /* make sure the interrupt handler isn't running */ |
| synchronize_irq(iproc_i2c->irq); |
| |
| } else { /* polling mode */ |
| unsigned long timeout = jiffies + time_left; |
| |
| do { |
| status = iproc_i2c_rd_reg(iproc_i2c, |
| IS_OFFSET) & ISR_MASK; |
| bcm_iproc_i2c_process_m_event(iproc_i2c, status); |
| iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status); |
| |
| if (time_after(jiffies, timeout)) { |
| time_left = 0; |
| break; |
| } |
| |
| cpu_relax(); |
| cond_resched(); |
| } while (!iproc_i2c->xfer_is_done); |
| } |
| |
| if (!time_left && !iproc_i2c->xfer_is_done) { |
| dev_err(iproc_i2c->device, "transaction timed out\n"); |
| |
| /* flush both TX/RX FIFOs */ |
| val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val); |
| return -ETIMEDOUT; |
| } |
| |
| ret = bcm_iproc_i2c_check_status(iproc_i2c, msg); |
| if (ret) { |
| /* flush both TX/RX FIFOs */ |
| val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * If 'process_call' is true, then this is a multi-msg transfer that requires |
| * a repeated start between the messages. |
| * More specifically, it must be a write (reg) followed by a read (data). |
| * The i2c quirks are set to enforce this rule. |
| */ |
| static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c, |
| struct i2c_msg *msgs, bool process_call) |
| { |
| int i; |
| u8 addr; |
| u32 val, tmp, val_intr_en; |
| unsigned int tx_bytes; |
| struct i2c_msg *msg = &msgs[0]; |
| |
| /* check if bus is busy */ |
| if (!!(iproc_i2c_rd_reg(iproc_i2c, |
| M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) { |
| dev_warn(iproc_i2c->device, "bus is busy\n"); |
| return -EBUSY; |
| } |
| |
| iproc_i2c->msg = msg; |
| |
| /* format and load slave address into the TX FIFO */ |
| addr = i2c_8bit_addr_from_msg(msg); |
| iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr); |
| |
| /* |
| * For a write transaction, load data into the TX FIFO. Only allow |
| * loading up to TX FIFO size - 1 bytes of data since the first byte |
| * has been used up by the slave address |
| */ |
| tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1); |
| if (!(msg->flags & I2C_M_RD)) { |
| for (i = 0; i < tx_bytes; i++) { |
| val = msg->buf[i]; |
| |
| /* mark the last byte */ |
| if (!process_call && (i == msg->len - 1)) |
| val |= BIT(M_TX_WR_STATUS_SHIFT); |
| |
| iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val); |
| } |
| iproc_i2c->tx_bytes = tx_bytes; |
| } |
| |
| /* Process the read message if this is process call */ |
| if (process_call) { |
| msg++; |
| iproc_i2c->msg = msg; /* point to second msg */ |
| |
| /* |
| * The last byte to be sent out should be a slave |
| * address with read operation |
| */ |
| addr = i2c_8bit_addr_from_msg(msg); |
| /* mark it the last byte out */ |
| val = addr | BIT(M_TX_WR_STATUS_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val); |
| } |
| |
| /* mark as incomplete before starting the transaction */ |
| if (iproc_i2c->irq) |
| reinit_completion(&iproc_i2c->done); |
| |
| iproc_i2c->xfer_is_done = 0; |
| |
| /* |
| * Enable the "start busy" interrupt, which will be triggered after the |
| * transaction is done, i.e., the internal start_busy bit, transitions |
| * from 1 to 0. |
| */ |
| val_intr_en = BIT(IE_M_START_BUSY_SHIFT); |
| |
| /* |
| * If TX data size is larger than the TX FIFO, need to enable TX |
| * underrun interrupt, which will be triggerred when the TX FIFO is |
| * empty. When that happens we can then pump more data into the FIFO |
| */ |
| if (!process_call && !(msg->flags & I2C_M_RD) && |
| msg->len > iproc_i2c->tx_bytes) |
| val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT); |
| |
| /* |
| * Now we can activate the transfer. For a read operation, specify the |
| * number of bytes to read |
| */ |
| val = BIT(M_CMD_START_BUSY_SHIFT); |
| |
| if (msg->len == 0) { |
| /* SMBUS QUICK Command (Read/Write) */ |
| val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT); |
| } else if (msg->flags & I2C_M_RD) { |
| u32 protocol; |
| |
| iproc_i2c->rx_bytes = 0; |
| if (msg->len > M_RX_FIFO_MAX_THLD_VALUE) |
| iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE; |
| else |
| iproc_i2c->thld_bytes = msg->len; |
| |
| /* set threshold value */ |
| tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET); |
| tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT); |
| tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT; |
| iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp); |
| |
| /* enable the RX threshold interrupt */ |
| val_intr_en |= BIT(IE_M_RX_THLD_SHIFT); |
| |
| protocol = process_call ? |
| M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD; |
| |
| val |= (protocol << M_CMD_PROTOCOL_SHIFT) | |
| (msg->len << M_CMD_RD_CNT_SHIFT); |
| } else { |
| val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT); |
| } |
| |
| if (iproc_i2c->irq) |
| iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en); |
| |
| return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val); |
| } |
| |
| static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter, |
| struct i2c_msg msgs[], int num) |
| { |
| struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter); |
| bool process_call = false; |
| int ret; |
| |
| if (num == 2) { |
| /* Repeated start, use process call */ |
| process_call = true; |
| if (msgs[1].flags & I2C_M_NOSTART) { |
| dev_err(iproc_i2c->device, "Invalid repeated start\n"); |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call); |
| if (ret) { |
| dev_dbg(iproc_i2c->device, "xfer failed\n"); |
| return ret; |
| } |
| |
| return num; |
| } |
| |
| static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap) |
| { |
| u32 val; |
| |
| val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; |
| |
| if (adap->algo->reg_slave) |
| val |= I2C_FUNC_SLAVE; |
| |
| return val; |
| } |
| |
| static struct i2c_algorithm bcm_iproc_algo = { |
| .master_xfer = bcm_iproc_i2c_xfer, |
| .functionality = bcm_iproc_i2c_functionality, |
| .reg_slave = bcm_iproc_i2c_reg_slave, |
| .unreg_slave = bcm_iproc_i2c_unreg_slave, |
| }; |
| |
| static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = { |
| .flags = I2C_AQ_COMB_WRITE_THEN_READ, |
| .max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE, |
| .max_read_len = M_RX_MAX_READ_LEN, |
| }; |
| |
| static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c) |
| { |
| unsigned int bus_speed; |
| u32 val; |
| int ret = of_property_read_u32(iproc_i2c->device->of_node, |
| "clock-frequency", &bus_speed); |
| if (ret < 0) { |
| dev_info(iproc_i2c->device, |
| "unable to interpret clock-frequency DT property\n"); |
| bus_speed = I2C_MAX_STANDARD_MODE_FREQ; |
| } |
| |
| if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) { |
| dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n", |
| bus_speed); |
| dev_err(iproc_i2c->device, |
| "valid speeds are 100khz and 400khz\n"); |
| return -EINVAL; |
| } else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) { |
| bus_speed = I2C_MAX_STANDARD_MODE_FREQ; |
| } else { |
| bus_speed = I2C_MAX_FAST_MODE_FREQ; |
| } |
| |
| iproc_i2c->bus_speed = bus_speed; |
| val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET); |
| val &= ~BIT(TIM_CFG_MODE_400_SHIFT); |
| val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT; |
| iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val); |
| |
| dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed); |
| |
| return 0; |
| } |
| |
| static int bcm_iproc_i2c_probe(struct platform_device *pdev) |
| { |
| int irq, ret = 0; |
| struct bcm_iproc_i2c_dev *iproc_i2c; |
| struct i2c_adapter *adap; |
| struct resource *res; |
| |
| iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c), |
| GFP_KERNEL); |
| if (!iproc_i2c) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, iproc_i2c); |
| iproc_i2c->device = &pdev->dev; |
| iproc_i2c->type = |
| (enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev); |
| init_completion(&iproc_i2c->done); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res); |
| if (IS_ERR(iproc_i2c->base)) |
| return PTR_ERR(iproc_i2c->base); |
| |
| if (iproc_i2c->type == IPROC_I2C_NIC) { |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device, |
| res); |
| if (IS_ERR(iproc_i2c->idm_base)) |
| return PTR_ERR(iproc_i2c->idm_base); |
| |
| ret = of_property_read_u32(iproc_i2c->device->of_node, |
| "brcm,ape-hsls-addr-mask", |
| &iproc_i2c->ape_addr_mask); |
| if (ret < 0) { |
| dev_err(iproc_i2c->device, |
| "'brcm,ape-hsls-addr-mask' missing\n"); |
| return -EINVAL; |
| } |
| |
| spin_lock_init(&iproc_i2c->idm_lock); |
| |
| /* no slave support */ |
| bcm_iproc_algo.reg_slave = NULL; |
| bcm_iproc_algo.unreg_slave = NULL; |
| } |
| |
| ret = bcm_iproc_i2c_init(iproc_i2c); |
| if (ret) |
| return ret; |
| |
| ret = bcm_iproc_i2c_cfg_speed(iproc_i2c); |
| if (ret) |
| return ret; |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq > 0) { |
| ret = devm_request_irq(iproc_i2c->device, irq, |
| bcm_iproc_i2c_isr, 0, pdev->name, |
| iproc_i2c); |
| if (ret < 0) { |
| dev_err(iproc_i2c->device, |
| "unable to request irq %i\n", irq); |
| return ret; |
| } |
| |
| iproc_i2c->irq = irq; |
| } else { |
| dev_warn(iproc_i2c->device, |
| "no irq resource, falling back to poll mode\n"); |
| } |
| |
| bcm_iproc_i2c_enable_disable(iproc_i2c, true); |
| |
| adap = &iproc_i2c->adapter; |
| i2c_set_adapdata(adap, iproc_i2c); |
| snprintf(adap->name, sizeof(adap->name), |
| "Broadcom iProc (%s)", |
| of_node_full_name(iproc_i2c->device->of_node)); |
| adap->algo = &bcm_iproc_algo; |
| adap->quirks = &bcm_iproc_i2c_quirks; |
| adap->dev.parent = &pdev->dev; |
| adap->dev.of_node = pdev->dev.of_node; |
| |
| return i2c_add_adapter(adap); |
| } |
| |
| static int bcm_iproc_i2c_remove(struct platform_device *pdev) |
| { |
| struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev); |
| |
| if (iproc_i2c->irq) { |
| /* |
| * Make sure there's no pending interrupt when we remove the |
| * adapter |
| */ |
| iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0); |
| iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET); |
| synchronize_irq(iproc_i2c->irq); |
| } |
| |
| i2c_del_adapter(&iproc_i2c->adapter); |
| bcm_iproc_i2c_enable_disable(iproc_i2c, false); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| |
| static int bcm_iproc_i2c_suspend(struct device *dev) |
| { |
| struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev); |
| |
| if (iproc_i2c->irq) { |
| /* |
| * Make sure there's no pending interrupt when we go into |
| * suspend |
| */ |
| iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0); |
| iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET); |
| synchronize_irq(iproc_i2c->irq); |
| } |
| |
| /* now disable the controller */ |
| bcm_iproc_i2c_enable_disable(iproc_i2c, false); |
| |
| return 0; |
| } |
| |
| static int bcm_iproc_i2c_resume(struct device *dev) |
| { |
| struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev); |
| int ret; |
| u32 val; |
| |
| /* |
| * Power domain could have been shut off completely in system deep |
| * sleep, so re-initialize the block here |
| */ |
| ret = bcm_iproc_i2c_init(iproc_i2c); |
| if (ret) |
| return ret; |
| |
| /* configure to the desired bus speed */ |
| val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET); |
| val &= ~BIT(TIM_CFG_MODE_400_SHIFT); |
| val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT; |
| iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val); |
| |
| bcm_iproc_i2c_enable_disable(iproc_i2c, true); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = { |
| .suspend_late = &bcm_iproc_i2c_suspend, |
| .resume_early = &bcm_iproc_i2c_resume |
| }; |
| |
| #define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops) |
| #else |
| #define BCM_IPROC_I2C_PM_OPS NULL |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| |
| static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave) |
| { |
| struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter); |
| |
| if (iproc_i2c->slave) |
| return -EBUSY; |
| |
| if (slave->flags & I2C_CLIENT_TEN) |
| return -EAFNOSUPPORT; |
| |
| iproc_i2c->slave = slave; |
| |
| tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn, |
| (unsigned long)iproc_i2c); |
| |
| bcm_iproc_i2c_slave_init(iproc_i2c, false); |
| return 0; |
| } |
| |
| static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave) |
| { |
| u32 tmp; |
| struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter); |
| |
| if (!iproc_i2c->slave) |
| return -EINVAL; |
| |
| disable_irq(iproc_i2c->irq); |
| |
| tasklet_kill(&iproc_i2c->slave_rx_tasklet); |
| |
| /* disable all slave interrupts */ |
| tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET); |
| tmp &= ~(IE_S_ALL_INTERRUPT_MASK << |
| IE_S_ALL_INTERRUPT_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp); |
| |
| /* Erase the slave address programmed */ |
| tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET); |
| tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT); |
| iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp); |
| |
| /* flush TX/RX FIFOs */ |
| tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT)); |
| iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp); |
| |
| /* clear all pending slave interrupts */ |
| iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE); |
| |
| iproc_i2c->slave = NULL; |
| |
| enable_irq(iproc_i2c->irq); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id bcm_iproc_i2c_of_match[] = { |
| { |
| .compatible = "brcm,iproc-i2c", |
| .data = (int *)IPROC_I2C, |
| }, { |
| .compatible = "brcm,iproc-nic-i2c", |
| .data = (int *)IPROC_I2C_NIC, |
| }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match); |
| |
| static struct platform_driver bcm_iproc_i2c_driver = { |
| .driver = { |
| .name = "bcm-iproc-i2c", |
| .of_match_table = bcm_iproc_i2c_of_match, |
| .pm = BCM_IPROC_I2C_PM_OPS, |
| }, |
| .probe = bcm_iproc_i2c_probe, |
| .remove = bcm_iproc_i2c_remove, |
| }; |
| module_platform_driver(bcm_iproc_i2c_driver); |
| |
| MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>"); |
| MODULE_DESCRIPTION("Broadcom iProc I2C Driver"); |
| MODULE_LICENSE("GPL v2"); |