|  | /* | 
|  | * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> | 
|  | * Copyright © 2004 Micron Technology Inc. | 
|  | * Copyright © 2004 David Brownell | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <plat/dma.h> | 
|  | #include <plat/gpmc.h> | 
|  | #include <plat/nand.h> | 
|  |  | 
|  | #define	DRIVER_NAME	"omap2-nand" | 
|  | #define	OMAP_NAND_TIMEOUT_MS	5000 | 
|  |  | 
|  | #define NAND_Ecc_P1e		(1 << 0) | 
|  | #define NAND_Ecc_P2e		(1 << 1) | 
|  | #define NAND_Ecc_P4e		(1 << 2) | 
|  | #define NAND_Ecc_P8e		(1 << 3) | 
|  | #define NAND_Ecc_P16e		(1 << 4) | 
|  | #define NAND_Ecc_P32e		(1 << 5) | 
|  | #define NAND_Ecc_P64e		(1 << 6) | 
|  | #define NAND_Ecc_P128e		(1 << 7) | 
|  | #define NAND_Ecc_P256e		(1 << 8) | 
|  | #define NAND_Ecc_P512e		(1 << 9) | 
|  | #define NAND_Ecc_P1024e		(1 << 10) | 
|  | #define NAND_Ecc_P2048e		(1 << 11) | 
|  |  | 
|  | #define NAND_Ecc_P1o		(1 << 16) | 
|  | #define NAND_Ecc_P2o		(1 << 17) | 
|  | #define NAND_Ecc_P4o		(1 << 18) | 
|  | #define NAND_Ecc_P8o		(1 << 19) | 
|  | #define NAND_Ecc_P16o		(1 << 20) | 
|  | #define NAND_Ecc_P32o		(1 << 21) | 
|  | #define NAND_Ecc_P64o		(1 << 22) | 
|  | #define NAND_Ecc_P128o		(1 << 23) | 
|  | #define NAND_Ecc_P256o		(1 << 24) | 
|  | #define NAND_Ecc_P512o		(1 << 25) | 
|  | #define NAND_Ecc_P1024o		(1 << 26) | 
|  | #define NAND_Ecc_P2048o		(1 << 27) | 
|  |  | 
|  | #define TF(value)	(value ? 1 : 0) | 
|  |  | 
|  | #define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0) | 
|  | #define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1) | 
|  | #define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2) | 
|  | #define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3) | 
|  | #define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4) | 
|  | #define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5) | 
|  | #define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6) | 
|  | #define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7) | 
|  |  | 
|  | #define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0) | 
|  | #define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1) | 
|  | #define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2) | 
|  | #define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3) | 
|  | #define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4) | 
|  | #define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5) | 
|  | #define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6) | 
|  | #define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7) | 
|  |  | 
|  | #define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0) | 
|  | #define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1) | 
|  | #define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2) | 
|  | #define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3) | 
|  | #define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4) | 
|  | #define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5) | 
|  | #define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6) | 
|  | #define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7) | 
|  |  | 
|  | #define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0) | 
|  | #define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1) | 
|  | #define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2) | 
|  | #define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3) | 
|  | #define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4) | 
|  | #define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5) | 
|  | #define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6) | 
|  | #define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7) | 
|  |  | 
|  | #define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0) | 
|  | #define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1) | 
|  |  | 
|  | #ifdef CONFIG_MTD_PARTITIONS | 
|  | static const char *part_probes[] = { "cmdlinepart", NULL }; | 
|  | #endif | 
|  |  | 
|  | /* oob info generated runtime depending on ecc algorithm and layout selected */ | 
|  | static struct nand_ecclayout omap_oobinfo; | 
|  | /* Define some generic bad / good block scan pattern which are used | 
|  | * while scanning a device for factory marked good / bad blocks | 
|  | */ | 
|  | static uint8_t scan_ff_pattern[] = { 0xff }; | 
|  | static struct nand_bbt_descr bb_descrip_flashbased = { | 
|  | .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, | 
|  | .offs = 0, | 
|  | .len = 1, | 
|  | .pattern = scan_ff_pattern, | 
|  | }; | 
|  |  | 
|  |  | 
|  | struct omap_nand_info { | 
|  | struct nand_hw_control		controller; | 
|  | struct omap_nand_platform_data	*pdata; | 
|  | struct mtd_info			mtd; | 
|  | struct mtd_partition		*parts; | 
|  | struct nand_chip		nand; | 
|  | struct platform_device		*pdev; | 
|  |  | 
|  | int				gpmc_cs; | 
|  | unsigned long			phys_base; | 
|  | struct completion		comp; | 
|  | int				dma_ch; | 
|  | int				gpmc_irq; | 
|  | enum { | 
|  | OMAP_NAND_IO_READ = 0,	/* read */ | 
|  | OMAP_NAND_IO_WRITE,	/* write */ | 
|  | } iomode; | 
|  | u_char				*buf; | 
|  | int					buf_len; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * omap_hwcontrol - hardware specific access to control-lines | 
|  | * @mtd: MTD device structure | 
|  | * @cmd: command to device | 
|  | * @ctrl: | 
|  | * NAND_NCE: bit 0 -> don't care | 
|  | * NAND_CLE: bit 1 -> Command Latch | 
|  | * NAND_ALE: bit 2 -> Address Latch | 
|  | * | 
|  | * NOTE: boards may use different bits for these!! | 
|  | */ | 
|  | static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  |  | 
|  | if (cmd != NAND_CMD_NONE) { | 
|  | if (ctrl & NAND_CLE) | 
|  | gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd); | 
|  |  | 
|  | else if (ctrl & NAND_ALE) | 
|  | gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd); | 
|  |  | 
|  | else /* NAND_NCE */ | 
|  | gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_buf8 - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct nand_chip *nand = mtd->priv; | 
|  |  | 
|  | ioread8_rep(nand->IO_ADDR_R, buf, len); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_buf8 - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | u_char *p = (u_char *)buf; | 
|  | u32	status = 0; | 
|  |  | 
|  | while (len--) { | 
|  | iowrite8(*p++, info->nand.IO_ADDR_W); | 
|  | /* wait until buffer is available for write */ | 
|  | do { | 
|  | status = gpmc_read_status(GPMC_STATUS_BUFFER); | 
|  | } while (!status); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_buf16 - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct nand_chip *nand = mtd->priv; | 
|  |  | 
|  | ioread16_rep(nand->IO_ADDR_R, buf, len / 2); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_buf16 - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | u16 *p = (u16 *) buf; | 
|  | u32	status = 0; | 
|  | /* FIXME try bursts of writesw() or DMA ... */ | 
|  | len >>= 1; | 
|  |  | 
|  | while (len--) { | 
|  | iowrite16(*p++, info->nand.IO_ADDR_W); | 
|  | /* wait until buffer is available for write */ | 
|  | do { | 
|  | status = gpmc_read_status(GPMC_STATUS_BUFFER); | 
|  | } while (!status); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_buf_pref - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | uint32_t r_count = 0; | 
|  | int ret = 0; | 
|  | u32 *p = (u32 *)buf; | 
|  |  | 
|  | /* take care of subpage reads */ | 
|  | if (len % 4) { | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_read_buf16(mtd, buf, len % 4); | 
|  | else | 
|  | omap_read_buf8(mtd, buf, len % 4); | 
|  | p = (u32 *) (buf + len % 4); | 
|  | len -= len % 4; | 
|  | } | 
|  |  | 
|  | /* configure and start prefetch transfer */ | 
|  | ret = gpmc_prefetch_enable(info->gpmc_cs, | 
|  | PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0); | 
|  | if (ret) { | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_read_buf16(mtd, buf, len); | 
|  | else | 
|  | omap_read_buf8(mtd, buf, len); | 
|  | } else { | 
|  | p = (u32 *) buf; | 
|  | do { | 
|  | r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); | 
|  | r_count = r_count >> 2; | 
|  | ioread32_rep(info->nand.IO_ADDR_R, p, r_count); | 
|  | p += r_count; | 
|  | len -= r_count << 2; | 
|  | } while (len); | 
|  | /* disable and stop the PFPW engine */ | 
|  | gpmc_prefetch_reset(info->gpmc_cs); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_buf_pref - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf_pref(struct mtd_info *mtd, | 
|  | const u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | uint32_t w_count = 0; | 
|  | int i = 0, ret = 0; | 
|  | u16 *p; | 
|  | unsigned long tim, limit; | 
|  |  | 
|  | /* take care of subpage writes */ | 
|  | if (len % 2 != 0) { | 
|  | writeb(*buf, info->nand.IO_ADDR_W); | 
|  | p = (u16 *)(buf + 1); | 
|  | len--; | 
|  | } | 
|  |  | 
|  | /*  configure and start prefetch transfer */ | 
|  | ret = gpmc_prefetch_enable(info->gpmc_cs, | 
|  | PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1); | 
|  | if (ret) { | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_write_buf16(mtd, buf, len); | 
|  | else | 
|  | omap_write_buf8(mtd, buf, len); | 
|  | } else { | 
|  | p = (u16 *) buf; | 
|  | while (len) { | 
|  | w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); | 
|  | w_count = w_count >> 1; | 
|  | for (i = 0; (i < w_count) && len; i++, len -= 2) | 
|  | iowrite16(*p++, info->nand.IO_ADDR_W); | 
|  | } | 
|  | /* wait for data to flushed-out before reset the prefetch */ | 
|  | tim = 0; | 
|  | limit = (loops_per_jiffy * | 
|  | msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); | 
|  | while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit)) | 
|  | cpu_relax(); | 
|  |  | 
|  | /* disable and stop the PFPW engine */ | 
|  | gpmc_prefetch_reset(info->gpmc_cs); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_nand_dma_cb: callback on the completion of dma transfer | 
|  | * @lch: logical channel | 
|  | * @ch_satuts: channel status | 
|  | * @data: pointer to completion data structure | 
|  | */ | 
|  | static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) | 
|  | { | 
|  | complete((struct completion *) data); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_nand_dma_transfer: configer and start dma transfer | 
|  | * @mtd: MTD device structure | 
|  | * @addr: virtual address in RAM of source/destination | 
|  | * @len: number of data bytes to be transferred | 
|  | * @is_write: flag for read/write operation | 
|  | */ | 
|  | static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, | 
|  | unsigned int len, int is_write) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : | 
|  | DMA_FROM_DEVICE; | 
|  | dma_addr_t dma_addr; | 
|  | int ret; | 
|  | unsigned long tim, limit; | 
|  |  | 
|  | /* The fifo depth is 64 bytes max. | 
|  | * But configure the FIFO-threahold to 32 to get a sync at each frame | 
|  | * and frame length is 32 bytes. | 
|  | */ | 
|  | int buf_len = len >> 6; | 
|  |  | 
|  | if (addr >= high_memory) { | 
|  | struct page *p1; | 
|  |  | 
|  | if (((size_t)addr & PAGE_MASK) != | 
|  | ((size_t)(addr + len - 1) & PAGE_MASK)) | 
|  | goto out_copy; | 
|  | p1 = vmalloc_to_page(addr); | 
|  | if (!p1) | 
|  | goto out_copy; | 
|  | addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK); | 
|  | } | 
|  |  | 
|  | dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir); | 
|  | if (dma_mapping_error(&info->pdev->dev, dma_addr)) { | 
|  | dev_err(&info->pdev->dev, | 
|  | "Couldn't DMA map a %d byte buffer\n", len); | 
|  | goto out_copy; | 
|  | } | 
|  |  | 
|  | if (is_write) { | 
|  | omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, | 
|  | info->phys_base, 0, 0); | 
|  | omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, | 
|  | dma_addr, 0, 0); | 
|  | omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, | 
|  | 0x10, buf_len, OMAP_DMA_SYNC_FRAME, | 
|  | OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC); | 
|  | } else { | 
|  | omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, | 
|  | info->phys_base, 0, 0); | 
|  | omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, | 
|  | dma_addr, 0, 0); | 
|  | omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, | 
|  | 0x10, buf_len, OMAP_DMA_SYNC_FRAME, | 
|  | OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC); | 
|  | } | 
|  | /*  configure and start prefetch transfer */ | 
|  | ret = gpmc_prefetch_enable(info->gpmc_cs, | 
|  | PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write); | 
|  | if (ret) | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | goto out_copy; | 
|  |  | 
|  | init_completion(&info->comp); | 
|  |  | 
|  | omap_start_dma(info->dma_ch); | 
|  |  | 
|  | /* setup and start DMA using dma_addr */ | 
|  | wait_for_completion(&info->comp); | 
|  | tim = 0; | 
|  | limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); | 
|  | while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit)) | 
|  | cpu_relax(); | 
|  |  | 
|  | /* disable and stop the PFPW engine */ | 
|  | gpmc_prefetch_reset(info->gpmc_cs); | 
|  |  | 
|  | dma_unmap_single(&info->pdev->dev, dma_addr, len, dir); | 
|  | return 0; | 
|  |  | 
|  | out_copy: | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) | 
|  | : omap_write_buf16(mtd, (u_char *) addr, len); | 
|  | else | 
|  | is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) | 
|  | : omap_write_buf8(mtd, (u_char *) addr, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_buf_dma_pref - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | if (len <= mtd->oobsize) | 
|  | omap_read_buf_pref(mtd, buf, len); | 
|  | else | 
|  | /* start transfer in DMA mode */ | 
|  | omap_nand_dma_transfer(mtd, buf, len, 0x0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_buf_dma_pref - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf_dma_pref(struct mtd_info *mtd, | 
|  | const u_char *buf, int len) | 
|  | { | 
|  | if (len <= mtd->oobsize) | 
|  | omap_write_buf_pref(mtd, buf, len); | 
|  | else | 
|  | /* start transfer in DMA mode */ | 
|  | omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_nand_irq - GMPC irq handler | 
|  | * @this_irq: gpmc irq number | 
|  | * @dev: omap_nand_info structure pointer is passed here | 
|  | */ | 
|  | static irqreturn_t omap_nand_irq(int this_irq, void *dev) | 
|  | { | 
|  | struct omap_nand_info *info = (struct omap_nand_info *) dev; | 
|  | u32 bytes; | 
|  | u32 irq_stat; | 
|  |  | 
|  | irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS); | 
|  | bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); | 
|  | bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */ | 
|  | if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ | 
|  | if (irq_stat & 0x2) | 
|  | goto done; | 
|  |  | 
|  | if (info->buf_len && (info->buf_len < bytes)) | 
|  | bytes = info->buf_len; | 
|  | else if (!info->buf_len) | 
|  | bytes = 0; | 
|  | iowrite32_rep(info->nand.IO_ADDR_W, | 
|  | (u32 *)info->buf, bytes >> 2); | 
|  | info->buf = info->buf + bytes; | 
|  | info->buf_len -= bytes; | 
|  |  | 
|  | } else { | 
|  | ioread32_rep(info->nand.IO_ADDR_R, | 
|  | (u32 *)info->buf, bytes >> 2); | 
|  | info->buf = info->buf + bytes; | 
|  |  | 
|  | if (irq_stat & 0x2) | 
|  | goto done; | 
|  | } | 
|  | gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | done: | 
|  | complete(&info->comp); | 
|  | /* disable irq */ | 
|  | gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0); | 
|  |  | 
|  | /* clear status */ | 
|  | gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_read_buf_irq_pref - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | int ret = 0; | 
|  |  | 
|  | if (len <= mtd->oobsize) { | 
|  | omap_read_buf_pref(mtd, buf, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | info->iomode = OMAP_NAND_IO_READ; | 
|  | info->buf = buf; | 
|  | init_completion(&info->comp); | 
|  |  | 
|  | /*  configure and start prefetch transfer */ | 
|  | ret = gpmc_prefetch_enable(info->gpmc_cs, | 
|  | PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0); | 
|  | if (ret) | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | goto out_copy; | 
|  |  | 
|  | info->buf_len = len; | 
|  | /* enable irq */ | 
|  | gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, | 
|  | (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT)); | 
|  |  | 
|  | /* waiting for read to complete */ | 
|  | wait_for_completion(&info->comp); | 
|  |  | 
|  | /* disable and stop the PFPW engine */ | 
|  | gpmc_prefetch_reset(info->gpmc_cs); | 
|  | return; | 
|  |  | 
|  | out_copy: | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_read_buf16(mtd, buf, len); | 
|  | else | 
|  | omap_read_buf8(mtd, buf, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_write_buf_irq_pref - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf_irq_pref(struct mtd_info *mtd, | 
|  | const u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | int ret = 0; | 
|  | unsigned long tim, limit; | 
|  |  | 
|  | if (len <= mtd->oobsize) { | 
|  | omap_write_buf_pref(mtd, buf, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | info->iomode = OMAP_NAND_IO_WRITE; | 
|  | info->buf = (u_char *) buf; | 
|  | init_completion(&info->comp); | 
|  |  | 
|  | /* configure and start prefetch transfer : size=24 */ | 
|  | ret = gpmc_prefetch_enable(info->gpmc_cs, | 
|  | (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1); | 
|  | if (ret) | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | goto out_copy; | 
|  |  | 
|  | info->buf_len = len; | 
|  | /* enable irq */ | 
|  | gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, | 
|  | (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT)); | 
|  |  | 
|  | /* waiting for write to complete */ | 
|  | wait_for_completion(&info->comp); | 
|  | /* wait for data to flushed-out before reset the prefetch */ | 
|  | tim = 0; | 
|  | limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); | 
|  | while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit)) | 
|  | cpu_relax(); | 
|  |  | 
|  | /* disable and stop the PFPW engine */ | 
|  | gpmc_prefetch_reset(info->gpmc_cs); | 
|  | return; | 
|  |  | 
|  | out_copy: | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_write_buf16(mtd, buf, len); | 
|  | else | 
|  | omap_write_buf8(mtd, buf, len); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_verify_buf - Verify chip data against buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer containing the data to compare | 
|  | * @len: number of bytes to compare | 
|  | */ | 
|  | static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | u16 *p = (u16 *) buf; | 
|  |  | 
|  | len >>= 1; | 
|  | while (len--) { | 
|  | if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * gen_true_ecc - This function will generate true ECC value | 
|  | * @ecc_buf: buffer to store ecc code | 
|  | * | 
|  | * This generated true ECC value can be used when correcting | 
|  | * data read from NAND flash memory core | 
|  | */ | 
|  | static void gen_true_ecc(u8 *ecc_buf) | 
|  | { | 
|  | u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | | 
|  | ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); | 
|  |  | 
|  | ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | | 
|  | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); | 
|  | ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | | 
|  | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); | 
|  | ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | | 
|  | P1e(tmp) | P2048o(tmp) | P2048e(tmp)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data | 
|  | * @ecc_data1:  ecc code from nand spare area | 
|  | * @ecc_data2:  ecc code from hardware register obtained from hardware ecc | 
|  | * @page_data:  page data | 
|  | * | 
|  | * This function compares two ECC's and indicates if there is an error. | 
|  | * If the error can be corrected it will be corrected to the buffer. | 
|  | * If there is no error, %0 is returned. If there is an error but it | 
|  | * was corrected, %1 is returned. Otherwise, %-1 is returned. | 
|  | */ | 
|  | static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */ | 
|  | u8 *ecc_data2,	/* read from register */ | 
|  | u8 *page_data) | 
|  | { | 
|  | uint	i; | 
|  | u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; | 
|  | u8	comp0_bit[8], comp1_bit[8], comp2_bit[8]; | 
|  | u8	ecc_bit[24]; | 
|  | u8	ecc_sum = 0; | 
|  | u8	find_bit = 0; | 
|  | uint	find_byte = 0; | 
|  | int	isEccFF; | 
|  |  | 
|  | isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); | 
|  |  | 
|  | gen_true_ecc(ecc_data1); | 
|  | gen_true_ecc(ecc_data2); | 
|  |  | 
|  | for (i = 0; i <= 2; i++) { | 
|  | *(ecc_data1 + i) = ~(*(ecc_data1 + i)); | 
|  | *(ecc_data2 + i) = ~(*(ecc_data2 + i)); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | tmp0_bit[i]     = *ecc_data1 % 2; | 
|  | *ecc_data1	= *ecc_data1 / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | tmp1_bit[i]	 = *(ecc_data1 + 1) % 2; | 
|  | *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | tmp2_bit[i]	 = *(ecc_data1 + 2) % 2; | 
|  | *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | comp0_bit[i]     = *ecc_data2 % 2; | 
|  | *ecc_data2       = *ecc_data2 / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | comp1_bit[i]     = *(ecc_data2 + 1) % 2; | 
|  | *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | comp2_bit[i]     = *(ecc_data2 + 2) % 2; | 
|  | *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 6; i++) | 
|  | ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; | 
|  |  | 
|  | ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; | 
|  | ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; | 
|  |  | 
|  | for (i = 0; i < 24; i++) | 
|  | ecc_sum += ecc_bit[i]; | 
|  |  | 
|  | switch (ecc_sum) { | 
|  | case 0: | 
|  | /* Not reached because this function is not called if | 
|  | *  ECC values are equal | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | case 1: | 
|  | /* Uncorrectable error */ | 
|  | DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); | 
|  | return -1; | 
|  |  | 
|  | case 11: | 
|  | /* UN-Correctable error */ | 
|  | DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n"); | 
|  | return -1; | 
|  |  | 
|  | case 12: | 
|  | /* Correctable error */ | 
|  | find_byte = (ecc_bit[23] << 8) + | 
|  | (ecc_bit[21] << 7) + | 
|  | (ecc_bit[19] << 6) + | 
|  | (ecc_bit[17] << 5) + | 
|  | (ecc_bit[15] << 4) + | 
|  | (ecc_bit[13] << 3) + | 
|  | (ecc_bit[11] << 2) + | 
|  | (ecc_bit[9]  << 1) + | 
|  | ecc_bit[7]; | 
|  |  | 
|  | find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at " | 
|  | "offset: %d, bit: %d\n", find_byte, find_bit); | 
|  |  | 
|  | page_data[find_byte] ^= (1 << find_bit); | 
|  |  | 
|  | return 1; | 
|  | default: | 
|  | if (isEccFF) { | 
|  | if (ecc_data2[0] == 0 && | 
|  | ecc_data2[1] == 0 && | 
|  | ecc_data2[2] == 0) | 
|  | return 0; | 
|  | } | 
|  | DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_correct_data - Compares the ECC read with HW generated ECC | 
|  | * @mtd: MTD device structure | 
|  | * @dat: page data | 
|  | * @read_ecc: ecc read from nand flash | 
|  | * @calc_ecc: ecc read from HW ECC registers | 
|  | * | 
|  | * Compares the ecc read from nand spare area with ECC registers values | 
|  | * and if ECC's mismatched, it will call 'omap_compare_ecc' for error | 
|  | * detection and correction. If there are no errors, %0 is returned. If | 
|  | * there were errors and all of the errors were corrected, the number of | 
|  | * corrected errors is returned. If uncorrectable errors exist, %-1 is | 
|  | * returned. | 
|  | */ | 
|  | static int omap_correct_data(struct mtd_info *mtd, u_char *dat, | 
|  | u_char *read_ecc, u_char *calc_ecc) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | int blockCnt = 0, i = 0, ret = 0; | 
|  | int stat = 0; | 
|  |  | 
|  | /* Ex NAND_ECC_HW12_2048 */ | 
|  | if ((info->nand.ecc.mode == NAND_ECC_HW) && | 
|  | (info->nand.ecc.size  == 2048)) | 
|  | blockCnt = 4; | 
|  | else | 
|  | blockCnt = 1; | 
|  |  | 
|  | for (i = 0; i < blockCnt; i++) { | 
|  | if (memcmp(read_ecc, calc_ecc, 3) != 0) { | 
|  | ret = omap_compare_ecc(read_ecc, calc_ecc, dat); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | /* keep track of the number of corrected errors */ | 
|  | stat += ret; | 
|  | } | 
|  | read_ecc += 3; | 
|  | calc_ecc += 3; | 
|  | dat      += 512; | 
|  | } | 
|  | return stat; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_calcuate_ecc - Generate non-inverted ECC bytes. | 
|  | * @mtd: MTD device structure | 
|  | * @dat: The pointer to data on which ecc is computed | 
|  | * @ecc_code: The ecc_code buffer | 
|  | * | 
|  | * Using noninverted ECC can be considered ugly since writing a blank | 
|  | * page ie. padding will clear the ECC bytes. This is no problem as long | 
|  | * nobody is trying to write data on the seemingly unused page. Reading | 
|  | * an erased page will produce an ECC mismatch between generated and read | 
|  | * ECC bytes that has to be dealt with separately. | 
|  | */ | 
|  | static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, | 
|  | u_char *ecc_code) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_enable_hwecc - This function enables the hardware ecc functionality | 
|  | * @mtd: MTD device structure | 
|  | * @mode: Read/Write mode | 
|  | */ | 
|  | static void omap_enable_hwecc(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; | 
|  |  | 
|  | gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_wait - wait until the command is done | 
|  | * @mtd: MTD device structure | 
|  | * @chip: NAND Chip structure | 
|  | * | 
|  | * Wait function is called during Program and erase operations and | 
|  | * the way it is called from MTD layer, we should wait till the NAND | 
|  | * chip is ready after the programming/erase operation has completed. | 
|  | * | 
|  | * Erase can take up to 400ms and program up to 20ms according to | 
|  | * general NAND and SmartMedia specs | 
|  | */ | 
|  | static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | unsigned long timeo = jiffies; | 
|  | int status = NAND_STATUS_FAIL, state = this->state; | 
|  |  | 
|  | if (state == FL_ERASING) | 
|  | timeo += (HZ * 400) / 1000; | 
|  | else | 
|  | timeo += (HZ * 20) / 1000; | 
|  |  | 
|  | gpmc_nand_write(info->gpmc_cs, | 
|  | GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF)); | 
|  | while (time_before(jiffies, timeo)) { | 
|  | status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA); | 
|  | if (status & NAND_STATUS_READY) | 
|  | break; | 
|  | cond_resched(); | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_dev_ready - calls the platform specific dev_ready function | 
|  | * @mtd: MTD device structure | 
|  | */ | 
|  | static int omap_dev_ready(struct mtd_info *mtd) | 
|  | { | 
|  | unsigned int val = 0; | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  |  | 
|  | val = gpmc_read_status(GPMC_GET_IRQ_STATUS); | 
|  | if ((val & 0x100) == 0x100) { | 
|  | /* Clear IRQ Interrupt */ | 
|  | val |= 0x100; | 
|  | val &= ~(0x0); | 
|  | gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val); | 
|  | } else { | 
|  | unsigned int cnt = 0; | 
|  | while (cnt++ < 0x1FF) { | 
|  | if  ((val & 0x100) == 0x100) | 
|  | return 0; | 
|  | val = gpmc_read_status(GPMC_GET_IRQ_STATUS); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int __devinit omap_nand_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct omap_nand_info		*info; | 
|  | struct omap_nand_platform_data	*pdata; | 
|  | int				err; | 
|  | int				i, offset; | 
|  |  | 
|  | pdata = pdev->dev.platform_data; | 
|  | if (pdata == NULL) { | 
|  | dev_err(&pdev->dev, "platform data missing\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | platform_set_drvdata(pdev, info); | 
|  |  | 
|  | spin_lock_init(&info->controller.lock); | 
|  | init_waitqueue_head(&info->controller.wq); | 
|  |  | 
|  | info->pdev = pdev; | 
|  |  | 
|  | info->gpmc_cs		= pdata->cs; | 
|  | info->phys_base		= pdata->phys_base; | 
|  |  | 
|  | info->mtd.priv		= &info->nand; | 
|  | info->mtd.name		= dev_name(&pdev->dev); | 
|  | info->mtd.owner		= THIS_MODULE; | 
|  |  | 
|  | info->nand.options	= pdata->devsize; | 
|  | info->nand.options	|= NAND_SKIP_BBTSCAN; | 
|  |  | 
|  | /* NAND write protect off */ | 
|  | gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0); | 
|  |  | 
|  | if (!request_mem_region(info->phys_base, NAND_IO_SIZE, | 
|  | pdev->dev.driver->name)) { | 
|  | err = -EBUSY; | 
|  | goto out_free_info; | 
|  | } | 
|  |  | 
|  | info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE); | 
|  | if (!info->nand.IO_ADDR_R) { | 
|  | err = -ENOMEM; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  |  | 
|  | info->nand.controller = &info->controller; | 
|  |  | 
|  | info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; | 
|  | info->nand.cmd_ctrl  = omap_hwcontrol; | 
|  |  | 
|  | /* | 
|  | * If RDY/BSY line is connected to OMAP then use the omap ready | 
|  | * funcrtion and the generic nand_wait function which reads the status | 
|  | * register after monitoring the RDY/BSY line.Otherwise use a standard | 
|  | * chip delay which is slightly more than tR (AC Timing) of the NAND | 
|  | * device and read status register until you get a failure or success | 
|  | */ | 
|  | if (pdata->dev_ready) { | 
|  | info->nand.dev_ready = omap_dev_ready; | 
|  | info->nand.chip_delay = 0; | 
|  | } else { | 
|  | info->nand.waitfunc = omap_wait; | 
|  | info->nand.chip_delay = 50; | 
|  | } | 
|  |  | 
|  | switch (pdata->xfer_type) { | 
|  | case NAND_OMAP_PREFETCH_POLLED: | 
|  | info->nand.read_buf   = omap_read_buf_pref; | 
|  | info->nand.write_buf  = omap_write_buf_pref; | 
|  | break; | 
|  |  | 
|  | case NAND_OMAP_POLLED: | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) { | 
|  | info->nand.read_buf   = omap_read_buf16; | 
|  | info->nand.write_buf  = omap_write_buf16; | 
|  | } else { | 
|  | info->nand.read_buf   = omap_read_buf8; | 
|  | info->nand.write_buf  = omap_write_buf8; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case NAND_OMAP_PREFETCH_DMA: | 
|  | err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND", | 
|  | omap_nand_dma_cb, &info->comp, &info->dma_ch); | 
|  | if (err < 0) { | 
|  | info->dma_ch = -1; | 
|  | dev_err(&pdev->dev, "DMA request failed!\n"); | 
|  | goto out_release_mem_region; | 
|  | } else { | 
|  | omap_set_dma_dest_burst_mode(info->dma_ch, | 
|  | OMAP_DMA_DATA_BURST_16); | 
|  | omap_set_dma_src_burst_mode(info->dma_ch, | 
|  | OMAP_DMA_DATA_BURST_16); | 
|  |  | 
|  | info->nand.read_buf   = omap_read_buf_dma_pref; | 
|  | info->nand.write_buf  = omap_write_buf_dma_pref; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case NAND_OMAP_PREFETCH_IRQ: | 
|  | err = request_irq(pdata->gpmc_irq, | 
|  | omap_nand_irq, IRQF_SHARED, "gpmc-nand", info); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "requesting irq(%d) error:%d", | 
|  | pdata->gpmc_irq, err); | 
|  | goto out_release_mem_region; | 
|  | } else { | 
|  | info->gpmc_irq	     = pdata->gpmc_irq; | 
|  | info->nand.read_buf  = omap_read_buf_irq_pref; | 
|  | info->nand.write_buf = omap_write_buf_irq_pref; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(&pdev->dev, | 
|  | "xfer_type(%d) not supported!\n", pdata->xfer_type); | 
|  | err = -EINVAL; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  |  | 
|  | info->nand.verify_buf = omap_verify_buf; | 
|  |  | 
|  | /* selsect the ecc type */ | 
|  | if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT) | 
|  | info->nand.ecc.mode = NAND_ECC_SOFT; | 
|  | else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) || | 
|  | (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) { | 
|  | info->nand.ecc.bytes            = 3; | 
|  | info->nand.ecc.size             = 512; | 
|  | info->nand.ecc.calculate        = omap_calculate_ecc; | 
|  | info->nand.ecc.hwctl            = omap_enable_hwecc; | 
|  | info->nand.ecc.correct          = omap_correct_data; | 
|  | info->nand.ecc.mode             = NAND_ECC_HW; | 
|  | } | 
|  |  | 
|  | /* DIP switches on some boards change between 8 and 16 bit | 
|  | * bus widths for flash.  Try the other width if the first try fails. | 
|  | */ | 
|  | if (nand_scan(&info->mtd, 1)) { | 
|  | info->nand.options ^= NAND_BUSWIDTH_16; | 
|  | if (nand_scan(&info->mtd, 1)) { | 
|  | err = -ENXIO; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* rom code layout */ | 
|  | if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) { | 
|  |  | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | offset = 2; | 
|  | else { | 
|  | offset = 1; | 
|  | info->nand.badblock_pattern = &bb_descrip_flashbased; | 
|  | } | 
|  | omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16); | 
|  | for (i = 0; i < omap_oobinfo.eccbytes; i++) | 
|  | omap_oobinfo.eccpos[i] = i+offset; | 
|  |  | 
|  | omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes; | 
|  | omap_oobinfo.oobfree->length = info->mtd.oobsize - | 
|  | (offset + omap_oobinfo.eccbytes); | 
|  |  | 
|  | info->nand.ecc.layout = &omap_oobinfo; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_PARTITIONS | 
|  | err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0); | 
|  | if (err > 0) | 
|  | add_mtd_partitions(&info->mtd, info->parts, err); | 
|  | else if (pdata->parts) | 
|  | add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts); | 
|  | else | 
|  | #endif | 
|  | add_mtd_device(&info->mtd); | 
|  |  | 
|  | platform_set_drvdata(pdev, &info->mtd); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_release_mem_region: | 
|  | release_mem_region(info->phys_base, NAND_IO_SIZE); | 
|  | out_free_info: | 
|  | kfree(info); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int omap_nand_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct mtd_info *mtd = platform_get_drvdata(pdev); | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  |  | 
|  | platform_set_drvdata(pdev, NULL); | 
|  | if (info->dma_ch != -1) | 
|  | omap_free_dma(info->dma_ch); | 
|  |  | 
|  | if (info->gpmc_irq) | 
|  | free_irq(info->gpmc_irq, info); | 
|  |  | 
|  | /* Release NAND device, its internal structures and partitions */ | 
|  | nand_release(&info->mtd); | 
|  | iounmap(info->nand.IO_ADDR_R); | 
|  | kfree(&info->mtd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver omap_nand_driver = { | 
|  | .probe		= omap_nand_probe, | 
|  | .remove		= omap_nand_remove, | 
|  | .driver		= { | 
|  | .name	= DRIVER_NAME, | 
|  | .owner	= THIS_MODULE, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __init omap_nand_init(void) | 
|  | { | 
|  | pr_info("%s driver initializing\n", DRIVER_NAME); | 
|  |  | 
|  | return platform_driver_register(&omap_nand_driver); | 
|  | } | 
|  |  | 
|  | static void __exit omap_nand_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&omap_nand_driver); | 
|  | } | 
|  |  | 
|  | module_init(omap_nand_init); | 
|  | module_exit(omap_nand_exit); | 
|  |  | 
|  | MODULE_ALIAS("platform:" DRIVER_NAME); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); |