| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright The Asahi Linux Contributors |
| * |
| * Based on irq-lpc32xx: |
| * Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com> |
| * Based on irq-bcm2836: |
| * Copyright 2015 Broadcom |
| */ |
| |
| /* |
| * AIC is a fairly simple interrupt controller with the following features: |
| * |
| * - 896 level-triggered hardware IRQs |
| * - Single mask bit per IRQ |
| * - Per-IRQ affinity setting |
| * - Automatic masking on event delivery (auto-ack) |
| * - Software triggering (ORed with hw line) |
| * - 2 per-CPU IPIs (meant as "self" and "other", but they are |
| * interchangeable if not symmetric) |
| * - Automatic prioritization (single event/ack register per CPU, lower IRQs = |
| * higher priority) |
| * - Automatic masking on ack |
| * - Default "this CPU" register view and explicit per-CPU views |
| * |
| * In addition, this driver also handles FIQs, as these are routed to the same |
| * IRQ vector. These are used for Fast IPIs (TODO), the ARMv8 timer IRQs, and |
| * performance counters (TODO). |
| * |
| * Implementation notes: |
| * |
| * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs, |
| * and one for IPIs. |
| * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller |
| * and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused). |
| * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu. |
| * - DT bindings use 3-cell form (like GIC): |
| * - <0 nr flags> - hwirq #nr |
| * - <1 nr flags> - FIQ #nr |
| * - nr=0 Physical HV timer |
| * - nr=1 Virtual HV timer |
| * - nr=2 Physical guest timer |
| * - nr=3 Virtual guest timer |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/bits.h> |
| #include <linux/bitfield.h> |
| #include <linux/cpuhotplug.h> |
| #include <linux/io.h> |
| #include <linux/irqchip.h> |
| #include <linux/irqchip/arm-vgic-info.h> |
| #include <linux/irqdomain.h> |
| #include <linux/limits.h> |
| #include <linux/of_address.h> |
| #include <linux/slab.h> |
| #include <asm/exception.h> |
| #include <asm/sysreg.h> |
| #include <asm/virt.h> |
| |
| #include <dt-bindings/interrupt-controller/apple-aic.h> |
| |
| /* |
| * AIC registers (MMIO) |
| */ |
| |
| #define AIC_INFO 0x0004 |
| #define AIC_INFO_NR_HW GENMASK(15, 0) |
| |
| #define AIC_CONFIG 0x0010 |
| |
| #define AIC_WHOAMI 0x2000 |
| #define AIC_EVENT 0x2004 |
| #define AIC_EVENT_TYPE GENMASK(31, 16) |
| #define AIC_EVENT_NUM GENMASK(15, 0) |
| |
| #define AIC_EVENT_TYPE_HW 1 |
| #define AIC_EVENT_TYPE_IPI 4 |
| #define AIC_EVENT_IPI_OTHER 1 |
| #define AIC_EVENT_IPI_SELF 2 |
| |
| #define AIC_IPI_SEND 0x2008 |
| #define AIC_IPI_ACK 0x200c |
| #define AIC_IPI_MASK_SET 0x2024 |
| #define AIC_IPI_MASK_CLR 0x2028 |
| |
| #define AIC_IPI_SEND_CPU(cpu) BIT(cpu) |
| |
| #define AIC_IPI_OTHER BIT(0) |
| #define AIC_IPI_SELF BIT(31) |
| |
| #define AIC_TARGET_CPU 0x3000 |
| #define AIC_SW_SET 0x4000 |
| #define AIC_SW_CLR 0x4080 |
| #define AIC_MASK_SET 0x4100 |
| #define AIC_MASK_CLR 0x4180 |
| |
| #define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7)) |
| #define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7)) |
| #define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7)) |
| #define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7)) |
| |
| #define MASK_REG(x) (4 * ((x) >> 5)) |
| #define MASK_BIT(x) BIT((x) & GENMASK(4, 0)) |
| |
| /* |
| * IMP-DEF sysregs that control FIQ sources |
| * Note: sysreg-based IPIs are not supported yet. |
| */ |
| |
| /* Core PMC control register */ |
| #define SYS_IMP_APL_PMCR0_EL1 sys_reg(3, 1, 15, 0, 0) |
| #define PMCR0_IMODE GENMASK(10, 8) |
| #define PMCR0_IMODE_OFF 0 |
| #define PMCR0_IMODE_PMI 1 |
| #define PMCR0_IMODE_AIC 2 |
| #define PMCR0_IMODE_HALT 3 |
| #define PMCR0_IMODE_FIQ 4 |
| #define PMCR0_IACT BIT(11) |
| |
| /* IPI request registers */ |
| #define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0) |
| #define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1) |
| #define IPI_RR_CPU GENMASK(7, 0) |
| /* Cluster only used for the GLOBAL register */ |
| #define IPI_RR_CLUSTER GENMASK(23, 16) |
| #define IPI_RR_TYPE GENMASK(29, 28) |
| #define IPI_RR_IMMEDIATE 0 |
| #define IPI_RR_RETRACT 1 |
| #define IPI_RR_DEFERRED 2 |
| #define IPI_RR_NOWAKE 3 |
| |
| /* IPI status register */ |
| #define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1) |
| #define IPI_SR_PENDING BIT(0) |
| |
| /* Guest timer FIQ enable register */ |
| #define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3) |
| #define VM_TMR_FIQ_ENABLE_V BIT(0) |
| #define VM_TMR_FIQ_ENABLE_P BIT(1) |
| |
| /* Deferred IPI countdown register */ |
| #define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1) |
| |
| /* Uncore PMC control register */ |
| #define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4) |
| #define UPMCR0_IMODE GENMASK(18, 16) |
| #define UPMCR0_IMODE_OFF 0 |
| #define UPMCR0_IMODE_AIC 2 |
| #define UPMCR0_IMODE_HALT 3 |
| #define UPMCR0_IMODE_FIQ 4 |
| |
| /* Uncore PMC status register */ |
| #define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4) |
| #define UPMSR_IACT BIT(0) |
| |
| #define AIC_NR_FIQ 4 |
| #define AIC_NR_SWIPI 32 |
| |
| /* |
| * FIQ hwirq index definitions: FIQ sources use the DT binding defines |
| * directly, except that timers are special. At the irqchip level, the |
| * two timer types are represented by their access method: _EL0 registers |
| * or _EL02 registers. In the DT binding, the timers are represented |
| * by their purpose (HV or guest). This mapping is for when the kernel is |
| * running at EL2 (with VHE). When the kernel is running at EL1, the |
| * mapping differs and aic_irq_domain_translate() performs the remapping. |
| */ |
| |
| #define AIC_TMR_EL0_PHYS AIC_TMR_HV_PHYS |
| #define AIC_TMR_EL0_VIRT AIC_TMR_HV_VIRT |
| #define AIC_TMR_EL02_PHYS AIC_TMR_GUEST_PHYS |
| #define AIC_TMR_EL02_VIRT AIC_TMR_GUEST_VIRT |
| |
| struct aic_irq_chip { |
| void __iomem *base; |
| struct irq_domain *hw_domain; |
| struct irq_domain *ipi_domain; |
| int nr_hw; |
| int ipi_hwirq; |
| }; |
| |
| static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked); |
| |
| static DEFINE_PER_CPU(atomic_t, aic_vipi_flag); |
| static DEFINE_PER_CPU(atomic_t, aic_vipi_enable); |
| |
| static struct aic_irq_chip *aic_irqc; |
| |
| static void aic_handle_ipi(struct pt_regs *regs); |
| |
| static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg) |
| { |
| return readl_relaxed(ic->base + reg); |
| } |
| |
| static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val) |
| { |
| writel_relaxed(val, ic->base + reg); |
| } |
| |
| /* |
| * IRQ irqchip |
| */ |
| |
| static void aic_irq_mask(struct irq_data *d) |
| { |
| struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); |
| |
| aic_ic_write(ic, AIC_MASK_SET + MASK_REG(irqd_to_hwirq(d)), |
| MASK_BIT(irqd_to_hwirq(d))); |
| } |
| |
| static void aic_irq_unmask(struct irq_data *d) |
| { |
| struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); |
| |
| aic_ic_write(ic, AIC_MASK_CLR + MASK_REG(d->hwirq), |
| MASK_BIT(irqd_to_hwirq(d))); |
| } |
| |
| static void aic_irq_eoi(struct irq_data *d) |
| { |
| /* |
| * Reading the interrupt reason automatically acknowledges and masks |
| * the IRQ, so we just unmask it here if needed. |
| */ |
| if (!irqd_irq_masked(d)) |
| aic_irq_unmask(d); |
| } |
| |
| static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs) |
| { |
| struct aic_irq_chip *ic = aic_irqc; |
| u32 event, type, irq; |
| |
| do { |
| /* |
| * We cannot use a relaxed read here, as reads from DMA buffers |
| * need to be ordered after the IRQ fires. |
| */ |
| event = readl(ic->base + AIC_EVENT); |
| type = FIELD_GET(AIC_EVENT_TYPE, event); |
| irq = FIELD_GET(AIC_EVENT_NUM, event); |
| |
| if (type == AIC_EVENT_TYPE_HW) |
| handle_domain_irq(aic_irqc->hw_domain, irq, regs); |
| else if (type == AIC_EVENT_TYPE_IPI && irq == 1) |
| aic_handle_ipi(regs); |
| else if (event != 0) |
| pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq); |
| } while (event); |
| |
| /* |
| * vGIC maintenance interrupts end up here too, so we need to check |
| * for them separately. This should never trigger if KVM is working |
| * properly, because it will have already taken care of clearing it |
| * on guest exit before this handler runs. |
| */ |
| if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) && |
| read_sysreg_s(SYS_ICH_MISR_EL2) != 0) { |
| pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n"); |
| sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0); |
| } |
| } |
| |
| static int aic_irq_set_affinity(struct irq_data *d, |
| const struct cpumask *mask_val, bool force) |
| { |
| irq_hw_number_t hwirq = irqd_to_hwirq(d); |
| struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); |
| int cpu; |
| |
| if (force) |
| cpu = cpumask_first(mask_val); |
| else |
| cpu = cpumask_any_and(mask_val, cpu_online_mask); |
| |
| aic_ic_write(ic, AIC_TARGET_CPU + hwirq * 4, BIT(cpu)); |
| irq_data_update_effective_affinity(d, cpumask_of(cpu)); |
| |
| return IRQ_SET_MASK_OK; |
| } |
| |
| static int aic_irq_set_type(struct irq_data *d, unsigned int type) |
| { |
| /* |
| * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't |
| * have a way to find out the type of any given IRQ, so just allow both. |
| */ |
| return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL; |
| } |
| |
| static struct irq_chip aic_chip = { |
| .name = "AIC", |
| .irq_mask = aic_irq_mask, |
| .irq_unmask = aic_irq_unmask, |
| .irq_eoi = aic_irq_eoi, |
| .irq_set_affinity = aic_irq_set_affinity, |
| .irq_set_type = aic_irq_set_type, |
| }; |
| |
| /* |
| * FIQ irqchip |
| */ |
| |
| static unsigned long aic_fiq_get_idx(struct irq_data *d) |
| { |
| struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); |
| |
| return irqd_to_hwirq(d) - ic->nr_hw; |
| } |
| |
| static void aic_fiq_set_mask(struct irq_data *d) |
| { |
| /* Only the guest timers have real mask bits, unfortunately. */ |
| switch (aic_fiq_get_idx(d)) { |
| case AIC_TMR_EL02_PHYS: |
| sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0); |
| isb(); |
| break; |
| case AIC_TMR_EL02_VIRT: |
| sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0); |
| isb(); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void aic_fiq_clear_mask(struct irq_data *d) |
| { |
| switch (aic_fiq_get_idx(d)) { |
| case AIC_TMR_EL02_PHYS: |
| sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P); |
| isb(); |
| break; |
| case AIC_TMR_EL02_VIRT: |
| sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V); |
| isb(); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void aic_fiq_mask(struct irq_data *d) |
| { |
| aic_fiq_set_mask(d); |
| __this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d))); |
| } |
| |
| static void aic_fiq_unmask(struct irq_data *d) |
| { |
| aic_fiq_clear_mask(d); |
| __this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d))); |
| } |
| |
| static void aic_fiq_eoi(struct irq_data *d) |
| { |
| /* We mask to ack (where we can), so we need to unmask at EOI. */ |
| if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d))) |
| aic_fiq_clear_mask(d); |
| } |
| |
| #define TIMER_FIRING(x) \ |
| (((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \ |
| ARCH_TIMER_CTRL_IT_STAT)) == \ |
| (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT)) |
| |
| static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs) |
| { |
| /* |
| * It would be really nice if we had a system register that lets us get |
| * the FIQ source state without having to peek down into sources... |
| * but such a register does not seem to exist. |
| * |
| * So, we have these potential sources to test for: |
| * - Fast IPIs (not yet used) |
| * - The 4 timers (CNTP, CNTV for each of HV and guest) |
| * - Per-core PMCs (not yet supported) |
| * - Per-cluster uncore PMCs (not yet supported) |
| * |
| * Since not dealing with any of these results in a FIQ storm, |
| * we check for everything here, even things we don't support yet. |
| */ |
| |
| if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) { |
| pr_err_ratelimited("Fast IPI fired. Acking.\n"); |
| write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); |
| } |
| |
| if (TIMER_FIRING(read_sysreg(cntp_ctl_el0))) |
| handle_domain_irq(aic_irqc->hw_domain, |
| aic_irqc->nr_hw + AIC_TMR_EL0_PHYS, regs); |
| |
| if (TIMER_FIRING(read_sysreg(cntv_ctl_el0))) |
| handle_domain_irq(aic_irqc->hw_domain, |
| aic_irqc->nr_hw + AIC_TMR_EL0_VIRT, regs); |
| |
| if (is_kernel_in_hyp_mode()) { |
| uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2); |
| |
| if ((enabled & VM_TMR_FIQ_ENABLE_P) && |
| TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02))) |
| handle_domain_irq(aic_irqc->hw_domain, |
| aic_irqc->nr_hw + AIC_TMR_EL02_PHYS, regs); |
| |
| if ((enabled & VM_TMR_FIQ_ENABLE_V) && |
| TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02))) |
| handle_domain_irq(aic_irqc->hw_domain, |
| aic_irqc->nr_hw + AIC_TMR_EL02_VIRT, regs); |
| } |
| |
| if ((read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & (PMCR0_IMODE | PMCR0_IACT)) == |
| (FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_FIQ) | PMCR0_IACT)) { |
| /* |
| * Not supported yet, let's figure out how to handle this when |
| * we implement these proprietary performance counters. For now, |
| * just mask it and move on. |
| */ |
| pr_err_ratelimited("PMC FIQ fired. Masking.\n"); |
| sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT, |
| FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF)); |
| } |
| |
| if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ && |
| (read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) { |
| /* Same story with uncore PMCs */ |
| pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n"); |
| sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE, |
| FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF)); |
| } |
| } |
| |
| static int aic_fiq_set_type(struct irq_data *d, unsigned int type) |
| { |
| return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL; |
| } |
| |
| static struct irq_chip fiq_chip = { |
| .name = "AIC-FIQ", |
| .irq_mask = aic_fiq_mask, |
| .irq_unmask = aic_fiq_unmask, |
| .irq_ack = aic_fiq_set_mask, |
| .irq_eoi = aic_fiq_eoi, |
| .irq_set_type = aic_fiq_set_type, |
| }; |
| |
| /* |
| * Main IRQ domain |
| */ |
| |
| static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq, |
| irq_hw_number_t hw) |
| { |
| struct aic_irq_chip *ic = id->host_data; |
| |
| if (hw < ic->nr_hw) { |
| irq_domain_set_info(id, irq, hw, &aic_chip, id->host_data, |
| handle_fasteoi_irq, NULL, NULL); |
| irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq))); |
| } else { |
| irq_set_percpu_devid(irq); |
| irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data, |
| handle_percpu_devid_irq, NULL, NULL); |
| } |
| |
| return 0; |
| } |
| |
| static int aic_irq_domain_translate(struct irq_domain *id, |
| struct irq_fwspec *fwspec, |
| unsigned long *hwirq, |
| unsigned int *type) |
| { |
| struct aic_irq_chip *ic = id->host_data; |
| |
| if (fwspec->param_count != 3 || !is_of_node(fwspec->fwnode)) |
| return -EINVAL; |
| |
| switch (fwspec->param[0]) { |
| case AIC_IRQ: |
| if (fwspec->param[1] >= ic->nr_hw) |
| return -EINVAL; |
| *hwirq = fwspec->param[1]; |
| break; |
| case AIC_FIQ: |
| if (fwspec->param[1] >= AIC_NR_FIQ) |
| return -EINVAL; |
| *hwirq = ic->nr_hw + fwspec->param[1]; |
| |
| /* |
| * In EL1 the non-redirected registers are the guest's, |
| * not EL2's, so remap the hwirqs to match. |
| */ |
| if (!is_kernel_in_hyp_mode()) { |
| switch (fwspec->param[1]) { |
| case AIC_TMR_GUEST_PHYS: |
| *hwirq = ic->nr_hw + AIC_TMR_EL0_PHYS; |
| break; |
| case AIC_TMR_GUEST_VIRT: |
| *hwirq = ic->nr_hw + AIC_TMR_EL0_VIRT; |
| break; |
| case AIC_TMR_HV_PHYS: |
| case AIC_TMR_HV_VIRT: |
| return -ENOENT; |
| default: |
| break; |
| } |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; |
| |
| return 0; |
| } |
| |
| static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *arg) |
| { |
| unsigned int type = IRQ_TYPE_NONE; |
| struct irq_fwspec *fwspec = arg; |
| irq_hw_number_t hwirq; |
| int i, ret; |
| |
| ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| ret = aic_irq_domain_map(domain, virq + i, hwirq + i); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs) |
| { |
| int i; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); |
| |
| irq_set_handler(virq + i, NULL); |
| irq_domain_reset_irq_data(d); |
| } |
| } |
| |
| static const struct irq_domain_ops aic_irq_domain_ops = { |
| .translate = aic_irq_domain_translate, |
| .alloc = aic_irq_domain_alloc, |
| .free = aic_irq_domain_free, |
| }; |
| |
| /* |
| * IPI irqchip |
| */ |
| |
| static void aic_ipi_mask(struct irq_data *d) |
| { |
| u32 irq_bit = BIT(irqd_to_hwirq(d)); |
| |
| /* No specific ordering requirements needed here. */ |
| atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable)); |
| } |
| |
| static void aic_ipi_unmask(struct irq_data *d) |
| { |
| struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); |
| u32 irq_bit = BIT(irqd_to_hwirq(d)); |
| |
| atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable)); |
| |
| /* |
| * The atomic_or() above must complete before the atomic_read() |
| * below to avoid racing aic_ipi_send_mask(). |
| */ |
| smp_mb__after_atomic(); |
| |
| /* |
| * If a pending vIPI was unmasked, raise a HW IPI to ourselves. |
| * No barriers needed here since this is a self-IPI. |
| */ |
| if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit) |
| aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id())); |
| } |
| |
| static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) |
| { |
| struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d); |
| u32 irq_bit = BIT(irqd_to_hwirq(d)); |
| u32 send = 0; |
| int cpu; |
| unsigned long pending; |
| |
| for_each_cpu(cpu, mask) { |
| /* |
| * This sequence is the mirror of the one in aic_ipi_unmask(); |
| * see the comment there. Additionally, release semantics |
| * ensure that the vIPI flag set is ordered after any shared |
| * memory accesses that precede it. This therefore also pairs |
| * with the atomic_fetch_andnot in aic_handle_ipi(). |
| */ |
| pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu)); |
| |
| /* |
| * The atomic_fetch_or_release() above must complete before the |
| * atomic_read() below to avoid racing aic_ipi_unmask(). |
| */ |
| smp_mb__after_atomic(); |
| |
| if (!(pending & irq_bit) && |
| (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit)) |
| send |= AIC_IPI_SEND_CPU(cpu); |
| } |
| |
| /* |
| * The flag writes must complete before the physical IPI is issued |
| * to another CPU. This is implied by the control dependency on |
| * the result of atomic_read_acquire() above, which is itself |
| * already ordered after the vIPI flag write. |
| */ |
| if (send) |
| aic_ic_write(ic, AIC_IPI_SEND, send); |
| } |
| |
| static struct irq_chip ipi_chip = { |
| .name = "AIC-IPI", |
| .irq_mask = aic_ipi_mask, |
| .irq_unmask = aic_ipi_unmask, |
| .ipi_send_mask = aic_ipi_send_mask, |
| }; |
| |
| /* |
| * IPI IRQ domain |
| */ |
| |
| static void aic_handle_ipi(struct pt_regs *regs) |
| { |
| int i; |
| unsigned long enabled, firing; |
| |
| /* |
| * Ack the IPI. We need to order this after the AIC event read, but |
| * that is enforced by normal MMIO ordering guarantees. |
| */ |
| aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER); |
| |
| /* |
| * The mask read does not need to be ordered. Only we can change |
| * our own mask anyway, so no races are possible here, as long as |
| * we are properly in the interrupt handler (which is covered by |
| * the barrier that is part of the top-level AIC handler's readl()). |
| */ |
| enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable)); |
| |
| /* |
| * Clear the IPIs we are about to handle. This pairs with the |
| * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be |
| * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and |
| * before IPI handling code (to avoid races handling vIPIs before they |
| * are signaled). The former is taken care of by the release semantics |
| * of the write portion, while the latter is taken care of by the |
| * acquire semantics of the read portion. |
| */ |
| firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled; |
| |
| for_each_set_bit(i, &firing, AIC_NR_SWIPI) |
| handle_domain_irq(aic_irqc->ipi_domain, i, regs); |
| |
| /* |
| * No ordering needed here; at worst this just changes the timing of |
| * when the next IPI will be delivered. |
| */ |
| aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER); |
| } |
| |
| static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq, |
| unsigned int nr_irqs, void *args) |
| { |
| int i; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| irq_set_percpu_devid(virq + i); |
| irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data, |
| handle_percpu_devid_irq, NULL, NULL); |
| } |
| |
| return 0; |
| } |
| |
| static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs) |
| { |
| /* Not freeing IPIs */ |
| } |
| |
| static const struct irq_domain_ops aic_ipi_domain_ops = { |
| .alloc = aic_ipi_alloc, |
| .free = aic_ipi_free, |
| }; |
| |
| static int aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node) |
| { |
| struct irq_domain *ipi_domain; |
| int base_ipi; |
| |
| ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI, |
| &aic_ipi_domain_ops, irqc); |
| if (WARN_ON(!ipi_domain)) |
| return -ENODEV; |
| |
| ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE; |
| irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI); |
| |
| base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI, |
| NUMA_NO_NODE, NULL, false, NULL); |
| |
| if (WARN_ON(!base_ipi)) { |
| irq_domain_remove(ipi_domain); |
| return -ENODEV; |
| } |
| |
| set_smp_ipi_range(base_ipi, AIC_NR_SWIPI); |
| |
| irqc->ipi_domain = ipi_domain; |
| |
| return 0; |
| } |
| |
| static int aic_init_cpu(unsigned int cpu) |
| { |
| /* Mask all hard-wired per-CPU IRQ/FIQ sources */ |
| |
| /* Pending Fast IPI FIQs */ |
| write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1); |
| |
| /* Timer FIQs */ |
| sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK); |
| sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK); |
| |
| /* EL2-only (VHE mode) IRQ sources */ |
| if (is_kernel_in_hyp_mode()) { |
| /* Guest timers */ |
| sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, |
| VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0); |
| |
| /* vGIC maintenance IRQ */ |
| sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0); |
| } |
| |
| /* PMC FIQ */ |
| sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT, |
| FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF)); |
| |
| /* Uncore PMC FIQ */ |
| sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE, |
| FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF)); |
| |
| /* Commit all of the above */ |
| isb(); |
| |
| /* |
| * Make sure the kernel's idea of logical CPU order is the same as AIC's |
| * If we ever end up with a mismatch here, we will have to introduce |
| * a mapping table similar to what other irqchip drivers do. |
| */ |
| WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id()); |
| |
| /* |
| * Always keep IPIs unmasked at the hardware level (except auto-masking |
| * by AIC during processing). We manage masks at the vIPI level. |
| */ |
| aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER); |
| aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF); |
| aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER); |
| |
| /* Initialize the local mask state */ |
| __this_cpu_write(aic_fiq_unmasked, 0); |
| |
| return 0; |
| } |
| |
| static struct gic_kvm_info vgic_info __initdata = { |
| .type = GIC_V3, |
| .no_maint_irq_mask = true, |
| .no_hw_deactivation = true, |
| }; |
| |
| static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent) |
| { |
| int i; |
| void __iomem *regs; |
| u32 info; |
| struct aic_irq_chip *irqc; |
| |
| regs = of_iomap(node, 0); |
| if (WARN_ON(!regs)) |
| return -EIO; |
| |
| irqc = kzalloc(sizeof(*irqc), GFP_KERNEL); |
| if (!irqc) |
| return -ENOMEM; |
| |
| aic_irqc = irqc; |
| irqc->base = regs; |
| |
| info = aic_ic_read(irqc, AIC_INFO); |
| irqc->nr_hw = FIELD_GET(AIC_INFO_NR_HW, info); |
| |
| irqc->hw_domain = irq_domain_create_linear(of_node_to_fwnode(node), |
| irqc->nr_hw + AIC_NR_FIQ, |
| &aic_irq_domain_ops, irqc); |
| if (WARN_ON(!irqc->hw_domain)) { |
| iounmap(irqc->base); |
| kfree(irqc); |
| return -ENODEV; |
| } |
| |
| irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED); |
| |
| if (aic_init_smp(irqc, node)) { |
| irq_domain_remove(irqc->hw_domain); |
| iounmap(irqc->base); |
| kfree(irqc); |
| return -ENODEV; |
| } |
| |
| set_handle_irq(aic_handle_irq); |
| set_handle_fiq(aic_handle_fiq); |
| |
| for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++) |
| aic_ic_write(irqc, AIC_MASK_SET + i * 4, U32_MAX); |
| for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++) |
| aic_ic_write(irqc, AIC_SW_CLR + i * 4, U32_MAX); |
| for (i = 0; i < irqc->nr_hw; i++) |
| aic_ic_write(irqc, AIC_TARGET_CPU + i * 4, 1); |
| |
| if (!is_kernel_in_hyp_mode()) |
| pr_info("Kernel running in EL1, mapping interrupts"); |
| |
| cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING, |
| "irqchip/apple-aic/ipi:starting", |
| aic_init_cpu, NULL); |
| |
| vgic_set_kvm_info(&vgic_info); |
| |
| pr_info("Initialized with %d IRQs, %d FIQs, %d vIPIs\n", |
| irqc->nr_hw, AIC_NR_FIQ, AIC_NR_SWIPI); |
| |
| return 0; |
| } |
| |
| IRQCHIP_DECLARE(apple_m1_aic, "apple,aic", aic_of_ic_init); |