| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Generic ASID allocator. |
| * |
| * Based on arch/arm/mm/context.c |
| * |
| * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved. |
| * Copyright (C) 2012 ARM Ltd. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/mm_types.h> |
| |
| #include <asm/asid.h> |
| |
| #define reserved_asid(info, cpu) *per_cpu_ptr((info)->reserved, cpu) |
| |
| #define ASID_MASK(info) (~GENMASK((info)->bits - 1, 0)) |
| #define ASID_FIRST_VERSION(info) (1UL << ((info)->bits)) |
| |
| #define asid2idx(info, asid) (((asid) & ~ASID_MASK(info)) >> (info)->ctxt_shift) |
| #define idx2asid(info, idx) (((idx) << (info)->ctxt_shift) & ~ASID_MASK(info)) |
| |
| static void flush_context(struct asid_info *info) |
| { |
| int i; |
| u64 asid; |
| |
| /* Update the list of reserved ASIDs and the ASID bitmap. */ |
| bitmap_clear(info->map, 0, NUM_CTXT_ASIDS(info)); |
| |
| for_each_possible_cpu(i) { |
| asid = atomic64_xchg_relaxed(&active_asid(info, i), 0); |
| /* |
| * If this CPU has already been through a |
| * rollover, but hasn't run another task in |
| * the meantime, we must preserve its reserved |
| * ASID, as this is the only trace we have of |
| * the process it is still running. |
| */ |
| if (asid == 0) |
| asid = reserved_asid(info, i); |
| __set_bit(asid2idx(info, asid), info->map); |
| reserved_asid(info, i) = asid; |
| } |
| |
| /* |
| * Queue a TLB invalidation for each CPU to perform on next |
| * context-switch |
| */ |
| cpumask_setall(&info->flush_pending); |
| } |
| |
| static bool check_update_reserved_asid(struct asid_info *info, u64 asid, |
| u64 newasid) |
| { |
| int cpu; |
| bool hit = false; |
| |
| /* |
| * Iterate over the set of reserved ASIDs looking for a match. |
| * If we find one, then we can update our mm to use newasid |
| * (i.e. the same ASID in the current generation) but we can't |
| * exit the loop early, since we need to ensure that all copies |
| * of the old ASID are updated to reflect the mm. Failure to do |
| * so could result in us missing the reserved ASID in a future |
| * generation. |
| */ |
| for_each_possible_cpu(cpu) { |
| if (reserved_asid(info, cpu) == asid) { |
| hit = true; |
| reserved_asid(info, cpu) = newasid; |
| } |
| } |
| |
| return hit; |
| } |
| |
| static u64 new_context(struct asid_info *info, atomic64_t *pasid, |
| struct mm_struct *mm) |
| { |
| static u32 cur_idx = 1; |
| u64 asid = atomic64_read(pasid); |
| u64 generation = atomic64_read(&info->generation); |
| |
| if (asid != 0) { |
| u64 newasid = generation | (asid & ~ASID_MASK(info)); |
| |
| /* |
| * If our current ASID was active during a rollover, we |
| * can continue to use it and this was just a false alarm. |
| */ |
| if (check_update_reserved_asid(info, asid, newasid)) |
| return newasid; |
| |
| /* |
| * We had a valid ASID in a previous life, so try to re-use |
| * it if possible. |
| */ |
| if (!__test_and_set_bit(asid2idx(info, asid), info->map)) |
| return newasid; |
| } |
| |
| /* |
| * Allocate a free ASID. If we can't find one, take a note of the |
| * currently active ASIDs and mark the TLBs as requiring flushes. We |
| * always count from ASID #2 (index 1), as we use ASID #0 when setting |
| * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd |
| * pairs. |
| */ |
| asid = find_next_zero_bit(info->map, NUM_CTXT_ASIDS(info), cur_idx); |
| if (asid != NUM_CTXT_ASIDS(info)) |
| goto set_asid; |
| |
| /* We're out of ASIDs, so increment the global generation count */ |
| generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION(info), |
| &info->generation); |
| flush_context(info); |
| |
| /* We have more ASIDs than CPUs, so this will always succeed */ |
| asid = find_next_zero_bit(info->map, NUM_CTXT_ASIDS(info), 1); |
| |
| set_asid: |
| __set_bit(asid, info->map); |
| cur_idx = asid; |
| cpumask_clear(mm_cpumask(mm)); |
| return idx2asid(info, asid) | generation; |
| } |
| |
| /* |
| * Generate a new ASID for the context. |
| * |
| * @pasid: Pointer to the current ASID batch allocated. It will be updated |
| * with the new ASID batch. |
| * @cpu: current CPU ID. Must have been acquired through get_cpu() |
| */ |
| void asid_new_context(struct asid_info *info, atomic64_t *pasid, |
| unsigned int cpu, struct mm_struct *mm) |
| { |
| unsigned long flags; |
| u64 asid; |
| |
| raw_spin_lock_irqsave(&info->lock, flags); |
| /* Check that our ASID belongs to the current generation. */ |
| asid = atomic64_read(pasid); |
| if ((asid ^ atomic64_read(&info->generation)) >> info->bits) { |
| asid = new_context(info, pasid, mm); |
| atomic64_set(pasid, asid); |
| } |
| |
| if (cpumask_test_and_clear_cpu(cpu, &info->flush_pending)) |
| info->flush_cpu_ctxt_cb(); |
| |
| atomic64_set(&active_asid(info, cpu), asid); |
| cpumask_set_cpu(cpu, mm_cpumask(mm)); |
| raw_spin_unlock_irqrestore(&info->lock, flags); |
| } |
| |
| /* |
| * Initialize the ASID allocator |
| * |
| * @info: Pointer to the asid allocator structure |
| * @bits: Number of ASIDs available |
| * @asid_per_ctxt: Number of ASIDs to allocate per-context. ASIDs are |
| * allocated contiguously for a given context. This value should be a power of |
| * 2. |
| */ |
| int asid_allocator_init(struct asid_info *info, |
| u32 bits, unsigned int asid_per_ctxt, |
| void (*flush_cpu_ctxt_cb)(void)) |
| { |
| info->bits = bits; |
| info->ctxt_shift = ilog2(asid_per_ctxt); |
| info->flush_cpu_ctxt_cb = flush_cpu_ctxt_cb; |
| /* |
| * Expect allocation after rollover to fail if we don't have at least |
| * one more ASID than CPUs. ASID #0 is always reserved. |
| */ |
| WARN_ON(NUM_CTXT_ASIDS(info) - 1 <= num_possible_cpus()); |
| atomic64_set(&info->generation, ASID_FIRST_VERSION(info)); |
| info->map = kcalloc(BITS_TO_LONGS(NUM_CTXT_ASIDS(info)), |
| sizeof(*info->map), GFP_KERNEL); |
| if (!info->map) |
| return -ENOMEM; |
| |
| raw_spin_lock_init(&info->lock); |
| |
| return 0; |
| } |