| /* |
| * linux/arch/i386/mm/pgtable.c |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/smp.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <linux/pagemap.h> |
| #include <linux/spinlock.h> |
| |
| #include <asm/system.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/fixmap.h> |
| #include <asm/e820.h> |
| #include <asm/tlb.h> |
| #include <asm/tlbflush.h> |
| |
| void show_mem(void) |
| { |
| int total = 0, reserved = 0; |
| int shared = 0, cached = 0; |
| int highmem = 0; |
| struct page *page; |
| pg_data_t *pgdat; |
| unsigned long i; |
| struct page_state ps; |
| |
| printk(KERN_INFO "Mem-info:\n"); |
| show_free_areas(); |
| printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| for_each_pgdat(pgdat) { |
| for (i = 0; i < pgdat->node_spanned_pages; ++i) { |
| page = pgdat_page_nr(pgdat, i); |
| total++; |
| if (PageHighMem(page)) |
| highmem++; |
| if (PageReserved(page)) |
| reserved++; |
| else if (PageSwapCache(page)) |
| cached++; |
| else if (page_count(page)) |
| shared += page_count(page) - 1; |
| } |
| } |
| printk(KERN_INFO "%d pages of RAM\n", total); |
| printk(KERN_INFO "%d pages of HIGHMEM\n", highmem); |
| printk(KERN_INFO "%d reserved pages\n", reserved); |
| printk(KERN_INFO "%d pages shared\n", shared); |
| printk(KERN_INFO "%d pages swap cached\n", cached); |
| |
| get_page_state(&ps); |
| printk(KERN_INFO "%lu pages dirty\n", ps.nr_dirty); |
| printk(KERN_INFO "%lu pages writeback\n", ps.nr_writeback); |
| printk(KERN_INFO "%lu pages mapped\n", ps.nr_mapped); |
| printk(KERN_INFO "%lu pages slab\n", ps.nr_slab); |
| printk(KERN_INFO "%lu pages pagetables\n", ps.nr_page_table_pages); |
| } |
| |
| /* |
| * Associate a virtual page frame with a given physical page frame |
| * and protection flags for that frame. |
| */ |
| static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| pgd = swapper_pg_dir + pgd_index(vaddr); |
| if (pgd_none(*pgd)) { |
| BUG(); |
| return; |
| } |
| pud = pud_offset(pgd, vaddr); |
| if (pud_none(*pud)) { |
| BUG(); |
| return; |
| } |
| pmd = pmd_offset(pud, vaddr); |
| if (pmd_none(*pmd)) { |
| BUG(); |
| return; |
| } |
| pte = pte_offset_kernel(pmd, vaddr); |
| /* <pfn,flags> stored as-is, to permit clearing entries */ |
| set_pte(pte, pfn_pte(pfn, flags)); |
| |
| /* |
| * It's enough to flush this one mapping. |
| * (PGE mappings get flushed as well) |
| */ |
| __flush_tlb_one(vaddr); |
| } |
| |
| /* |
| * Associate a large virtual page frame with a given physical page frame |
| * and protection flags for that frame. pfn is for the base of the page, |
| * vaddr is what the page gets mapped to - both must be properly aligned. |
| * The pmd must already be instantiated. Assumes PAE mode. |
| */ |
| void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */ |
| printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n"); |
| return; /* BUG(); */ |
| } |
| if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */ |
| printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n"); |
| return; /* BUG(); */ |
| } |
| pgd = swapper_pg_dir + pgd_index(vaddr); |
| if (pgd_none(*pgd)) { |
| printk(KERN_WARNING "set_pmd_pfn: pgd_none\n"); |
| return; /* BUG(); */ |
| } |
| pud = pud_offset(pgd, vaddr); |
| pmd = pmd_offset(pud, vaddr); |
| set_pmd(pmd, pfn_pmd(pfn, flags)); |
| /* |
| * It's enough to flush this one mapping. |
| * (PGE mappings get flushed as well) |
| */ |
| __flush_tlb_one(vaddr); |
| } |
| |
| void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags) |
| { |
| unsigned long address = __fix_to_virt(idx); |
| |
| if (idx >= __end_of_fixed_addresses) { |
| BUG(); |
| return; |
| } |
| set_pte_pfn(address, phys >> PAGE_SHIFT, flags); |
| } |
| |
| pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) |
| { |
| return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO); |
| } |
| |
| struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address) |
| { |
| struct page *pte; |
| |
| #ifdef CONFIG_HIGHPTE |
| pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0); |
| #else |
| pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0); |
| #endif |
| return pte; |
| } |
| |
| void pmd_ctor(void *pmd, kmem_cache_t *cache, unsigned long flags) |
| { |
| memset(pmd, 0, PTRS_PER_PMD*sizeof(pmd_t)); |
| } |
| |
| /* |
| * List of all pgd's needed for non-PAE so it can invalidate entries |
| * in both cached and uncached pgd's; not needed for PAE since the |
| * kernel pmd is shared. If PAE were not to share the pmd a similar |
| * tactic would be needed. This is essentially codepath-based locking |
| * against pageattr.c; it is the unique case in which a valid change |
| * of kernel pagetables can't be lazily synchronized by vmalloc faults. |
| * vmalloc faults work because attached pagetables are never freed. |
| * The locking scheme was chosen on the basis of manfred's |
| * recommendations and having no core impact whatsoever. |
| * -- wli |
| */ |
| DEFINE_SPINLOCK(pgd_lock); |
| struct page *pgd_list; |
| |
| static inline void pgd_list_add(pgd_t *pgd) |
| { |
| struct page *page = virt_to_page(pgd); |
| page->index = (unsigned long)pgd_list; |
| if (pgd_list) |
| pgd_list->private = (unsigned long)&page->index; |
| pgd_list = page; |
| page->private = (unsigned long)&pgd_list; |
| } |
| |
| static inline void pgd_list_del(pgd_t *pgd) |
| { |
| struct page *next, **pprev, *page = virt_to_page(pgd); |
| next = (struct page *)page->index; |
| pprev = (struct page **)page->private; |
| *pprev = next; |
| if (next) |
| next->private = (unsigned long)pprev; |
| } |
| |
| void pgd_ctor(void *pgd, kmem_cache_t *cache, unsigned long unused) |
| { |
| unsigned long flags; |
| |
| if (PTRS_PER_PMD == 1) { |
| memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t)); |
| spin_lock_irqsave(&pgd_lock, flags); |
| } |
| |
| clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD, |
| swapper_pg_dir + USER_PTRS_PER_PGD, |
| KERNEL_PGD_PTRS); |
| if (PTRS_PER_PMD > 1) |
| return; |
| |
| pgd_list_add(pgd); |
| spin_unlock_irqrestore(&pgd_lock, flags); |
| } |
| |
| /* never called when PTRS_PER_PMD > 1 */ |
| void pgd_dtor(void *pgd, kmem_cache_t *cache, unsigned long unused) |
| { |
| unsigned long flags; /* can be called from interrupt context */ |
| |
| spin_lock_irqsave(&pgd_lock, flags); |
| pgd_list_del(pgd); |
| spin_unlock_irqrestore(&pgd_lock, flags); |
| } |
| |
| pgd_t *pgd_alloc(struct mm_struct *mm) |
| { |
| int i; |
| pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL); |
| |
| if (PTRS_PER_PMD == 1 || !pgd) |
| return pgd; |
| |
| for (i = 0; i < USER_PTRS_PER_PGD; ++i) { |
| pmd_t *pmd = kmem_cache_alloc(pmd_cache, GFP_KERNEL); |
| if (!pmd) |
| goto out_oom; |
| set_pgd(&pgd[i], __pgd(1 + __pa(pmd))); |
| } |
| return pgd; |
| |
| out_oom: |
| for (i--; i >= 0; i--) |
| kmem_cache_free(pmd_cache, (void *)__va(pgd_val(pgd[i])-1)); |
| kmem_cache_free(pgd_cache, pgd); |
| return NULL; |
| } |
| |
| void pgd_free(pgd_t *pgd) |
| { |
| int i; |
| |
| /* in the PAE case user pgd entries are overwritten before usage */ |
| if (PTRS_PER_PMD > 1) |
| for (i = 0; i < USER_PTRS_PER_PGD; ++i) |
| kmem_cache_free(pmd_cache, (void *)__va(pgd_val(pgd[i])-1)); |
| /* in the non-PAE case, free_pgtables() clears user pgd entries */ |
| kmem_cache_free(pgd_cache, pgd); |
| } |