|  | /* | 
|  | * NFTL mount code with extensive checks | 
|  | * | 
|  | * Author: Fabrice Bellard (fabrice.bellard@netgem.com) | 
|  | * Copyright © 2000 Netgem S.A. | 
|  | * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <asm/errno.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/nftl.h> | 
|  |  | 
|  | #define SECTORSIZE 512 | 
|  |  | 
|  | /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the | 
|  | *	various device information of the NFTL partition and Bad Unit Table. Update | 
|  | *	the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[] | 
|  | *	is used for management of Erase Unit in other routines in nftl.c and nftlmount.c | 
|  | */ | 
|  | static int find_boot_record(struct NFTLrecord *nftl) | 
|  | { | 
|  | struct nftl_uci1 h1; | 
|  | unsigned int block, boot_record_count = 0; | 
|  | size_t retlen; | 
|  | u8 buf[SECTORSIZE]; | 
|  | struct NFTLMediaHeader *mh = &nftl->MediaHdr; | 
|  | struct mtd_info *mtd = nftl->mbd.mtd; | 
|  | unsigned int i; | 
|  |  | 
|  | /* Assume logical EraseSize == physical erasesize for starting the scan. | 
|  | We'll sort it out later if we find a MediaHeader which says otherwise */ | 
|  | /* Actually, we won't.  The new DiskOnChip driver has already scanned | 
|  | the MediaHeader and adjusted the virtual erasesize it presents in | 
|  | the mtd device accordingly.  We could even get rid of | 
|  | nftl->EraseSize if there were any point in doing so. */ | 
|  | nftl->EraseSize = nftl->mbd.mtd->erasesize; | 
|  | nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize; | 
|  |  | 
|  | nftl->MediaUnit = BLOCK_NIL; | 
|  | nftl->SpareMediaUnit = BLOCK_NIL; | 
|  |  | 
|  | /* search for a valid boot record */ | 
|  | for (block = 0; block < nftl->nb_blocks; block++) { | 
|  | int ret; | 
|  |  | 
|  | /* Check for ANAND header first. Then can whinge if it's found but later | 
|  | checks fail */ | 
|  | ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE, | 
|  | &retlen, buf); | 
|  | /* We ignore ret in case the ECC of the MediaHeader is invalid | 
|  | (which is apparently acceptable) */ | 
|  | if (retlen != SECTORSIZE) { | 
|  | static int warncount = 5; | 
|  |  | 
|  | if (warncount) { | 
|  | printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n", | 
|  | block * nftl->EraseSize, nftl->mbd.mtd->index, ret); | 
|  | if (!--warncount) | 
|  | printk(KERN_WARNING "Further failures for this block will not be printed\n"); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (retlen < 6 || memcmp(buf, "ANAND", 6)) { | 
|  | /* ANAND\0 not found. Continue */ | 
|  | #if 0 | 
|  | printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n", | 
|  | block * nftl->EraseSize, nftl->mbd.mtd->index); | 
|  | #endif | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* To be safer with BIOS, also use erase mark as discriminant */ | 
|  | if ((ret = nftl_read_oob(mtd, block * nftl->EraseSize + | 
|  | SECTORSIZE + 8, 8, &retlen, | 
|  | (char *)&h1) < 0)) { | 
|  | printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n", | 
|  | block * nftl->EraseSize, nftl->mbd.mtd->index, ret); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | #if 0 /* Some people seem to have devices without ECC or erase marks | 
|  | on the Media Header blocks. There are enough other sanity | 
|  | checks in here that we can probably do without it. | 
|  | */ | 
|  | if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) { | 
|  | printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n", | 
|  | block * nftl->EraseSize, nftl->mbd.mtd->index, | 
|  | le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Finally reread to check ECC */ | 
|  | if ((ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE, | 
|  | &retlen, buf) < 0)) { | 
|  | printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n", | 
|  | block * nftl->EraseSize, nftl->mbd.mtd->index, ret); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Paranoia. Check the ANAND header is still there after the ECC read */ | 
|  | if (memcmp(buf, "ANAND", 6)) { | 
|  | printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n", | 
|  | block * nftl->EraseSize, nftl->mbd.mtd->index); | 
|  | printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n", | 
|  | buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  | /* OK, we like it. */ | 
|  |  | 
|  | if (boot_record_count) { | 
|  | /* We've already processed one. So we just check if | 
|  | this one is the same as the first one we found */ | 
|  | if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { | 
|  | printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n", | 
|  | nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); | 
|  | /* if (debug) Print both side by side */ | 
|  | if (boot_record_count < 2) { | 
|  | /* We haven't yet seen two real ones */ | 
|  | return -1; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (boot_record_count == 1) | 
|  | nftl->SpareMediaUnit = block; | 
|  |  | 
|  | /* Mark this boot record (NFTL MediaHeader) block as reserved */ | 
|  | nftl->ReplUnitTable[block] = BLOCK_RESERVED; | 
|  |  | 
|  |  | 
|  | boot_record_count++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* This is the first we've seen. Copy the media header structure into place */ | 
|  | memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); | 
|  |  | 
|  | /* Do some sanity checks on it */ | 
|  | #if 0 | 
|  | The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual | 
|  | erasesize based on UnitSizeFactor.  So the erasesize we read from the mtd | 
|  | device is already correct. | 
|  | if (mh->UnitSizeFactor == 0) { | 
|  | printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n"); | 
|  | } else if (mh->UnitSizeFactor < 0xfc) { | 
|  | printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n", | 
|  | mh->UnitSizeFactor); | 
|  | return -1; | 
|  | } else if (mh->UnitSizeFactor != 0xff) { | 
|  | printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n", | 
|  | mh->UnitSizeFactor); | 
|  | nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor); | 
|  | nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize; | 
|  | } | 
|  | #endif | 
|  | nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); | 
|  | if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { | 
|  | printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); | 
|  | printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", | 
|  | nftl->nb_boot_blocks, nftl->nb_blocks); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; | 
|  | if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { | 
|  | printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); | 
|  | printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", | 
|  | nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | nftl->mbd.size  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); | 
|  |  | 
|  | /* If we're not using the last sectors in the device for some reason, | 
|  | reduce nb_blocks accordingly so we forget they're there */ | 
|  | nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); | 
|  |  | 
|  | /* XXX: will be suppressed */ | 
|  | nftl->lastEUN = nftl->nb_blocks - 1; | 
|  |  | 
|  | /* memory alloc */ | 
|  | nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL); | 
|  | if (!nftl->EUNtable) { | 
|  | printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL); | 
|  | if (!nftl->ReplUnitTable) { | 
|  | kfree(nftl->EUNtable); | 
|  | printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */ | 
|  | for (i = 0; i < nftl->nb_boot_blocks; i++) | 
|  | nftl->ReplUnitTable[i] = BLOCK_RESERVED; | 
|  | /* mark all remaining blocks as potentially containing data */ | 
|  | for (; i < nftl->nb_blocks; i++) { | 
|  | nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED; | 
|  | } | 
|  |  | 
|  | /* Mark this boot record (NFTL MediaHeader) block as reserved */ | 
|  | nftl->ReplUnitTable[block] = BLOCK_RESERVED; | 
|  |  | 
|  | /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ | 
|  | for (i = 0; i < nftl->nb_blocks; i++) { | 
|  | #if 0 | 
|  | The new DiskOnChip driver already scanned the bad block table.  Just query it. | 
|  | if ((i & (SECTORSIZE - 1)) == 0) { | 
|  | /* read one sector for every SECTORSIZE of blocks */ | 
|  | if ((ret = mtd->read(nftl->mbd.mtd, block * nftl->EraseSize + | 
|  | i + SECTORSIZE, SECTORSIZE, &retlen, | 
|  | buf)) < 0) { | 
|  | printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n", | 
|  | ret); | 
|  | kfree(nftl->ReplUnitTable); | 
|  | kfree(nftl->EUNtable); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ | 
|  | if (buf[i & (SECTORSIZE - 1)] != 0xff) | 
|  | nftl->ReplUnitTable[i] = BLOCK_RESERVED; | 
|  | #endif | 
|  | if (nftl->mbd.mtd->block_isbad(nftl->mbd.mtd, i * nftl->EraseSize)) | 
|  | nftl->ReplUnitTable[i] = BLOCK_RESERVED; | 
|  | } | 
|  |  | 
|  | nftl->MediaUnit = block; | 
|  | boot_record_count++; | 
|  |  | 
|  | } /* foreach (block) */ | 
|  |  | 
|  | return boot_record_count?0:-1; | 
|  | } | 
|  |  | 
|  | static int memcmpb(void *a, int c, int n) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < n; i++) { | 
|  | if (c != ((unsigned char *)a)[i]) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */ | 
|  | static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len, | 
|  | int check_oob) | 
|  | { | 
|  | u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize]; | 
|  | struct mtd_info *mtd = nftl->mbd.mtd; | 
|  | size_t retlen; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < len; i += SECTORSIZE) { | 
|  | if (mtd->read(mtd, address, SECTORSIZE, &retlen, buf)) | 
|  | return -1; | 
|  | if (memcmpb(buf, 0xff, SECTORSIZE) != 0) | 
|  | return -1; | 
|  |  | 
|  | if (check_oob) { | 
|  | if(nftl_read_oob(mtd, address, mtd->oobsize, | 
|  | &retlen, &buf[SECTORSIZE]) < 0) | 
|  | return -1; | 
|  | if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0) | 
|  | return -1; | 
|  | } | 
|  | address += SECTORSIZE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and | 
|  | *              Update NFTL metadata. Each erase operation is checked with check_free_sectors | 
|  | * | 
|  | * Return: 0 when succeed, -1 on error. | 
|  | * | 
|  | *  ToDo: 1. Is it neceressary to check_free_sector after erasing ?? | 
|  | */ | 
|  | int NFTL_formatblock(struct NFTLrecord *nftl, int block) | 
|  | { | 
|  | size_t retlen; | 
|  | unsigned int nb_erases, erase_mark; | 
|  | struct nftl_uci1 uci; | 
|  | struct erase_info *instr = &nftl->instr; | 
|  | struct mtd_info *mtd = nftl->mbd.mtd; | 
|  |  | 
|  | /* Read the Unit Control Information #1 for Wear-Leveling */ | 
|  | if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, | 
|  | 8, &retlen, (char *)&uci) < 0) | 
|  | goto default_uci1; | 
|  |  | 
|  | erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1)); | 
|  | if (erase_mark != ERASE_MARK) { | 
|  | default_uci1: | 
|  | uci.EraseMark = cpu_to_le16(ERASE_MARK); | 
|  | uci.EraseMark1 = cpu_to_le16(ERASE_MARK); | 
|  | uci.WearInfo = cpu_to_le32(0); | 
|  | } | 
|  |  | 
|  | memset(instr, 0, sizeof(struct erase_info)); | 
|  |  | 
|  | /* XXX: use async erase interface, XXX: test return code */ | 
|  | instr->mtd = nftl->mbd.mtd; | 
|  | instr->addr = block * nftl->EraseSize; | 
|  | instr->len = nftl->EraseSize; | 
|  | mtd->erase(mtd, instr); | 
|  |  | 
|  | if (instr->state == MTD_ERASE_FAILED) { | 
|  | printk("Error while formatting block %d\n", block); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* increase and write Wear-Leveling info */ | 
|  | nb_erases = le32_to_cpu(uci.WearInfo); | 
|  | nb_erases++; | 
|  |  | 
|  | /* wrap (almost impossible with current flashs) or free block */ | 
|  | if (nb_erases == 0) | 
|  | nb_erases = 1; | 
|  |  | 
|  | /* check the "freeness" of Erase Unit before updating metadata | 
|  | * FixMe:  is this check really necessary ? since we have check the | 
|  | *         return code after the erase operation. */ | 
|  | if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0) | 
|  | goto fail; | 
|  |  | 
|  | uci.WearInfo = le32_to_cpu(nb_erases); | 
|  | if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE + | 
|  | 8, 8, &retlen, (char *)&uci) < 0) | 
|  | goto fail; | 
|  | return 0; | 
|  | fail: | 
|  | /* could not format, update the bad block table (caller is responsible | 
|  | for setting the ReplUnitTable to BLOCK_RESERVED on failure) */ | 
|  | nftl->mbd.mtd->block_markbad(nftl->mbd.mtd, instr->addr); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct. | 
|  | *	Mark as 'IGNORE' each incorrect sector. This check is only done if the chain | 
|  | *	was being folded when NFTL was interrupted. | 
|  | * | 
|  | *	The check_free_sectors in this function is neceressary. There is a possible | 
|  | *	situation that after writing the Data area, the Block Control Information is | 
|  | *	not updated according (due to power failure or something) which leaves the block | 
|  | *	in an umconsistent state. So we have to check if a block is really FREE in this | 
|  | *	case. */ | 
|  | static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block) | 
|  | { | 
|  | struct mtd_info *mtd = nftl->mbd.mtd; | 
|  | unsigned int block, i, status; | 
|  | struct nftl_bci bci; | 
|  | int sectors_per_block; | 
|  | size_t retlen; | 
|  |  | 
|  | sectors_per_block = nftl->EraseSize / SECTORSIZE; | 
|  | block = first_block; | 
|  | for (;;) { | 
|  | for (i = 0; i < sectors_per_block; i++) { | 
|  | if (nftl_read_oob(mtd, | 
|  | block * nftl->EraseSize + i * SECTORSIZE, | 
|  | 8, &retlen, (char *)&bci) < 0) | 
|  | status = SECTOR_IGNORE; | 
|  | else | 
|  | status = bci.Status | bci.Status1; | 
|  |  | 
|  | switch(status) { | 
|  | case SECTOR_FREE: | 
|  | /* verify that the sector is really free. If not, mark | 
|  | as ignore */ | 
|  | if (memcmpb(&bci, 0xff, 8) != 0 || | 
|  | check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE, | 
|  | SECTORSIZE, 0) != 0) { | 
|  | printk("Incorrect free sector %d in block %d: " | 
|  | "marking it as ignored\n", | 
|  | i, block); | 
|  |  | 
|  | /* sector not free actually : mark it as SECTOR_IGNORE  */ | 
|  | bci.Status = SECTOR_IGNORE; | 
|  | bci.Status1 = SECTOR_IGNORE; | 
|  | nftl_write_oob(mtd, block * | 
|  | nftl->EraseSize + | 
|  | i * SECTORSIZE, 8, | 
|  | &retlen, (char *)&bci); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* proceed to next Erase Unit on the chain */ | 
|  | block = nftl->ReplUnitTable[block]; | 
|  | if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) | 
|  | printk("incorrect ReplUnitTable[] : %d\n", block); | 
|  | if (block == BLOCK_NIL || block >= nftl->nb_blocks) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */ | 
|  | static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block) | 
|  | { | 
|  | unsigned int length = 0, block = first_block; | 
|  |  | 
|  | for (;;) { | 
|  | length++; | 
|  | /* avoid infinite loops, although this is guaranted not to | 
|  | happen because of the previous checks */ | 
|  | if (length >= nftl->nb_blocks) { | 
|  | printk("nftl: length too long %d !\n", length); | 
|  | break; | 
|  | } | 
|  |  | 
|  | block = nftl->ReplUnitTable[block]; | 
|  | if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) | 
|  | printk("incorrect ReplUnitTable[] : %d\n", block); | 
|  | if (block == BLOCK_NIL || block >= nftl->nb_blocks) | 
|  | break; | 
|  | } | 
|  | return length; | 
|  | } | 
|  |  | 
|  | /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a | 
|  | *	Virtual Unit Chain, i.e. all the units are disconnected. | 
|  | * | 
|  | *	It is not stricly correct to begin from the first block of the chain because | 
|  | *	if we stop the code, we may see again a valid chain if there was a first_block | 
|  | *	flag in a block inside it. But is it really a problem ? | 
|  | * | 
|  | * FixMe: Figure out what the last statesment means. What if power failure when we are | 
|  | *	in the for (;;) loop formatting blocks ?? | 
|  | */ | 
|  | static void format_chain(struct NFTLrecord *nftl, unsigned int first_block) | 
|  | { | 
|  | unsigned int block = first_block, block1; | 
|  |  | 
|  | printk("Formatting chain at block %d\n", first_block); | 
|  |  | 
|  | for (;;) { | 
|  | block1 = nftl->ReplUnitTable[block]; | 
|  |  | 
|  | printk("Formatting block %d\n", block); | 
|  | if (NFTL_formatblock(nftl, block) < 0) { | 
|  | /* cannot format !!!! Mark it as Bad Unit */ | 
|  | nftl->ReplUnitTable[block] = BLOCK_RESERVED; | 
|  | } else { | 
|  | nftl->ReplUnitTable[block] = BLOCK_FREE; | 
|  | } | 
|  |  | 
|  | /* goto next block on the chain */ | 
|  | block = block1; | 
|  |  | 
|  | if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) | 
|  | printk("incorrect ReplUnitTable[] : %d\n", block); | 
|  | if (block == BLOCK_NIL || block >= nftl->nb_blocks) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or | 
|  | *	totally free (only 0xff). | 
|  | * | 
|  | * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the | 
|  | *	following critia: | 
|  | *	1. */ | 
|  | static int check_and_mark_free_block(struct NFTLrecord *nftl, int block) | 
|  | { | 
|  | struct mtd_info *mtd = nftl->mbd.mtd; | 
|  | struct nftl_uci1 h1; | 
|  | unsigned int erase_mark; | 
|  | size_t retlen; | 
|  |  | 
|  | /* check erase mark. */ | 
|  | if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, | 
|  | &retlen, (char *)&h1) < 0) | 
|  | return -1; | 
|  |  | 
|  | erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); | 
|  | if (erase_mark != ERASE_MARK) { | 
|  | /* if no erase mark, the block must be totally free. This is | 
|  | possible in two cases : empty filsystem or interrupted erase (very unlikely) */ | 
|  | if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0) | 
|  | return -1; | 
|  |  | 
|  | /* free block : write erase mark */ | 
|  | h1.EraseMark = cpu_to_le16(ERASE_MARK); | 
|  | h1.EraseMark1 = cpu_to_le16(ERASE_MARK); | 
|  | h1.WearInfo = cpu_to_le32(0); | 
|  | if (nftl_write_oob(mtd, | 
|  | block * nftl->EraseSize + SECTORSIZE + 8, 8, | 
|  | &retlen, (char *)&h1) < 0) | 
|  | return -1; | 
|  | } else { | 
|  | #if 0 | 
|  | /* if erase mark present, need to skip it when doing check */ | 
|  | for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) { | 
|  | /* check free sector */ | 
|  | if (check_free_sectors (nftl, block * nftl->EraseSize + i, | 
|  | SECTORSIZE, 0) != 0) | 
|  | return -1; | 
|  |  | 
|  | if (nftl_read_oob(mtd, block * nftl->EraseSize + i, | 
|  | 16, &retlen, buf) < 0) | 
|  | return -1; | 
|  | if (i == SECTORSIZE) { | 
|  | /* skip erase mark */ | 
|  | if (memcmpb(buf, 0xff, 8)) | 
|  | return -1; | 
|  | } else { | 
|  | if (memcmpb(buf, 0xff, 16)) | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS | 
|  | *	to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2 | 
|  | *	is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted | 
|  | *	for some reason. A clean up/check of the VUC is neceressary in this case. | 
|  | * | 
|  | * WARNING: return 0 if read error | 
|  | */ | 
|  | static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block) | 
|  | { | 
|  | struct mtd_info *mtd = nftl->mbd.mtd; | 
|  | struct nftl_uci2 uci; | 
|  | size_t retlen; | 
|  |  | 
|  | if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8, | 
|  | 8, &retlen, (char *)&uci) < 0) | 
|  | return 0; | 
|  |  | 
|  | return le16_to_cpu((uci.FoldMark | uci.FoldMark1)); | 
|  | } | 
|  |  | 
|  | int NFTL_mount(struct NFTLrecord *s) | 
|  | { | 
|  | int i; | 
|  | unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark; | 
|  | unsigned int block, first_block, is_first_block; | 
|  | int chain_length, do_format_chain; | 
|  | struct nftl_uci0 h0; | 
|  | struct nftl_uci1 h1; | 
|  | struct mtd_info *mtd = s->mbd.mtd; | 
|  | size_t retlen; | 
|  |  | 
|  | /* search for NFTL MediaHeader and Spare NFTL Media Header */ | 
|  | if (find_boot_record(s) < 0) { | 
|  | printk("Could not find valid boot record\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* init the logical to physical table */ | 
|  | for (i = 0; i < s->nb_blocks; i++) { | 
|  | s->EUNtable[i] = BLOCK_NIL; | 
|  | } | 
|  |  | 
|  | /* first pass : explore each block chain */ | 
|  | first_logical_block = 0; | 
|  | for (first_block = 0; first_block < s->nb_blocks; first_block++) { | 
|  | /* if the block was not already explored, we can look at it */ | 
|  | if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) { | 
|  | block = first_block; | 
|  | chain_length = 0; | 
|  | do_format_chain = 0; | 
|  |  | 
|  | for (;;) { | 
|  | /* read the block header. If error, we format the chain */ | 
|  | if (nftl_read_oob(mtd, | 
|  | block * s->EraseSize + 8, 8, | 
|  | &retlen, (char *)&h0) < 0 || | 
|  | nftl_read_oob(mtd, | 
|  | block * s->EraseSize + | 
|  | SECTORSIZE + 8, 8, | 
|  | &retlen, (char *)&h1) < 0) { | 
|  | s->ReplUnitTable[block] = BLOCK_NIL; | 
|  | do_format_chain = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum)); | 
|  | rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum)); | 
|  | nb_erases = le32_to_cpu (h1.WearInfo); | 
|  | erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); | 
|  |  | 
|  | is_first_block = !(logical_block >> 15); | 
|  | logical_block = logical_block & 0x7fff; | 
|  |  | 
|  | /* invalid/free block test */ | 
|  | if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) { | 
|  | if (chain_length == 0) { | 
|  | /* if not currently in a chain, we can handle it safely */ | 
|  | if (check_and_mark_free_block(s, block) < 0) { | 
|  | /* not really free: format it */ | 
|  | printk("Formatting block %d\n", block); | 
|  | if (NFTL_formatblock(s, block) < 0) { | 
|  | /* could not format: reserve the block */ | 
|  | s->ReplUnitTable[block] = BLOCK_RESERVED; | 
|  | } else { | 
|  | s->ReplUnitTable[block] = BLOCK_FREE; | 
|  | } | 
|  | } else { | 
|  | /* free block: mark it */ | 
|  | s->ReplUnitTable[block] = BLOCK_FREE; | 
|  | } | 
|  | /* directly examine the next block. */ | 
|  | goto examine_ReplUnitTable; | 
|  | } else { | 
|  | /* the block was in a chain : this is bad. We | 
|  | must format all the chain */ | 
|  | printk("Block %d: free but referenced in chain %d\n", | 
|  | block, first_block); | 
|  | s->ReplUnitTable[block] = BLOCK_NIL; | 
|  | do_format_chain = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* we accept only first blocks here */ | 
|  | if (chain_length == 0) { | 
|  | /* this block is not the first block in chain : | 
|  | ignore it, it will be included in a chain | 
|  | later, or marked as not explored */ | 
|  | if (!is_first_block) | 
|  | goto examine_ReplUnitTable; | 
|  | first_logical_block = logical_block; | 
|  | } else { | 
|  | if (logical_block != first_logical_block) { | 
|  | printk("Block %d: incorrect logical block: %d expected: %d\n", | 
|  | block, logical_block, first_logical_block); | 
|  | /* the chain is incorrect : we must format it, | 
|  | but we need to read it completly */ | 
|  | do_format_chain = 1; | 
|  | } | 
|  | if (is_first_block) { | 
|  | /* we accept that a block is marked as first | 
|  | block while being last block in a chain | 
|  | only if the chain is being folded */ | 
|  | if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS || | 
|  | rep_block != 0xffff) { | 
|  | printk("Block %d: incorrectly marked as first block in chain\n", | 
|  | block); | 
|  | /* the chain is incorrect : we must format it, | 
|  | but we need to read it completly */ | 
|  | do_format_chain = 1; | 
|  | } else { | 
|  | printk("Block %d: folding in progress - ignoring first block flag\n", | 
|  | block); | 
|  | } | 
|  | } | 
|  | } | 
|  | chain_length++; | 
|  | if (rep_block == 0xffff) { | 
|  | /* no more blocks after */ | 
|  | s->ReplUnitTable[block] = BLOCK_NIL; | 
|  | break; | 
|  | } else if (rep_block >= s->nb_blocks) { | 
|  | printk("Block %d: referencing invalid block %d\n", | 
|  | block, rep_block); | 
|  | do_format_chain = 1; | 
|  | s->ReplUnitTable[block] = BLOCK_NIL; | 
|  | break; | 
|  | } else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) { | 
|  | /* same problem as previous 'is_first_block' test: | 
|  | we accept that the last block of a chain has | 
|  | the first_block flag set if folding is in | 
|  | progress. We handle here the case where the | 
|  | last block appeared first */ | 
|  | if (s->ReplUnitTable[rep_block] == BLOCK_NIL && | 
|  | s->EUNtable[first_logical_block] == rep_block && | 
|  | get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) { | 
|  | /* EUNtable[] will be set after */ | 
|  | printk("Block %d: folding in progress - ignoring first block flag\n", | 
|  | rep_block); | 
|  | s->ReplUnitTable[block] = rep_block; | 
|  | s->EUNtable[first_logical_block] = BLOCK_NIL; | 
|  | } else { | 
|  | printk("Block %d: referencing block %d already in another chain\n", | 
|  | block, rep_block); | 
|  | /* XXX: should handle correctly fold in progress chains */ | 
|  | do_format_chain = 1; | 
|  | s->ReplUnitTable[block] = BLOCK_NIL; | 
|  | } | 
|  | break; | 
|  | } else { | 
|  | /* this is OK */ | 
|  | s->ReplUnitTable[block] = rep_block; | 
|  | block = rep_block; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* the chain was completely explored. Now we can decide | 
|  | what to do with it */ | 
|  | if (do_format_chain) { | 
|  | /* invalid chain : format it */ | 
|  | format_chain(s, first_block); | 
|  | } else { | 
|  | unsigned int first_block1, chain_to_format, chain_length1; | 
|  | int fold_mark; | 
|  |  | 
|  | /* valid chain : get foldmark */ | 
|  | fold_mark = get_fold_mark(s, first_block); | 
|  | if (fold_mark == 0) { | 
|  | /* cannot get foldmark : format the chain */ | 
|  | printk("Could read foldmark at block %d\n", first_block); | 
|  | format_chain(s, first_block); | 
|  | } else { | 
|  | if (fold_mark == FOLD_MARK_IN_PROGRESS) | 
|  | check_sectors_in_chain(s, first_block); | 
|  |  | 
|  | /* now handle the case where we find two chains at the | 
|  | same virtual address : we select the longer one, | 
|  | because the shorter one is the one which was being | 
|  | folded if the folding was not done in place */ | 
|  | first_block1 = s->EUNtable[first_logical_block]; | 
|  | if (first_block1 != BLOCK_NIL) { | 
|  | /* XXX: what to do if same length ? */ | 
|  | chain_length1 = calc_chain_length(s, first_block1); | 
|  | printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n", | 
|  | first_block1, chain_length1, first_block, chain_length); | 
|  |  | 
|  | if (chain_length >= chain_length1) { | 
|  | chain_to_format = first_block1; | 
|  | s->EUNtable[first_logical_block] = first_block; | 
|  | } else { | 
|  | chain_to_format = first_block; | 
|  | } | 
|  | format_chain(s, chain_to_format); | 
|  | } else { | 
|  | s->EUNtable[first_logical_block] = first_block; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | examine_ReplUnitTable:; | 
|  | } | 
|  |  | 
|  | /* second pass to format unreferenced blocks  and init free block count */ | 
|  | s->numfreeEUNs = 0; | 
|  | s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN); | 
|  |  | 
|  | for (block = 0; block < s->nb_blocks; block++) { | 
|  | if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) { | 
|  | printk("Unreferenced block %d, formatting it\n", block); | 
|  | if (NFTL_formatblock(s, block) < 0) | 
|  | s->ReplUnitTable[block] = BLOCK_RESERVED; | 
|  | else | 
|  | s->ReplUnitTable[block] = BLOCK_FREE; | 
|  | } | 
|  | if (s->ReplUnitTable[block] == BLOCK_FREE) { | 
|  | s->numfreeEUNs++; | 
|  | s->LastFreeEUN = block; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |