| /********************************************************************* |
| * |
| * Filename: qos.c |
| * Version: 1.0 |
| * Description: IrLAP QoS parameter negotiation |
| * Status: Stable |
| * Author: Dag Brattli <dagb@cs.uit.no> |
| * Created at: Tue Sep 9 00:00:26 1997 |
| * Modified at: Sun Jan 30 14:29:16 2000 |
| * Modified by: Dag Brattli <dagb@cs.uit.no> |
| * |
| * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>, |
| * All Rights Reserved. |
| * Copyright (c) 2000-2001 Jean Tourrilhes <jt@hpl.hp.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| * |
| ********************************************************************/ |
| |
| #include <linux/config.h> |
| #include <asm/byteorder.h> |
| |
| #include <net/irda/irda.h> |
| #include <net/irda/parameters.h> |
| #include <net/irda/qos.h> |
| #include <net/irda/irlap.h> |
| #include <net/irda/irlap_frame.h> |
| |
| /* |
| * Maximum values of the baud rate we negociate with the other end. |
| * Most often, you don't have to change that, because Linux-IrDA will |
| * use the maximum offered by the link layer, which usually works fine. |
| * In some very rare cases, you may want to limit it to lower speeds... |
| */ |
| int sysctl_max_baud_rate = 16000000; |
| /* |
| * Maximum value of the lap disconnect timer we negociate with the other end. |
| * Most often, the value below represent the best compromise, but some user |
| * may want to keep the LAP alive longuer or shorter in case of link failure. |
| * Remember that the threshold time (early warning) is fixed to 3s... |
| */ |
| int sysctl_max_noreply_time = 12; |
| /* |
| * Minimum turn time to be applied before transmitting to the peer. |
| * Nonzero values (usec) are used as lower limit to the per-connection |
| * mtt value which was announced by the other end during negotiation. |
| * Might be helpful if the peer device provides too short mtt. |
| * Default is 10us which means using the unmodified value given by the |
| * peer except if it's 0 (0 is likely a bug in the other stack). |
| */ |
| unsigned sysctl_min_tx_turn_time = 10; |
| /* |
| * Maximum data size to be used in transmission in payload of LAP frame. |
| * There is a bit of confusion in the IrDA spec : |
| * The LAP spec defines the payload of a LAP frame (I field) to be |
| * 2048 bytes max (IrLAP 1.1, chapt 6.6.5, p40). |
| * On the other hand, the PHY mention frames of 2048 bytes max (IrPHY |
| * 1.2, chapt 5.3.2.1, p41). But, this number includes the LAP header |
| * (2 bytes), and CRC (32 bits at 4 Mb/s). So, for the I field (LAP |
| * payload), that's only 2042 bytes. Oups ! |
| * My nsc-ircc hardware has troubles receiving 2048 bytes frames at 4 Mb/s, |
| * so adjust to 2042... I don't know if this bug applies only for 2048 |
| * bytes frames or all negotiated frame sizes, but you can use the sysctl |
| * to play with this value anyway. |
| * Jean II */ |
| unsigned sysctl_max_tx_data_size = 2042; |
| /* |
| * Maximum transmit window, i.e. number of LAP frames between turn-around. |
| * This allow to override what the peer told us. Some peers are buggy and |
| * don't always support what they tell us. |
| * Jean II */ |
| unsigned sysctl_max_tx_window = 7; |
| |
| static int irlap_param_baud_rate(void *instance, irda_param_t *param, int get); |
| static int irlap_param_link_disconnect(void *instance, irda_param_t *parm, |
| int get); |
| static int irlap_param_max_turn_time(void *instance, irda_param_t *param, |
| int get); |
| static int irlap_param_data_size(void *instance, irda_param_t *param, int get); |
| static int irlap_param_window_size(void *instance, irda_param_t *param, |
| int get); |
| static int irlap_param_additional_bofs(void *instance, irda_param_t *parm, |
| int get); |
| static int irlap_param_min_turn_time(void *instance, irda_param_t *param, |
| int get); |
| |
| #ifndef CONFIG_IRDA_DYNAMIC_WINDOW |
| static __u32 irlap_requested_line_capacity(struct qos_info *qos); |
| #endif |
| |
| static __u32 min_turn_times[] = { 10000, 5000, 1000, 500, 100, 50, 10, 0 }; /* us */ |
| static __u32 baud_rates[] = { 2400, 9600, 19200, 38400, 57600, 115200, 576000, |
| 1152000, 4000000, 16000000 }; /* bps */ |
| static __u32 data_sizes[] = { 64, 128, 256, 512, 1024, 2048 }; /* bytes */ |
| static __u32 add_bofs[] = { 48, 24, 12, 5, 3, 2, 1, 0 }; /* bytes */ |
| static __u32 max_turn_times[] = { 500, 250, 100, 50 }; /* ms */ |
| static __u32 link_disc_times[] = { 3, 8, 12, 16, 20, 25, 30, 40 }; /* secs */ |
| |
| static __u32 max_line_capacities[10][4] = { |
| /* 500 ms 250 ms 100 ms 50 ms (max turn time) */ |
| { 100, 0, 0, 0 }, /* 2400 bps */ |
| { 400, 0, 0, 0 }, /* 9600 bps */ |
| { 800, 0, 0, 0 }, /* 19200 bps */ |
| { 1600, 0, 0, 0 }, /* 38400 bps */ |
| { 2360, 0, 0, 0 }, /* 57600 bps */ |
| { 4800, 2400, 960, 480 }, /* 115200 bps */ |
| { 28800, 11520, 5760, 2880 }, /* 576000 bps */ |
| { 57600, 28800, 11520, 5760 }, /* 1152000 bps */ |
| { 200000, 100000, 40000, 20000 }, /* 4000000 bps */ |
| { 800000, 400000, 160000, 80000 }, /* 16000000 bps */ |
| }; |
| |
| static pi_minor_info_t pi_minor_call_table_type_0[] = { |
| { NULL, 0 }, |
| /* 01 */{ irlap_param_baud_rate, PV_INTEGER | PV_LITTLE_ENDIAN }, |
| { NULL, 0 }, |
| { NULL, 0 }, |
| { NULL, 0 }, |
| { NULL, 0 }, |
| { NULL, 0 }, |
| { NULL, 0 }, |
| /* 08 */{ irlap_param_link_disconnect, PV_INT_8_BITS } |
| }; |
| |
| static pi_minor_info_t pi_minor_call_table_type_1[] = { |
| { NULL, 0 }, |
| { NULL, 0 }, |
| /* 82 */{ irlap_param_max_turn_time, PV_INT_8_BITS }, |
| /* 83 */{ irlap_param_data_size, PV_INT_8_BITS }, |
| /* 84 */{ irlap_param_window_size, PV_INT_8_BITS }, |
| /* 85 */{ irlap_param_additional_bofs, PV_INT_8_BITS }, |
| /* 86 */{ irlap_param_min_turn_time, PV_INT_8_BITS }, |
| }; |
| |
| static pi_major_info_t pi_major_call_table[] = { |
| { pi_minor_call_table_type_0, 9 }, |
| { pi_minor_call_table_type_1, 7 }, |
| }; |
| |
| static pi_param_info_t irlap_param_info = { pi_major_call_table, 2, 0x7f, 7 }; |
| |
| /* ---------------------- LOCAL SUBROUTINES ---------------------- */ |
| /* Note : we start with a bunch of local subroutines. |
| * As the compiler is "one pass", this is the only way to get them to |
| * inline properly... |
| * Jean II |
| */ |
| /* |
| * Function value_index (value, array, size) |
| * |
| * Returns the index to the value in the specified array |
| */ |
| static inline int value_index(__u32 value, __u32 *array, int size) |
| { |
| int i; |
| |
| for (i=0; i < size; i++) |
| if (array[i] == value) |
| break; |
| return i; |
| } |
| |
| /* |
| * Function index_value (index, array) |
| * |
| * Returns value to index in array, easy! |
| * |
| */ |
| static inline __u32 index_value(int index, __u32 *array) |
| { |
| return array[index]; |
| } |
| |
| /* |
| * Function msb_index (word) |
| * |
| * Returns index to most significant bit (MSB) in word |
| * |
| */ |
| static int msb_index (__u16 word) |
| { |
| __u16 msb = 0x8000; |
| int index = 15; /* Current MSB */ |
| |
| /* Check for buggy peers. |
| * Note : there is a small probability that it could be us, but I |
| * would expect driver authors to catch that pretty early and be |
| * able to check precisely what's going on. If a end user sees this, |
| * it's very likely the peer. - Jean II */ |
| if (word == 0) { |
| IRDA_WARNING("%s(), Detected buggy peer, adjust null PV to 0x1!\n", |
| __FUNCTION__); |
| /* The only safe choice (we don't know the array size) */ |
| word = 0x1; |
| } |
| |
| while (msb) { |
| if (word & msb) |
| break; /* Found it! */ |
| msb >>=1; |
| index--; |
| } |
| return index; |
| } |
| |
| /* |
| * Function value_lower_bits (value, array) |
| * |
| * Returns a bit field marking all possibility lower than value. |
| */ |
| static inline int value_lower_bits(__u32 value, __u32 *array, int size, __u16 *field) |
| { |
| int i; |
| __u16 mask = 0x1; |
| __u16 result = 0x0; |
| |
| for (i=0; i < size; i++) { |
| /* Add the current value to the bit field, shift mask */ |
| result |= mask; |
| mask <<= 1; |
| /* Finished ? */ |
| if (array[i] >= value) |
| break; |
| } |
| /* Send back a valid index */ |
| if(i >= size) |
| i = size - 1; /* Last item */ |
| *field = result; |
| return i; |
| } |
| |
| /* |
| * Function value_highest_bit (value, array) |
| * |
| * Returns a bit field marking the highest possibility lower than value. |
| */ |
| static inline int value_highest_bit(__u32 value, __u32 *array, int size, __u16 *field) |
| { |
| int i; |
| __u16 mask = 0x1; |
| __u16 result = 0x0; |
| |
| for (i=0; i < size; i++) { |
| /* Finished ? */ |
| if (array[i] <= value) |
| break; |
| /* Shift mask */ |
| mask <<= 1; |
| } |
| /* Set the current value to the bit field */ |
| result |= mask; |
| /* Send back a valid index */ |
| if(i >= size) |
| i = size - 1; /* Last item */ |
| *field = result; |
| return i; |
| } |
| |
| /* -------------------------- MAIN CALLS -------------------------- */ |
| |
| /* |
| * Function irda_qos_compute_intersection (qos, new) |
| * |
| * Compute the intersection of the old QoS capabilities with new ones |
| * |
| */ |
| void irda_qos_compute_intersection(struct qos_info *qos, struct qos_info *new) |
| { |
| IRDA_ASSERT(qos != NULL, return;); |
| IRDA_ASSERT(new != NULL, return;); |
| |
| /* Apply */ |
| qos->baud_rate.bits &= new->baud_rate.bits; |
| qos->window_size.bits &= new->window_size.bits; |
| qos->min_turn_time.bits &= new->min_turn_time.bits; |
| qos->max_turn_time.bits &= new->max_turn_time.bits; |
| qos->data_size.bits &= new->data_size.bits; |
| qos->link_disc_time.bits &= new->link_disc_time.bits; |
| qos->additional_bofs.bits &= new->additional_bofs.bits; |
| |
| irda_qos_bits_to_value(qos); |
| } |
| |
| /* |
| * Function irda_init_max_qos_capabilies (qos) |
| * |
| * The purpose of this function is for layers and drivers to be able to |
| * set the maximum QoS possible and then "and in" their own limitations |
| * |
| */ |
| void irda_init_max_qos_capabilies(struct qos_info *qos) |
| { |
| int i; |
| /* |
| * These are the maximum supported values as specified on pages |
| * 39-43 in IrLAP |
| */ |
| |
| /* Use sysctl to set some configurable values... */ |
| /* Set configured max speed */ |
| i = value_lower_bits(sysctl_max_baud_rate, baud_rates, 10, |
| &qos->baud_rate.bits); |
| sysctl_max_baud_rate = index_value(i, baud_rates); |
| |
| /* Set configured max disc time */ |
| i = value_lower_bits(sysctl_max_noreply_time, link_disc_times, 8, |
| &qos->link_disc_time.bits); |
| sysctl_max_noreply_time = index_value(i, link_disc_times); |
| |
| /* LSB is first byte, MSB is second byte */ |
| qos->baud_rate.bits &= 0x03ff; |
| |
| qos->window_size.bits = 0x7f; |
| qos->min_turn_time.bits = 0xff; |
| qos->max_turn_time.bits = 0x0f; |
| qos->data_size.bits = 0x3f; |
| qos->link_disc_time.bits &= 0xff; |
| qos->additional_bofs.bits = 0xff; |
| } |
| EXPORT_SYMBOL(irda_init_max_qos_capabilies); |
| |
| /* |
| * Function irlap_adjust_qos_settings (qos) |
| * |
| * Adjust QoS settings in case some values are not possible to use because |
| * of other settings |
| */ |
| static void irlap_adjust_qos_settings(struct qos_info *qos) |
| { |
| __u32 line_capacity; |
| int index; |
| |
| IRDA_DEBUG(2, "%s()\n", __FUNCTION__); |
| |
| /* |
| * Make sure the mintt is sensible. |
| * Main culprit : Ericsson T39. - Jean II |
| */ |
| if (sysctl_min_tx_turn_time > qos->min_turn_time.value) { |
| int i; |
| |
| IRDA_WARNING("%s(), Detected buggy peer, adjust mtt to %dus!\n", |
| __FUNCTION__, sysctl_min_tx_turn_time); |
| |
| /* We don't really need bits, but easier this way */ |
| i = value_highest_bit(sysctl_min_tx_turn_time, min_turn_times, |
| 8, &qos->min_turn_time.bits); |
| sysctl_min_tx_turn_time = index_value(i, min_turn_times); |
| qos->min_turn_time.value = sysctl_min_tx_turn_time; |
| } |
| |
| /* |
| * Not allowed to use a max turn time less than 500 ms if the baudrate |
| * is less than 115200 |
| */ |
| if ((qos->baud_rate.value < 115200) && |
| (qos->max_turn_time.value < 500)) |
| { |
| IRDA_DEBUG(0, |
| "%s(), adjusting max turn time from %d to 500 ms\n", |
| __FUNCTION__, qos->max_turn_time.value); |
| qos->max_turn_time.value = 500; |
| } |
| |
| /* |
| * The data size must be adjusted according to the baud rate and max |
| * turn time |
| */ |
| index = value_index(qos->data_size.value, data_sizes, 6); |
| line_capacity = irlap_max_line_capacity(qos->baud_rate.value, |
| qos->max_turn_time.value); |
| |
| #ifdef CONFIG_IRDA_DYNAMIC_WINDOW |
| while ((qos->data_size.value > line_capacity) && (index > 0)) { |
| qos->data_size.value = data_sizes[index--]; |
| IRDA_DEBUG(2, "%s(), reducing data size to %d\n", |
| __FUNCTION__, qos->data_size.value); |
| } |
| #else /* Use method described in section 6.6.11 of IrLAP */ |
| while (irlap_requested_line_capacity(qos) > line_capacity) { |
| IRDA_ASSERT(index != 0, return;); |
| |
| /* Must be able to send at least one frame */ |
| if (qos->window_size.value > 1) { |
| qos->window_size.value--; |
| IRDA_DEBUG(2, "%s(), reducing window size to %d\n", |
| __FUNCTION__, qos->window_size.value); |
| } else if (index > 1) { |
| qos->data_size.value = data_sizes[index--]; |
| IRDA_DEBUG(2, "%s(), reducing data size to %d\n", |
| __FUNCTION__, qos->data_size.value); |
| } else { |
| IRDA_WARNING("%s(), nothing more we can do!\n", |
| __FUNCTION__); |
| } |
| } |
| #endif /* CONFIG_IRDA_DYNAMIC_WINDOW */ |
| /* |
| * Fix tx data size according to user limits - Jean II |
| */ |
| if (qos->data_size.value > sysctl_max_tx_data_size) |
| /* Allow non discrete adjustement to avoid loosing capacity */ |
| qos->data_size.value = sysctl_max_tx_data_size; |
| /* |
| * Override Tx window if user request it. - Jean II |
| */ |
| if (qos->window_size.value > sysctl_max_tx_window) |
| qos->window_size.value = sysctl_max_tx_window; |
| } |
| |
| /* |
| * Function irlap_negotiate (qos_device, qos_session, skb) |
| * |
| * Negotiate QoS values, not really that much negotiation :-) |
| * We just set the QoS capabilities for the peer station |
| * |
| */ |
| int irlap_qos_negotiate(struct irlap_cb *self, struct sk_buff *skb) |
| { |
| int ret; |
| |
| ret = irda_param_extract_all(self, skb->data, skb->len, |
| &irlap_param_info); |
| |
| /* Convert the negotiated bits to values */ |
| irda_qos_bits_to_value(&self->qos_tx); |
| irda_qos_bits_to_value(&self->qos_rx); |
| |
| irlap_adjust_qos_settings(&self->qos_tx); |
| |
| IRDA_DEBUG(2, "Setting BAUD_RATE to %d bps.\n", |
| self->qos_tx.baud_rate.value); |
| IRDA_DEBUG(2, "Setting DATA_SIZE to %d bytes\n", |
| self->qos_tx.data_size.value); |
| IRDA_DEBUG(2, "Setting WINDOW_SIZE to %d\n", |
| self->qos_tx.window_size.value); |
| IRDA_DEBUG(2, "Setting XBOFS to %d\n", |
| self->qos_tx.additional_bofs.value); |
| IRDA_DEBUG(2, "Setting MAX_TURN_TIME to %d ms.\n", |
| self->qos_tx.max_turn_time.value); |
| IRDA_DEBUG(2, "Setting MIN_TURN_TIME to %d usecs.\n", |
| self->qos_tx.min_turn_time.value); |
| IRDA_DEBUG(2, "Setting LINK_DISC to %d secs.\n", |
| self->qos_tx.link_disc_time.value); |
| return ret; |
| } |
| |
| /* |
| * Function irlap_insert_negotiation_params (qos, fp) |
| * |
| * Insert QoS negotiaion pararameters into frame |
| * |
| */ |
| int irlap_insert_qos_negotiation_params(struct irlap_cb *self, |
| struct sk_buff *skb) |
| { |
| int ret; |
| |
| /* Insert data rate */ |
| ret = irda_param_insert(self, PI_BAUD_RATE, skb->tail, |
| skb_tailroom(skb), &irlap_param_info); |
| if (ret < 0) |
| return ret; |
| skb_put(skb, ret); |
| |
| /* Insert max turnaround time */ |
| ret = irda_param_insert(self, PI_MAX_TURN_TIME, skb->tail, |
| skb_tailroom(skb), &irlap_param_info); |
| if (ret < 0) |
| return ret; |
| skb_put(skb, ret); |
| |
| /* Insert data size */ |
| ret = irda_param_insert(self, PI_DATA_SIZE, skb->tail, |
| skb_tailroom(skb), &irlap_param_info); |
| if (ret < 0) |
| return ret; |
| skb_put(skb, ret); |
| |
| /* Insert window size */ |
| ret = irda_param_insert(self, PI_WINDOW_SIZE, skb->tail, |
| skb_tailroom(skb), &irlap_param_info); |
| if (ret < 0) |
| return ret; |
| skb_put(skb, ret); |
| |
| /* Insert additional BOFs */ |
| ret = irda_param_insert(self, PI_ADD_BOFS, skb->tail, |
| skb_tailroom(skb), &irlap_param_info); |
| if (ret < 0) |
| return ret; |
| skb_put(skb, ret); |
| |
| /* Insert minimum turnaround time */ |
| ret = irda_param_insert(self, PI_MIN_TURN_TIME, skb->tail, |
| skb_tailroom(skb), &irlap_param_info); |
| if (ret < 0) |
| return ret; |
| skb_put(skb, ret); |
| |
| /* Insert link disconnect/threshold time */ |
| ret = irda_param_insert(self, PI_LINK_DISC, skb->tail, |
| skb_tailroom(skb), &irlap_param_info); |
| if (ret < 0) |
| return ret; |
| skb_put(skb, ret); |
| |
| return 0; |
| } |
| |
| /* |
| * Function irlap_param_baud_rate (instance, param, get) |
| * |
| * Negotiate data-rate |
| * |
| */ |
| static int irlap_param_baud_rate(void *instance, irda_param_t *param, int get) |
| { |
| __u16 final; |
| |
| struct irlap_cb *self = (struct irlap_cb *) instance; |
| |
| IRDA_ASSERT(self != NULL, return -1;); |
| IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;); |
| |
| if (get) { |
| param->pv.i = self->qos_rx.baud_rate.bits; |
| IRDA_DEBUG(2, "%s(), baud rate = 0x%02x\n", |
| __FUNCTION__, param->pv.i); |
| } else { |
| /* |
| * Stations must agree on baud rate, so calculate |
| * intersection |
| */ |
| IRDA_DEBUG(2, "Requested BAUD_RATE: 0x%04x\n", (__u16) param->pv.i); |
| final = (__u16) param->pv.i & self->qos_rx.baud_rate.bits; |
| |
| IRDA_DEBUG(2, "Final BAUD_RATE: 0x%04x\n", final); |
| self->qos_tx.baud_rate.bits = final; |
| self->qos_rx.baud_rate.bits = final; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Function irlap_param_link_disconnect (instance, param, get) |
| * |
| * Negotiate link disconnect/threshold time. |
| * |
| */ |
| static int irlap_param_link_disconnect(void *instance, irda_param_t *param, |
| int get) |
| { |
| __u16 final; |
| |
| struct irlap_cb *self = (struct irlap_cb *) instance; |
| |
| IRDA_ASSERT(self != NULL, return -1;); |
| IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;); |
| |
| if (get) |
| param->pv.i = self->qos_rx.link_disc_time.bits; |
| else { |
| /* |
| * Stations must agree on link disconnect/threshold |
| * time. |
| */ |
| IRDA_DEBUG(2, "LINK_DISC: %02x\n", (__u8) param->pv.i); |
| final = (__u8) param->pv.i & self->qos_rx.link_disc_time.bits; |
| |
| IRDA_DEBUG(2, "Final LINK_DISC: %02x\n", final); |
| self->qos_tx.link_disc_time.bits = final; |
| self->qos_rx.link_disc_time.bits = final; |
| } |
| return 0; |
| } |
| |
| /* |
| * Function irlap_param_max_turn_time (instance, param, get) |
| * |
| * Negotiate the maximum turnaround time. This is a type 1 parameter and |
| * will be negotiated independently for each station |
| * |
| */ |
| static int irlap_param_max_turn_time(void *instance, irda_param_t *param, |
| int get) |
| { |
| struct irlap_cb *self = (struct irlap_cb *) instance; |
| |
| IRDA_ASSERT(self != NULL, return -1;); |
| IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;); |
| |
| if (get) |
| param->pv.i = self->qos_rx.max_turn_time.bits; |
| else |
| self->qos_tx.max_turn_time.bits = (__u8) param->pv.i; |
| |
| return 0; |
| } |
| |
| /* |
| * Function irlap_param_data_size (instance, param, get) |
| * |
| * Negotiate the data size. This is a type 1 parameter and |
| * will be negotiated independently for each station |
| * |
| */ |
| static int irlap_param_data_size(void *instance, irda_param_t *param, int get) |
| { |
| struct irlap_cb *self = (struct irlap_cb *) instance; |
| |
| IRDA_ASSERT(self != NULL, return -1;); |
| IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;); |
| |
| if (get) |
| param->pv.i = self->qos_rx.data_size.bits; |
| else |
| self->qos_tx.data_size.bits = (__u8) param->pv.i; |
| |
| return 0; |
| } |
| |
| /* |
| * Function irlap_param_window_size (instance, param, get) |
| * |
| * Negotiate the window size. This is a type 1 parameter and |
| * will be negotiated independently for each station |
| * |
| */ |
| static int irlap_param_window_size(void *instance, irda_param_t *param, |
| int get) |
| { |
| struct irlap_cb *self = (struct irlap_cb *) instance; |
| |
| IRDA_ASSERT(self != NULL, return -1;); |
| IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;); |
| |
| if (get) |
| param->pv.i = self->qos_rx.window_size.bits; |
| else |
| self->qos_tx.window_size.bits = (__u8) param->pv.i; |
| |
| return 0; |
| } |
| |
| /* |
| * Function irlap_param_additional_bofs (instance, param, get) |
| * |
| * Negotiate additional BOF characters. This is a type 1 parameter and |
| * will be negotiated independently for each station. |
| */ |
| static int irlap_param_additional_bofs(void *instance, irda_param_t *param, int get) |
| { |
| struct irlap_cb *self = (struct irlap_cb *) instance; |
| |
| IRDA_ASSERT(self != NULL, return -1;); |
| IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;); |
| |
| if (get) |
| param->pv.i = self->qos_rx.additional_bofs.bits; |
| else |
| self->qos_tx.additional_bofs.bits = (__u8) param->pv.i; |
| |
| return 0; |
| } |
| |
| /* |
| * Function irlap_param_min_turn_time (instance, param, get) |
| * |
| * Negotiate the minimum turn around time. This is a type 1 parameter and |
| * will be negotiated independently for each station |
| */ |
| static int irlap_param_min_turn_time(void *instance, irda_param_t *param, |
| int get) |
| { |
| struct irlap_cb *self = (struct irlap_cb *) instance; |
| |
| IRDA_ASSERT(self != NULL, return -1;); |
| IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;); |
| |
| if (get) |
| param->pv.i = self->qos_rx.min_turn_time.bits; |
| else |
| self->qos_tx.min_turn_time.bits = (__u8) param->pv.i; |
| |
| return 0; |
| } |
| |
| /* |
| * Function irlap_max_line_capacity (speed, max_turn_time, min_turn_time) |
| * |
| * Calculate the maximum line capacity |
| * |
| */ |
| __u32 irlap_max_line_capacity(__u32 speed, __u32 max_turn_time) |
| { |
| __u32 line_capacity; |
| int i,j; |
| |
| IRDA_DEBUG(2, "%s(), speed=%d, max_turn_time=%d\n", |
| __FUNCTION__, speed, max_turn_time); |
| |
| i = value_index(speed, baud_rates, 10); |
| j = value_index(max_turn_time, max_turn_times, 4); |
| |
| IRDA_ASSERT(((i >=0) && (i <10)), return 0;); |
| IRDA_ASSERT(((j >=0) && (j <4)), return 0;); |
| |
| line_capacity = max_line_capacities[i][j]; |
| |
| IRDA_DEBUG(2, "%s(), line capacity=%d bytes\n", |
| __FUNCTION__, line_capacity); |
| |
| return line_capacity; |
| } |
| |
| #ifndef CONFIG_IRDA_DYNAMIC_WINDOW |
| static __u32 irlap_requested_line_capacity(struct qos_info *qos) |
| { |
| __u32 line_capacity; |
| |
| line_capacity = qos->window_size.value * |
| (qos->data_size.value + 6 + qos->additional_bofs.value) + |
| irlap_min_turn_time_in_bytes(qos->baud_rate.value, |
| qos->min_turn_time.value); |
| |
| IRDA_DEBUG(2, "%s(), requested line capacity=%d\n", |
| __FUNCTION__, line_capacity); |
| |
| return line_capacity; |
| } |
| #endif |
| |
| void irda_qos_bits_to_value(struct qos_info *qos) |
| { |
| int index; |
| |
| IRDA_ASSERT(qos != NULL, return;); |
| |
| index = msb_index(qos->baud_rate.bits); |
| qos->baud_rate.value = baud_rates[index]; |
| |
| index = msb_index(qos->data_size.bits); |
| qos->data_size.value = data_sizes[index]; |
| |
| index = msb_index(qos->window_size.bits); |
| qos->window_size.value = index+1; |
| |
| index = msb_index(qos->min_turn_time.bits); |
| qos->min_turn_time.value = min_turn_times[index]; |
| |
| index = msb_index(qos->max_turn_time.bits); |
| qos->max_turn_time.value = max_turn_times[index]; |
| |
| index = msb_index(qos->link_disc_time.bits); |
| qos->link_disc_time.value = link_disc_times[index]; |
| |
| index = msb_index(qos->additional_bofs.bits); |
| qos->additional_bofs.value = add_bofs[index]; |
| } |
| EXPORT_SYMBOL(irda_qos_bits_to_value); |