| /* Performance event support for sparc64. | 
 |  * | 
 |  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net> | 
 |  * | 
 |  * This code is based almost entirely upon the x86 perf event | 
 |  * code, which is: | 
 |  * | 
 |  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 
 |  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | 
 |  *  Copyright (C) 2009 Jaswinder Singh Rajput | 
 |  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter | 
 |  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra | 
 |  */ | 
 |  | 
 | #include <linux/perf_event.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/mutex.h> | 
 |  | 
 | #include <asm/stacktrace.h> | 
 | #include <asm/cpudata.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/atomic.h> | 
 | #include <asm/nmi.h> | 
 | #include <asm/pcr.h> | 
 | #include <asm/cacheflush.h> | 
 |  | 
 | #include "kernel.h" | 
 | #include "kstack.h" | 
 |  | 
 | /* Two classes of sparc64 chips currently exist.  All of which have | 
 |  * 32-bit counters which can generate overflow interrupts on the | 
 |  * transition from 0xffffffff to 0. | 
 |  * | 
 |  * All chips upto and including SPARC-T3 have two performance | 
 |  * counters.  The two 32-bit counters are accessed in one go using a | 
 |  * single 64-bit register. | 
 |  * | 
 |  * On these older chips both counters are controlled using a single | 
 |  * control register.  The only way to stop all sampling is to clear | 
 |  * all of the context (user, supervisor, hypervisor) sampling enable | 
 |  * bits.  But these bits apply to both counters, thus the two counters | 
 |  * can't be enabled/disabled individually. | 
 |  * | 
 |  * Furthermore, the control register on these older chips have two | 
 |  * event fields, one for each of the two counters.  It's thus nearly | 
 |  * impossible to have one counter going while keeping the other one | 
 |  * stopped.  Therefore it is possible to get overflow interrupts for | 
 |  * counters not currently "in use" and that condition must be checked | 
 |  * in the overflow interrupt handler. | 
 |  * | 
 |  * So we use a hack, in that we program inactive counters with the | 
 |  * "sw_count0" and "sw_count1" events.  These count how many times | 
 |  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an | 
 |  * unusual way to encode a NOP and therefore will not trigger in | 
 |  * normal code. | 
 |  * | 
 |  * Starting with SPARC-T4 we have one control register per counter. | 
 |  * And the counters are stored in individual registers.  The registers | 
 |  * for the counters are 64-bit but only a 32-bit counter is | 
 |  * implemented.  The event selections on SPARC-T4 lack any | 
 |  * restrictions, therefore we can elide all of the complicated | 
 |  * conflict resolution code we have for SPARC-T3 and earlier chips. | 
 |  */ | 
 |  | 
 | #define MAX_HWEVENTS			4 | 
 | #define MAX_PCRS			4 | 
 | #define MAX_PERIOD			((1UL << 32) - 1) | 
 |  | 
 | #define PIC_UPPER_INDEX			0 | 
 | #define PIC_LOWER_INDEX			1 | 
 | #define PIC_NO_INDEX			-1 | 
 |  | 
 | struct cpu_hw_events { | 
 | 	/* Number of events currently scheduled onto this cpu. | 
 | 	 * This tells how many entries in the arrays below | 
 | 	 * are valid. | 
 | 	 */ | 
 | 	int			n_events; | 
 |  | 
 | 	/* Number of new events added since the last hw_perf_disable(). | 
 | 	 * This works because the perf event layer always adds new | 
 | 	 * events inside of a perf_{disable,enable}() sequence. | 
 | 	 */ | 
 | 	int			n_added; | 
 |  | 
 | 	/* Array of events current scheduled on this cpu.  */ | 
 | 	struct perf_event	*event[MAX_HWEVENTS]; | 
 |  | 
 | 	/* Array of encoded longs, specifying the %pcr register | 
 | 	 * encoding and the mask of PIC counters this even can | 
 | 	 * be scheduled on.  See perf_event_encode() et al. | 
 | 	 */ | 
 | 	unsigned long		events[MAX_HWEVENTS]; | 
 |  | 
 | 	/* The current counter index assigned to an event.  When the | 
 | 	 * event hasn't been programmed into the cpu yet, this will | 
 | 	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where | 
 | 	 * we ought to schedule the event. | 
 | 	 */ | 
 | 	int			current_idx[MAX_HWEVENTS]; | 
 |  | 
 | 	/* Software copy of %pcr register(s) on this cpu.  */ | 
 | 	u64			pcr[MAX_HWEVENTS]; | 
 |  | 
 | 	/* Enabled/disable state.  */ | 
 | 	int			enabled; | 
 |  | 
 | 	unsigned int		txn_flags; | 
 | }; | 
 | static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, }; | 
 |  | 
 | /* An event map describes the characteristics of a performance | 
 |  * counter event.  In particular it gives the encoding as well as | 
 |  * a mask telling which counters the event can be measured on. | 
 |  * | 
 |  * The mask is unused on SPARC-T4 and later. | 
 |  */ | 
 | struct perf_event_map { | 
 | 	u16	encoding; | 
 | 	u8	pic_mask; | 
 | #define PIC_NONE	0x00 | 
 | #define PIC_UPPER	0x01 | 
 | #define PIC_LOWER	0x02 | 
 | }; | 
 |  | 
 | /* Encode a perf_event_map entry into a long.  */ | 
 | static unsigned long perf_event_encode(const struct perf_event_map *pmap) | 
 | { | 
 | 	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask; | 
 | } | 
 |  | 
 | static u8 perf_event_get_msk(unsigned long val) | 
 | { | 
 | 	return val & 0xff; | 
 | } | 
 |  | 
 | static u64 perf_event_get_enc(unsigned long val) | 
 | { | 
 | 	return val >> 16; | 
 | } | 
 |  | 
 | #define C(x) PERF_COUNT_HW_CACHE_##x | 
 |  | 
 | #define CACHE_OP_UNSUPPORTED	0xfffe | 
 | #define CACHE_OP_NONSENSE	0xffff | 
 |  | 
 | typedef struct perf_event_map cache_map_t | 
 | 				[PERF_COUNT_HW_CACHE_MAX] | 
 | 				[PERF_COUNT_HW_CACHE_OP_MAX] | 
 | 				[PERF_COUNT_HW_CACHE_RESULT_MAX]; | 
 |  | 
 | struct sparc_pmu { | 
 | 	const struct perf_event_map	*(*event_map)(int); | 
 | 	const cache_map_t		*cache_map; | 
 | 	int				max_events; | 
 | 	u32				(*read_pmc)(int); | 
 | 	void				(*write_pmc)(int, u64); | 
 | 	int				upper_shift; | 
 | 	int				lower_shift; | 
 | 	int				event_mask; | 
 | 	int				user_bit; | 
 | 	int				priv_bit; | 
 | 	int				hv_bit; | 
 | 	int				irq_bit; | 
 | 	int				upper_nop; | 
 | 	int				lower_nop; | 
 | 	unsigned int			flags; | 
 | #define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001 | 
 | #define SPARC_PMU_HAS_CONFLICTS		0x00000002 | 
 | 	int				max_hw_events; | 
 | 	int				num_pcrs; | 
 | 	int				num_pic_regs; | 
 | }; | 
 |  | 
 | static u32 sparc_default_read_pmc(int idx) | 
 | { | 
 | 	u64 val; | 
 |  | 
 | 	val = pcr_ops->read_pic(0); | 
 | 	if (idx == PIC_UPPER_INDEX) | 
 | 		val >>= 32; | 
 |  | 
 | 	return val & 0xffffffff; | 
 | } | 
 |  | 
 | static void sparc_default_write_pmc(int idx, u64 val) | 
 | { | 
 | 	u64 shift, mask, pic; | 
 |  | 
 | 	shift = 0; | 
 | 	if (idx == PIC_UPPER_INDEX) | 
 | 		shift = 32; | 
 |  | 
 | 	mask = ((u64) 0xffffffff) << shift; | 
 | 	val <<= shift; | 
 |  | 
 | 	pic = pcr_ops->read_pic(0); | 
 | 	pic &= ~mask; | 
 | 	pic |= val; | 
 | 	pcr_ops->write_pic(0, pic); | 
 | } | 
 |  | 
 | static const struct perf_event_map ultra3_perfmon_event_map[] = { | 
 | 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER }, | 
 | 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER }, | 
 | 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER }, | 
 | 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER }, | 
 | }; | 
 |  | 
 | static const struct perf_event_map *ultra3_event_map(int event_id) | 
 | { | 
 | 	return &ultra3_perfmon_event_map[event_id]; | 
 | } | 
 |  | 
 | static const cache_map_t ultra3_cache_map = { | 
 | [C(L1D)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, | 
 | 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, | 
 | 	}, | 
 | 	[C(OP_WRITE)] = { | 
 | 		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER }, | 
 | 		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER }, | 
 | 	}, | 
 | 	[C(OP_PREFETCH)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(L1I)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, | 
 | 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(LL)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, }, | 
 | 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, }, | 
 | 	}, | 
 | 	[C(OP_WRITE)] = { | 
 | 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER }, | 
 | 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER }, | 
 | 	}, | 
 | 	[C(OP_PREFETCH)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(DTLB)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(ITLB)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(BPU)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(NODE)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | }; | 
 |  | 
 | static const struct sparc_pmu ultra3_pmu = { | 
 | 	.event_map	= ultra3_event_map, | 
 | 	.cache_map	= &ultra3_cache_map, | 
 | 	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map), | 
 | 	.read_pmc	= sparc_default_read_pmc, | 
 | 	.write_pmc	= sparc_default_write_pmc, | 
 | 	.upper_shift	= 11, | 
 | 	.lower_shift	= 4, | 
 | 	.event_mask	= 0x3f, | 
 | 	.user_bit	= PCR_UTRACE, | 
 | 	.priv_bit	= PCR_STRACE, | 
 | 	.upper_nop	= 0x1c, | 
 | 	.lower_nop	= 0x14, | 
 | 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME | | 
 | 			   SPARC_PMU_HAS_CONFLICTS), | 
 | 	.max_hw_events	= 2, | 
 | 	.num_pcrs	= 1, | 
 | 	.num_pic_regs	= 1, | 
 | }; | 
 |  | 
 | /* Niagara1 is very limited.  The upper PIC is hard-locked to count | 
 |  * only instructions, so it is free running which creates all kinds of | 
 |  * problems.  Some hardware designs make one wonder if the creator | 
 |  * even looked at how this stuff gets used by software. | 
 |  */ | 
 | static const struct perf_event_map niagara1_perfmon_event_map[] = { | 
 | 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER }, | 
 | 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER }, | 
 | 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE }, | 
 | 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER }, | 
 | }; | 
 |  | 
 | static const struct perf_event_map *niagara1_event_map(int event_id) | 
 | { | 
 | 	return &niagara1_perfmon_event_map[event_id]; | 
 | } | 
 |  | 
 | static const cache_map_t niagara1_cache_map = { | 
 | [C(L1D)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, | 
 | 	}, | 
 | 	[C(OP_WRITE)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, | 
 | 	}, | 
 | 	[C(OP_PREFETCH)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(L1I)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER }, | 
 | 		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(LL)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, | 
 | 	}, | 
 | 	[C(OP_WRITE)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, | 
 | 	}, | 
 | 	[C(OP_PREFETCH)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(DTLB)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(ITLB)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(BPU)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(NODE)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | }; | 
 |  | 
 | static const struct sparc_pmu niagara1_pmu = { | 
 | 	.event_map	= niagara1_event_map, | 
 | 	.cache_map	= &niagara1_cache_map, | 
 | 	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map), | 
 | 	.read_pmc	= sparc_default_read_pmc, | 
 | 	.write_pmc	= sparc_default_write_pmc, | 
 | 	.upper_shift	= 0, | 
 | 	.lower_shift	= 4, | 
 | 	.event_mask	= 0x7, | 
 | 	.user_bit	= PCR_UTRACE, | 
 | 	.priv_bit	= PCR_STRACE, | 
 | 	.upper_nop	= 0x0, | 
 | 	.lower_nop	= 0x0, | 
 | 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME | | 
 | 			   SPARC_PMU_HAS_CONFLICTS), | 
 | 	.max_hw_events	= 2, | 
 | 	.num_pcrs	= 1, | 
 | 	.num_pic_regs	= 1, | 
 | }; | 
 |  | 
 | static const struct perf_event_map niagara2_perfmon_event_map[] = { | 
 | 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER }, | 
 | 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER }, | 
 | 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER }, | 
 | 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER }, | 
 | 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER }, | 
 | 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER }, | 
 | }; | 
 |  | 
 | static const struct perf_event_map *niagara2_event_map(int event_id) | 
 | { | 
 | 	return &niagara2_perfmon_event_map[event_id]; | 
 | } | 
 |  | 
 | static const cache_map_t niagara2_cache_map = { | 
 | [C(L1D)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, | 
 | 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, | 
 | 	}, | 
 | 	[C(OP_WRITE)] = { | 
 | 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, | 
 | 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, | 
 | 	}, | 
 | 	[C(OP_PREFETCH)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(L1I)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, }, | 
 | 		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(LL)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, | 
 | 		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, }, | 
 | 	}, | 
 | 	[C(OP_WRITE)] = { | 
 | 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, | 
 | 		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, }, | 
 | 	}, | 
 | 	[C(OP_PREFETCH)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(DTLB)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(ITLB)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(BPU)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(NODE)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | }; | 
 |  | 
 | static const struct sparc_pmu niagara2_pmu = { | 
 | 	.event_map	= niagara2_event_map, | 
 | 	.cache_map	= &niagara2_cache_map, | 
 | 	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map), | 
 | 	.read_pmc	= sparc_default_read_pmc, | 
 | 	.write_pmc	= sparc_default_write_pmc, | 
 | 	.upper_shift	= 19, | 
 | 	.lower_shift	= 6, | 
 | 	.event_mask	= 0xfff, | 
 | 	.user_bit	= PCR_UTRACE, | 
 | 	.priv_bit	= PCR_STRACE, | 
 | 	.hv_bit		= PCR_N2_HTRACE, | 
 | 	.irq_bit	= 0x30, | 
 | 	.upper_nop	= 0x220, | 
 | 	.lower_nop	= 0x220, | 
 | 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME | | 
 | 			   SPARC_PMU_HAS_CONFLICTS), | 
 | 	.max_hw_events	= 2, | 
 | 	.num_pcrs	= 1, | 
 | 	.num_pic_regs	= 1, | 
 | }; | 
 |  | 
 | static const struct perf_event_map niagara4_perfmon_event_map[] = { | 
 | 	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) }, | 
 | 	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f }, | 
 | 	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 }, | 
 | 	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 }, | 
 | 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 }, | 
 | 	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f }, | 
 | }; | 
 |  | 
 | static const struct perf_event_map *niagara4_event_map(int event_id) | 
 | { | 
 | 	return &niagara4_perfmon_event_map[event_id]; | 
 | } | 
 |  | 
 | static const cache_map_t niagara4_cache_map = { | 
 | [C(L1D)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 }, | 
 | 		[C(RESULT_MISS)] = { (16 << 6) | 0x07 }, | 
 | 	}, | 
 | 	[C(OP_WRITE)] = { | 
 | 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 }, | 
 | 		[C(RESULT_MISS)] = { (16 << 6) | 0x07 }, | 
 | 	}, | 
 | 	[C(OP_PREFETCH)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(L1I)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f }, | 
 | 		[C(RESULT_MISS)] = { (11 << 6) | 0x03 }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(LL)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[C(OP_WRITE)] = { | 
 | 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[C(OP_PREFETCH)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(DTLB)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { (17 << 6) | 0x3f }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(ITLB)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { (6 << 6) | 0x3f }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(BPU)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | [C(NODE)] = { | 
 | 	[C(OP_READ)] = { | 
 | 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_WRITE) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | 	[ C(OP_PREFETCH) ] = { | 
 | 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
 | 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
 | 	}, | 
 | }, | 
 | }; | 
 |  | 
 | static u32 sparc_vt_read_pmc(int idx) | 
 | { | 
 | 	u64 val = pcr_ops->read_pic(idx); | 
 |  | 
 | 	return val & 0xffffffff; | 
 | } | 
 |  | 
 | static void sparc_vt_write_pmc(int idx, u64 val) | 
 | { | 
 | 	u64 pcr; | 
 |  | 
 | 	pcr = pcr_ops->read_pcr(idx); | 
 | 	/* ensure ov and ntc are reset */ | 
 | 	pcr &= ~(PCR_N4_OV | PCR_N4_NTC); | 
 |  | 
 | 	pcr_ops->write_pic(idx, val & 0xffffffff); | 
 |  | 
 | 	pcr_ops->write_pcr(idx, pcr); | 
 | } | 
 |  | 
 | static const struct sparc_pmu niagara4_pmu = { | 
 | 	.event_map	= niagara4_event_map, | 
 | 	.cache_map	= &niagara4_cache_map, | 
 | 	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map), | 
 | 	.read_pmc	= sparc_vt_read_pmc, | 
 | 	.write_pmc	= sparc_vt_write_pmc, | 
 | 	.upper_shift	= 5, | 
 | 	.lower_shift	= 5, | 
 | 	.event_mask	= 0x7ff, | 
 | 	.user_bit	= PCR_N4_UTRACE, | 
 | 	.priv_bit	= PCR_N4_STRACE, | 
 |  | 
 | 	/* We explicitly don't support hypervisor tracing.  The T4 | 
 | 	 * generates the overflow event for precise events via a trap | 
 | 	 * which will not be generated (ie. it's completely lost) if | 
 | 	 * we happen to be in the hypervisor when the event triggers. | 
 | 	 * Essentially, the overflow event reporting is completely | 
 | 	 * unusable when you have hypervisor mode tracing enabled. | 
 | 	 */ | 
 | 	.hv_bit		= 0, | 
 |  | 
 | 	.irq_bit	= PCR_N4_TOE, | 
 | 	.upper_nop	= 0, | 
 | 	.lower_nop	= 0, | 
 | 	.flags		= 0, | 
 | 	.max_hw_events	= 4, | 
 | 	.num_pcrs	= 4, | 
 | 	.num_pic_regs	= 4, | 
 | }; | 
 |  | 
 | static const struct sparc_pmu sparc_m7_pmu = { | 
 | 	.event_map	= niagara4_event_map, | 
 | 	.cache_map	= &niagara4_cache_map, | 
 | 	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map), | 
 | 	.read_pmc	= sparc_vt_read_pmc, | 
 | 	.write_pmc	= sparc_vt_write_pmc, | 
 | 	.upper_shift	= 5, | 
 | 	.lower_shift	= 5, | 
 | 	.event_mask	= 0x7ff, | 
 | 	.user_bit	= PCR_N4_UTRACE, | 
 | 	.priv_bit	= PCR_N4_STRACE, | 
 |  | 
 | 	/* We explicitly don't support hypervisor tracing. */ | 
 | 	.hv_bit		= 0, | 
 |  | 
 | 	.irq_bit	= PCR_N4_TOE, | 
 | 	.upper_nop	= 0, | 
 | 	.lower_nop	= 0, | 
 | 	.flags		= 0, | 
 | 	.max_hw_events	= 4, | 
 | 	.num_pcrs	= 4, | 
 | 	.num_pic_regs	= 4, | 
 | }; | 
 | static const struct sparc_pmu *sparc_pmu __read_mostly; | 
 |  | 
 | static u64 event_encoding(u64 event_id, int idx) | 
 | { | 
 | 	if (idx == PIC_UPPER_INDEX) | 
 | 		event_id <<= sparc_pmu->upper_shift; | 
 | 	else | 
 | 		event_id <<= sparc_pmu->lower_shift; | 
 | 	return event_id; | 
 | } | 
 |  | 
 | static u64 mask_for_index(int idx) | 
 | { | 
 | 	return event_encoding(sparc_pmu->event_mask, idx); | 
 | } | 
 |  | 
 | static u64 nop_for_index(int idx) | 
 | { | 
 | 	return event_encoding(idx == PIC_UPPER_INDEX ? | 
 | 			      sparc_pmu->upper_nop : | 
 | 			      sparc_pmu->lower_nop, idx); | 
 | } | 
 |  | 
 | static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) | 
 | { | 
 | 	u64 enc, val, mask = mask_for_index(idx); | 
 | 	int pcr_index = 0; | 
 |  | 
 | 	if (sparc_pmu->num_pcrs > 1) | 
 | 		pcr_index = idx; | 
 |  | 
 | 	enc = perf_event_get_enc(cpuc->events[idx]); | 
 |  | 
 | 	val = cpuc->pcr[pcr_index]; | 
 | 	val &= ~mask; | 
 | 	val |= event_encoding(enc, idx); | 
 | 	cpuc->pcr[pcr_index] = val; | 
 |  | 
 | 	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]); | 
 | } | 
 |  | 
 | static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) | 
 | { | 
 | 	u64 mask = mask_for_index(idx); | 
 | 	u64 nop = nop_for_index(idx); | 
 | 	int pcr_index = 0; | 
 | 	u64 val; | 
 |  | 
 | 	if (sparc_pmu->num_pcrs > 1) | 
 | 		pcr_index = idx; | 
 |  | 
 | 	val = cpuc->pcr[pcr_index]; | 
 | 	val &= ~mask; | 
 | 	val |= nop; | 
 | 	cpuc->pcr[pcr_index] = val; | 
 |  | 
 | 	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]); | 
 | } | 
 |  | 
 | static u64 sparc_perf_event_update(struct perf_event *event, | 
 | 				   struct hw_perf_event *hwc, int idx) | 
 | { | 
 | 	int shift = 64 - 32; | 
 | 	u64 prev_raw_count, new_raw_count; | 
 | 	s64 delta; | 
 |  | 
 | again: | 
 | 	prev_raw_count = local64_read(&hwc->prev_count); | 
 | 	new_raw_count = sparc_pmu->read_pmc(idx); | 
 |  | 
 | 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, | 
 | 			     new_raw_count) != prev_raw_count) | 
 | 		goto again; | 
 |  | 
 | 	delta = (new_raw_count << shift) - (prev_raw_count << shift); | 
 | 	delta >>= shift; | 
 |  | 
 | 	local64_add(delta, &event->count); | 
 | 	local64_sub(delta, &hwc->period_left); | 
 |  | 
 | 	return new_raw_count; | 
 | } | 
 |  | 
 | static int sparc_perf_event_set_period(struct perf_event *event, | 
 | 				       struct hw_perf_event *hwc, int idx) | 
 | { | 
 | 	s64 left = local64_read(&hwc->period_left); | 
 | 	s64 period = hwc->sample_period; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (unlikely(left <= -period)) { | 
 | 		left = period; | 
 | 		local64_set(&hwc->period_left, left); | 
 | 		hwc->last_period = period; | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | 	if (unlikely(left <= 0)) { | 
 | 		left += period; | 
 | 		local64_set(&hwc->period_left, left); | 
 | 		hwc->last_period = period; | 
 | 		ret = 1; | 
 | 	} | 
 | 	if (left > MAX_PERIOD) | 
 | 		left = MAX_PERIOD; | 
 |  | 
 | 	local64_set(&hwc->prev_count, (u64)-left); | 
 |  | 
 | 	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff); | 
 |  | 
 | 	perf_event_update_userpage(event); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void read_in_all_counters(struct cpu_hw_events *cpuc) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < cpuc->n_events; i++) { | 
 | 		struct perf_event *cp = cpuc->event[i]; | 
 |  | 
 | 		if (cpuc->current_idx[i] != PIC_NO_INDEX && | 
 | 		    cpuc->current_idx[i] != cp->hw.idx) { | 
 | 			sparc_perf_event_update(cp, &cp->hw, | 
 | 						cpuc->current_idx[i]); | 
 | 			cpuc->current_idx[i] = PIC_NO_INDEX; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* On this PMU all PICs are programmed using a single PCR.  Calculate | 
 |  * the combined control register value. | 
 |  * | 
 |  * For such chips we require that all of the events have the same | 
 |  * configuration, so just fetch the settings from the first entry. | 
 |  */ | 
 | static void calculate_single_pcr(struct cpu_hw_events *cpuc) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!cpuc->n_added) | 
 | 		goto out; | 
 |  | 
 | 	/* Assign to counters all unassigned events.  */ | 
 | 	for (i = 0; i < cpuc->n_events; i++) { | 
 | 		struct perf_event *cp = cpuc->event[i]; | 
 | 		struct hw_perf_event *hwc = &cp->hw; | 
 | 		int idx = hwc->idx; | 
 | 		u64 enc; | 
 |  | 
 | 		if (cpuc->current_idx[i] != PIC_NO_INDEX) | 
 | 			continue; | 
 |  | 
 | 		sparc_perf_event_set_period(cp, hwc, idx); | 
 | 		cpuc->current_idx[i] = idx; | 
 |  | 
 | 		enc = perf_event_get_enc(cpuc->events[i]); | 
 | 		cpuc->pcr[0] &= ~mask_for_index(idx); | 
 | 		if (hwc->state & PERF_HES_STOPPED) | 
 | 			cpuc->pcr[0] |= nop_for_index(idx); | 
 | 		else | 
 | 			cpuc->pcr[0] |= event_encoding(enc, idx); | 
 | 	} | 
 | out: | 
 | 	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base; | 
 | } | 
 |  | 
 | static void sparc_pmu_start(struct perf_event *event, int flags); | 
 |  | 
 | /* On this PMU each PIC has it's own PCR control register.  */ | 
 | static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!cpuc->n_added) | 
 | 		goto out; | 
 |  | 
 | 	for (i = 0; i < cpuc->n_events; i++) { | 
 | 		struct perf_event *cp = cpuc->event[i]; | 
 | 		struct hw_perf_event *hwc = &cp->hw; | 
 | 		int idx = hwc->idx; | 
 |  | 
 | 		if (cpuc->current_idx[i] != PIC_NO_INDEX) | 
 | 			continue; | 
 |  | 
 | 		cpuc->current_idx[i] = idx; | 
 |  | 
 | 		sparc_pmu_start(cp, PERF_EF_RELOAD); | 
 | 	} | 
 | out: | 
 | 	for (i = 0; i < cpuc->n_events; i++) { | 
 | 		struct perf_event *cp = cpuc->event[i]; | 
 | 		int idx = cp->hw.idx; | 
 |  | 
 | 		cpuc->pcr[idx] |= cp->hw.config_base; | 
 | 	} | 
 | } | 
 |  | 
 | /* If performance event entries have been added, move existing events | 
 |  * around (if necessary) and then assign new entries to counters. | 
 |  */ | 
 | static void update_pcrs_for_enable(struct cpu_hw_events *cpuc) | 
 | { | 
 | 	if (cpuc->n_added) | 
 | 		read_in_all_counters(cpuc); | 
 |  | 
 | 	if (sparc_pmu->num_pcrs == 1) { | 
 | 		calculate_single_pcr(cpuc); | 
 | 	} else { | 
 | 		calculate_multiple_pcrs(cpuc); | 
 | 	} | 
 | } | 
 |  | 
 | static void sparc_pmu_enable(struct pmu *pmu) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	int i; | 
 |  | 
 | 	if (cpuc->enabled) | 
 | 		return; | 
 |  | 
 | 	cpuc->enabled = 1; | 
 | 	barrier(); | 
 |  | 
 | 	if (cpuc->n_events) | 
 | 		update_pcrs_for_enable(cpuc); | 
 |  | 
 | 	for (i = 0; i < sparc_pmu->num_pcrs; i++) | 
 | 		pcr_ops->write_pcr(i, cpuc->pcr[i]); | 
 | } | 
 |  | 
 | static void sparc_pmu_disable(struct pmu *pmu) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	int i; | 
 |  | 
 | 	if (!cpuc->enabled) | 
 | 		return; | 
 |  | 
 | 	cpuc->enabled = 0; | 
 | 	cpuc->n_added = 0; | 
 |  | 
 | 	for (i = 0; i < sparc_pmu->num_pcrs; i++) { | 
 | 		u64 val = cpuc->pcr[i]; | 
 |  | 
 | 		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit | | 
 | 			 sparc_pmu->hv_bit | sparc_pmu->irq_bit); | 
 | 		cpuc->pcr[i] = val; | 
 | 		pcr_ops->write_pcr(i, cpuc->pcr[i]); | 
 | 	} | 
 | } | 
 |  | 
 | static int active_event_index(struct cpu_hw_events *cpuc, | 
 | 			      struct perf_event *event) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < cpuc->n_events; i++) { | 
 | 		if (cpuc->event[i] == event) | 
 | 			break; | 
 | 	} | 
 | 	BUG_ON(i == cpuc->n_events); | 
 | 	return cpuc->current_idx[i]; | 
 | } | 
 |  | 
 | static void sparc_pmu_start(struct perf_event *event, int flags) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	int idx = active_event_index(cpuc, event); | 
 |  | 
 | 	if (flags & PERF_EF_RELOAD) { | 
 | 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); | 
 | 		sparc_perf_event_set_period(event, &event->hw, idx); | 
 | 	} | 
 |  | 
 | 	event->hw.state = 0; | 
 |  | 
 | 	sparc_pmu_enable_event(cpuc, &event->hw, idx); | 
 | } | 
 |  | 
 | static void sparc_pmu_stop(struct perf_event *event, int flags) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	int idx = active_event_index(cpuc, event); | 
 |  | 
 | 	if (!(event->hw.state & PERF_HES_STOPPED)) { | 
 | 		sparc_pmu_disable_event(cpuc, &event->hw, idx); | 
 | 		event->hw.state |= PERF_HES_STOPPED; | 
 | 	} | 
 |  | 
 | 	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) { | 
 | 		sparc_perf_event_update(event, &event->hw, idx); | 
 | 		event->hw.state |= PERF_HES_UPTODATE; | 
 | 	} | 
 | } | 
 |  | 
 | static void sparc_pmu_del(struct perf_event *event, int _flags) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	unsigned long flags; | 
 | 	int i; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	for (i = 0; i < cpuc->n_events; i++) { | 
 | 		if (event == cpuc->event[i]) { | 
 | 			/* Absorb the final count and turn off the | 
 | 			 * event. | 
 | 			 */ | 
 | 			sparc_pmu_stop(event, PERF_EF_UPDATE); | 
 |  | 
 | 			/* Shift remaining entries down into | 
 | 			 * the existing slot. | 
 | 			 */ | 
 | 			while (++i < cpuc->n_events) { | 
 | 				cpuc->event[i - 1] = cpuc->event[i]; | 
 | 				cpuc->events[i - 1] = cpuc->events[i]; | 
 | 				cpuc->current_idx[i - 1] = | 
 | 					cpuc->current_idx[i]; | 
 | 			} | 
 |  | 
 | 			perf_event_update_userpage(event); | 
 |  | 
 | 			cpuc->n_events--; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static void sparc_pmu_read(struct perf_event *event) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	int idx = active_event_index(cpuc, event); | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	sparc_perf_event_update(event, hwc, idx); | 
 | } | 
 |  | 
 | static atomic_t active_events = ATOMIC_INIT(0); | 
 | static DEFINE_MUTEX(pmc_grab_mutex); | 
 |  | 
 | static void perf_stop_nmi_watchdog(void *unused) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	int i; | 
 |  | 
 | 	stop_nmi_watchdog(NULL); | 
 | 	for (i = 0; i < sparc_pmu->num_pcrs; i++) | 
 | 		cpuc->pcr[i] = pcr_ops->read_pcr(i); | 
 | } | 
 |  | 
 | static void perf_event_grab_pmc(void) | 
 | { | 
 | 	if (atomic_inc_not_zero(&active_events)) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&pmc_grab_mutex); | 
 | 	if (atomic_read(&active_events) == 0) { | 
 | 		if (atomic_read(&nmi_active) > 0) { | 
 | 			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1); | 
 | 			BUG_ON(atomic_read(&nmi_active) != 0); | 
 | 		} | 
 | 		atomic_inc(&active_events); | 
 | 	} | 
 | 	mutex_unlock(&pmc_grab_mutex); | 
 | } | 
 |  | 
 | static void perf_event_release_pmc(void) | 
 | { | 
 | 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) { | 
 | 		if (atomic_read(&nmi_active) == 0) | 
 | 			on_each_cpu(start_nmi_watchdog, NULL, 1); | 
 | 		mutex_unlock(&pmc_grab_mutex); | 
 | 	} | 
 | } | 
 |  | 
 | static const struct perf_event_map *sparc_map_cache_event(u64 config) | 
 | { | 
 | 	unsigned int cache_type, cache_op, cache_result; | 
 | 	const struct perf_event_map *pmap; | 
 |  | 
 | 	if (!sparc_pmu->cache_map) | 
 | 		return ERR_PTR(-ENOENT); | 
 |  | 
 | 	cache_type = (config >>  0) & 0xff; | 
 | 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	cache_op = (config >>  8) & 0xff; | 
 | 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	cache_result = (config >> 16) & 0xff; | 
 | 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]); | 
 |  | 
 | 	if (pmap->encoding == CACHE_OP_UNSUPPORTED) | 
 | 		return ERR_PTR(-ENOENT); | 
 |  | 
 | 	if (pmap->encoding == CACHE_OP_NONSENSE) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	return pmap; | 
 | } | 
 |  | 
 | static void hw_perf_event_destroy(struct perf_event *event) | 
 | { | 
 | 	perf_event_release_pmc(); | 
 | } | 
 |  | 
 | /* Make sure all events can be scheduled into the hardware at | 
 |  * the same time.  This is simplified by the fact that we only | 
 |  * need to support 2 simultaneous HW events. | 
 |  * | 
 |  * As a side effect, the evts[]->hw.idx values will be assigned | 
 |  * on success.  These are pending indexes.  When the events are | 
 |  * actually programmed into the chip, these values will propagate | 
 |  * to the per-cpu cpuc->current_idx[] slots, see the code in | 
 |  * maybe_change_configuration() for details. | 
 |  */ | 
 | static int sparc_check_constraints(struct perf_event **evts, | 
 | 				   unsigned long *events, int n_ev) | 
 | { | 
 | 	u8 msk0 = 0, msk1 = 0; | 
 | 	int idx0 = 0; | 
 |  | 
 | 	/* This case is possible when we are invoked from | 
 | 	 * hw_perf_group_sched_in(). | 
 | 	 */ | 
 | 	if (!n_ev) | 
 | 		return 0; | 
 |  | 
 | 	if (n_ev > sparc_pmu->max_hw_events) | 
 | 		return -1; | 
 |  | 
 | 	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < n_ev; i++) | 
 | 			evts[i]->hw.idx = i; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	msk0 = perf_event_get_msk(events[0]); | 
 | 	if (n_ev == 1) { | 
 | 		if (msk0 & PIC_LOWER) | 
 | 			idx0 = 1; | 
 | 		goto success; | 
 | 	} | 
 | 	BUG_ON(n_ev != 2); | 
 | 	msk1 = perf_event_get_msk(events[1]); | 
 |  | 
 | 	/* If both events can go on any counter, OK.  */ | 
 | 	if (msk0 == (PIC_UPPER | PIC_LOWER) && | 
 | 	    msk1 == (PIC_UPPER | PIC_LOWER)) | 
 | 		goto success; | 
 |  | 
 | 	/* If one event is limited to a specific counter, | 
 | 	 * and the other can go on both, OK. | 
 | 	 */ | 
 | 	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) && | 
 | 	    msk1 == (PIC_UPPER | PIC_LOWER)) { | 
 | 		if (msk0 & PIC_LOWER) | 
 | 			idx0 = 1; | 
 | 		goto success; | 
 | 	} | 
 |  | 
 | 	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) && | 
 | 	    msk0 == (PIC_UPPER | PIC_LOWER)) { | 
 | 		if (msk1 & PIC_UPPER) | 
 | 			idx0 = 1; | 
 | 		goto success; | 
 | 	} | 
 |  | 
 | 	/* If the events are fixed to different counters, OK.  */ | 
 | 	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) || | 
 | 	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) { | 
 | 		if (msk0 & PIC_LOWER) | 
 | 			idx0 = 1; | 
 | 		goto success; | 
 | 	} | 
 |  | 
 | 	/* Otherwise, there is a conflict.  */ | 
 | 	return -1; | 
 |  | 
 | success: | 
 | 	evts[0]->hw.idx = idx0; | 
 | 	if (n_ev == 2) | 
 | 		evts[1]->hw.idx = idx0 ^ 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_excludes(struct perf_event **evts, int n_prev, int n_new) | 
 | { | 
 | 	int eu = 0, ek = 0, eh = 0; | 
 | 	struct perf_event *event; | 
 | 	int i, n, first; | 
 |  | 
 | 	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME)) | 
 | 		return 0; | 
 |  | 
 | 	n = n_prev + n_new; | 
 | 	if (n <= 1) | 
 | 		return 0; | 
 |  | 
 | 	first = 1; | 
 | 	for (i = 0; i < n; i++) { | 
 | 		event = evts[i]; | 
 | 		if (first) { | 
 | 			eu = event->attr.exclude_user; | 
 | 			ek = event->attr.exclude_kernel; | 
 | 			eh = event->attr.exclude_hv; | 
 | 			first = 0; | 
 | 		} else if (event->attr.exclude_user != eu || | 
 | 			   event->attr.exclude_kernel != ek || | 
 | 			   event->attr.exclude_hv != eh) { | 
 | 			return -EAGAIN; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int collect_events(struct perf_event *group, int max_count, | 
 | 			  struct perf_event *evts[], unsigned long *events, | 
 | 			  int *current_idx) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	int n = 0; | 
 |  | 
 | 	if (!is_software_event(group)) { | 
 | 		if (n >= max_count) | 
 | 			return -1; | 
 | 		evts[n] = group; | 
 | 		events[n] = group->hw.event_base; | 
 | 		current_idx[n++] = PIC_NO_INDEX; | 
 | 	} | 
 | 	list_for_each_entry(event, &group->sibling_list, group_entry) { | 
 | 		if (!is_software_event(event) && | 
 | 		    event->state != PERF_EVENT_STATE_OFF) { | 
 | 			if (n >= max_count) | 
 | 				return -1; | 
 | 			evts[n] = event; | 
 | 			events[n] = event->hw.event_base; | 
 | 			current_idx[n++] = PIC_NO_INDEX; | 
 | 		} | 
 | 	} | 
 | 	return n; | 
 | } | 
 |  | 
 | static int sparc_pmu_add(struct perf_event *event, int ef_flags) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	int n0, ret = -EAGAIN; | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	n0 = cpuc->n_events; | 
 | 	if (n0 >= sparc_pmu->max_hw_events) | 
 | 		goto out; | 
 |  | 
 | 	cpuc->event[n0] = event; | 
 | 	cpuc->events[n0] = event->hw.event_base; | 
 | 	cpuc->current_idx[n0] = PIC_NO_INDEX; | 
 |  | 
 | 	event->hw.state = PERF_HES_UPTODATE; | 
 | 	if (!(ef_flags & PERF_EF_START)) | 
 | 		event->hw.state |= PERF_HES_STOPPED; | 
 |  | 
 | 	/* | 
 | 	 * If group events scheduling transaction was started, | 
 | 	 * skip the schedulability test here, it will be performed | 
 | 	 * at commit time(->commit_txn) as a whole | 
 | 	 */ | 
 | 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD) | 
 | 		goto nocheck; | 
 |  | 
 | 	if (check_excludes(cpuc->event, n0, 1)) | 
 | 		goto out; | 
 | 	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1)) | 
 | 		goto out; | 
 |  | 
 | nocheck: | 
 | 	cpuc->n_events++; | 
 | 	cpuc->n_added++; | 
 |  | 
 | 	ret = 0; | 
 | out: | 
 | 	local_irq_restore(flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sparc_pmu_event_init(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_attr *attr = &event->attr; | 
 | 	struct perf_event *evts[MAX_HWEVENTS]; | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	unsigned long events[MAX_HWEVENTS]; | 
 | 	int current_idx_dmy[MAX_HWEVENTS]; | 
 | 	const struct perf_event_map *pmap; | 
 | 	int n; | 
 |  | 
 | 	if (atomic_read(&nmi_active) < 0) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* does not support taken branch sampling */ | 
 | 	if (has_branch_stack(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	switch (attr->type) { | 
 | 	case PERF_TYPE_HARDWARE: | 
 | 		if (attr->config >= sparc_pmu->max_events) | 
 | 			return -EINVAL; | 
 | 		pmap = sparc_pmu->event_map(attr->config); | 
 | 		break; | 
 |  | 
 | 	case PERF_TYPE_HW_CACHE: | 
 | 		pmap = sparc_map_cache_event(attr->config); | 
 | 		if (IS_ERR(pmap)) | 
 | 			return PTR_ERR(pmap); | 
 | 		break; | 
 |  | 
 | 	case PERF_TYPE_RAW: | 
 | 		pmap = NULL; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return -ENOENT; | 
 |  | 
 | 	} | 
 |  | 
 | 	if (pmap) { | 
 | 		hwc->event_base = perf_event_encode(pmap); | 
 | 	} else { | 
 | 		/* | 
 | 		 * User gives us "(encoding << 16) | pic_mask" for | 
 | 		 * PERF_TYPE_RAW events. | 
 | 		 */ | 
 | 		hwc->event_base = attr->config; | 
 | 	} | 
 |  | 
 | 	/* We save the enable bits in the config_base.  */ | 
 | 	hwc->config_base = sparc_pmu->irq_bit; | 
 | 	if (!attr->exclude_user) | 
 | 		hwc->config_base |= sparc_pmu->user_bit; | 
 | 	if (!attr->exclude_kernel) | 
 | 		hwc->config_base |= sparc_pmu->priv_bit; | 
 | 	if (!attr->exclude_hv) | 
 | 		hwc->config_base |= sparc_pmu->hv_bit; | 
 |  | 
 | 	n = 0; | 
 | 	if (event->group_leader != event) { | 
 | 		n = collect_events(event->group_leader, | 
 | 				   sparc_pmu->max_hw_events - 1, | 
 | 				   evts, events, current_idx_dmy); | 
 | 		if (n < 0) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	events[n] = hwc->event_base; | 
 | 	evts[n] = event; | 
 |  | 
 | 	if (check_excludes(evts, n, 1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (sparc_check_constraints(evts, events, n + 1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	hwc->idx = PIC_NO_INDEX; | 
 |  | 
 | 	/* Try to do all error checking before this point, as unwinding | 
 | 	 * state after grabbing the PMC is difficult. | 
 | 	 */ | 
 | 	perf_event_grab_pmc(); | 
 | 	event->destroy = hw_perf_event_destroy; | 
 |  | 
 | 	if (!hwc->sample_period) { | 
 | 		hwc->sample_period = MAX_PERIOD; | 
 | 		hwc->last_period = hwc->sample_period; | 
 | 		local64_set(&hwc->period_left, hwc->sample_period); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Start group events scheduling transaction | 
 |  * Set the flag to make pmu::enable() not perform the | 
 |  * schedulability test, it will be performed at commit time | 
 |  */ | 
 | static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) | 
 | { | 
 | 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 |  | 
 | 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */ | 
 |  | 
 | 	cpuhw->txn_flags = txn_flags; | 
 | 	if (txn_flags & ~PERF_PMU_TXN_ADD) | 
 | 		return; | 
 |  | 
 | 	perf_pmu_disable(pmu); | 
 | } | 
 |  | 
 | /* | 
 |  * Stop group events scheduling transaction | 
 |  * Clear the flag and pmu::enable() will perform the | 
 |  * schedulability test. | 
 |  */ | 
 | static void sparc_pmu_cancel_txn(struct pmu *pmu) | 
 | { | 
 | 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); | 
 | 	unsigned int txn_flags; | 
 |  | 
 | 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */ | 
 |  | 
 | 	txn_flags = cpuhw->txn_flags; | 
 | 	cpuhw->txn_flags = 0; | 
 | 	if (txn_flags & ~PERF_PMU_TXN_ADD) | 
 | 		return; | 
 |  | 
 | 	perf_pmu_enable(pmu); | 
 | } | 
 |  | 
 | /* | 
 |  * Commit group events scheduling transaction | 
 |  * Perform the group schedulability test as a whole | 
 |  * Return 0 if success | 
 |  */ | 
 | static int sparc_pmu_commit_txn(struct pmu *pmu) | 
 | { | 
 | 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); | 
 | 	int n; | 
 |  | 
 | 	if (!sparc_pmu) | 
 | 		return -EINVAL; | 
 |  | 
 | 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */ | 
 |  | 
 | 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { | 
 | 		cpuc->txn_flags = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	n = cpuc->n_events; | 
 | 	if (check_excludes(cpuc->event, 0, n)) | 
 | 		return -EINVAL; | 
 | 	if (sparc_check_constraints(cpuc->event, cpuc->events, n)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	cpuc->txn_flags = 0; | 
 | 	perf_pmu_enable(pmu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct pmu pmu = { | 
 | 	.pmu_enable	= sparc_pmu_enable, | 
 | 	.pmu_disable	= sparc_pmu_disable, | 
 | 	.event_init	= sparc_pmu_event_init, | 
 | 	.add		= sparc_pmu_add, | 
 | 	.del		= sparc_pmu_del, | 
 | 	.start		= sparc_pmu_start, | 
 | 	.stop		= sparc_pmu_stop, | 
 | 	.read		= sparc_pmu_read, | 
 | 	.start_txn	= sparc_pmu_start_txn, | 
 | 	.cancel_txn	= sparc_pmu_cancel_txn, | 
 | 	.commit_txn	= sparc_pmu_commit_txn, | 
 | }; | 
 |  | 
 | void perf_event_print_debug(void) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int cpu, i; | 
 |  | 
 | 	if (!sparc_pmu) | 
 | 		return; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	cpu = smp_processor_id(); | 
 |  | 
 | 	pr_info("\n"); | 
 | 	for (i = 0; i < sparc_pmu->num_pcrs; i++) | 
 | 		pr_info("CPU#%d: PCR%d[%016llx]\n", | 
 | 			cpu, i, pcr_ops->read_pcr(i)); | 
 | 	for (i = 0; i < sparc_pmu->num_pic_regs; i++) | 
 | 		pr_info("CPU#%d: PIC%d[%016llx]\n", | 
 | 			cpu, i, pcr_ops->read_pic(i)); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static int __kprobes perf_event_nmi_handler(struct notifier_block *self, | 
 | 					    unsigned long cmd, void *__args) | 
 | { | 
 | 	struct die_args *args = __args; | 
 | 	struct perf_sample_data data; | 
 | 	struct cpu_hw_events *cpuc; | 
 | 	struct pt_regs *regs; | 
 | 	int i; | 
 |  | 
 | 	if (!atomic_read(&active_events)) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case DIE_NMI: | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 |  | 
 | 	regs = args->regs; | 
 |  | 
 | 	cpuc = this_cpu_ptr(&cpu_hw_events); | 
 |  | 
 | 	/* If the PMU has the TOE IRQ enable bits, we need to do a | 
 | 	 * dummy write to the %pcr to clear the overflow bits and thus | 
 | 	 * the interrupt. | 
 | 	 * | 
 | 	 * Do this before we peek at the counters to determine | 
 | 	 * overflow so we don't lose any events. | 
 | 	 */ | 
 | 	if (sparc_pmu->irq_bit && | 
 | 	    sparc_pmu->num_pcrs == 1) | 
 | 		pcr_ops->write_pcr(0, cpuc->pcr[0]); | 
 |  | 
 | 	for (i = 0; i < cpuc->n_events; i++) { | 
 | 		struct perf_event *event = cpuc->event[i]; | 
 | 		int idx = cpuc->current_idx[i]; | 
 | 		struct hw_perf_event *hwc; | 
 | 		u64 val; | 
 |  | 
 | 		if (sparc_pmu->irq_bit && | 
 | 		    sparc_pmu->num_pcrs > 1) | 
 | 			pcr_ops->write_pcr(idx, cpuc->pcr[idx]); | 
 |  | 
 | 		hwc = &event->hw; | 
 | 		val = sparc_perf_event_update(event, hwc, idx); | 
 | 		if (val & (1ULL << 31)) | 
 | 			continue; | 
 |  | 
 | 		perf_sample_data_init(&data, 0, hwc->last_period); | 
 | 		if (!sparc_perf_event_set_period(event, hwc, idx)) | 
 | 			continue; | 
 |  | 
 | 		if (perf_event_overflow(event, &data, regs)) | 
 | 			sparc_pmu_stop(event, 0); | 
 | 	} | 
 |  | 
 | 	return NOTIFY_STOP; | 
 | } | 
 |  | 
 | static __read_mostly struct notifier_block perf_event_nmi_notifier = { | 
 | 	.notifier_call		= perf_event_nmi_handler, | 
 | }; | 
 |  | 
 | static bool __init supported_pmu(void) | 
 | { | 
 | 	if (!strcmp(sparc_pmu_type, "ultra3") || | 
 | 	    !strcmp(sparc_pmu_type, "ultra3+") || | 
 | 	    !strcmp(sparc_pmu_type, "ultra3i") || | 
 | 	    !strcmp(sparc_pmu_type, "ultra4+")) { | 
 | 		sparc_pmu = &ultra3_pmu; | 
 | 		return true; | 
 | 	} | 
 | 	if (!strcmp(sparc_pmu_type, "niagara")) { | 
 | 		sparc_pmu = &niagara1_pmu; | 
 | 		return true; | 
 | 	} | 
 | 	if (!strcmp(sparc_pmu_type, "niagara2") || | 
 | 	    !strcmp(sparc_pmu_type, "niagara3")) { | 
 | 		sparc_pmu = &niagara2_pmu; | 
 | 		return true; | 
 | 	} | 
 | 	if (!strcmp(sparc_pmu_type, "niagara4") || | 
 | 	    !strcmp(sparc_pmu_type, "niagara5")) { | 
 | 		sparc_pmu = &niagara4_pmu; | 
 | 		return true; | 
 | 	} | 
 | 	if (!strcmp(sparc_pmu_type, "sparc-m7")) { | 
 | 		sparc_pmu = &sparc_m7_pmu; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static int __init init_hw_perf_events(void) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	pr_info("Performance events: "); | 
 |  | 
 | 	err = pcr_arch_init(); | 
 | 	if (err || !supported_pmu()) { | 
 | 		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type); | 
 |  | 
 | 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); | 
 | 	register_die_notifier(&perf_event_nmi_notifier); | 
 |  | 
 | 	return 0; | 
 | } | 
 | pure_initcall(init_hw_perf_events); | 
 |  | 
 | void perf_callchain_kernel(struct perf_callchain_entry *entry, | 
 | 			   struct pt_regs *regs) | 
 | { | 
 | 	unsigned long ksp, fp; | 
 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 
 | 	int graph = 0; | 
 | #endif | 
 |  | 
 | 	stack_trace_flush(); | 
 |  | 
 | 	perf_callchain_store(entry, regs->tpc); | 
 |  | 
 | 	ksp = regs->u_regs[UREG_I6]; | 
 | 	fp = ksp + STACK_BIAS; | 
 | 	do { | 
 | 		struct sparc_stackf *sf; | 
 | 		struct pt_regs *regs; | 
 | 		unsigned long pc; | 
 |  | 
 | 		if (!kstack_valid(current_thread_info(), fp)) | 
 | 			break; | 
 |  | 
 | 		sf = (struct sparc_stackf *) fp; | 
 | 		regs = (struct pt_regs *) (sf + 1); | 
 |  | 
 | 		if (kstack_is_trap_frame(current_thread_info(), regs)) { | 
 | 			if (user_mode(regs)) | 
 | 				break; | 
 | 			pc = regs->tpc; | 
 | 			fp = regs->u_regs[UREG_I6] + STACK_BIAS; | 
 | 		} else { | 
 | 			pc = sf->callers_pc; | 
 | 			fp = (unsigned long)sf->fp + STACK_BIAS; | 
 | 		} | 
 | 		perf_callchain_store(entry, pc); | 
 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 
 | 		if ((pc + 8UL) == (unsigned long) &return_to_handler) { | 
 | 			int index = current->curr_ret_stack; | 
 | 			if (current->ret_stack && index >= graph) { | 
 | 				pc = current->ret_stack[index - graph].ret; | 
 | 				perf_callchain_store(entry, pc); | 
 | 				graph++; | 
 | 			} | 
 | 		} | 
 | #endif | 
 | 	} while (entry->nr < PERF_MAX_STACK_DEPTH); | 
 | } | 
 |  | 
 | static inline int | 
 | valid_user_frame(const void __user *fp, unsigned long size) | 
 | { | 
 | 	/* addresses should be at least 4-byte aligned */ | 
 | 	if (((unsigned long) fp) & 3) | 
 | 		return 0; | 
 |  | 
 | 	return (__range_not_ok(fp, size, TASK_SIZE) == 0); | 
 | } | 
 |  | 
 | static void perf_callchain_user_64(struct perf_callchain_entry *entry, | 
 | 				   struct pt_regs *regs) | 
 | { | 
 | 	unsigned long ufp; | 
 |  | 
 | 	ufp = regs->u_regs[UREG_FP] + STACK_BIAS; | 
 | 	do { | 
 | 		struct sparc_stackf __user *usf; | 
 | 		struct sparc_stackf sf; | 
 | 		unsigned long pc; | 
 |  | 
 | 		usf = (struct sparc_stackf __user *)ufp; | 
 | 		if (!valid_user_frame(usf, sizeof(sf))) | 
 | 			break; | 
 |  | 
 | 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) | 
 | 			break; | 
 |  | 
 | 		pc = sf.callers_pc; | 
 | 		ufp = (unsigned long)sf.fp + STACK_BIAS; | 
 | 		perf_callchain_store(entry, pc); | 
 | 	} while (entry->nr < PERF_MAX_STACK_DEPTH); | 
 | } | 
 |  | 
 | static void perf_callchain_user_32(struct perf_callchain_entry *entry, | 
 | 				   struct pt_regs *regs) | 
 | { | 
 | 	unsigned long ufp; | 
 |  | 
 | 	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL; | 
 | 	do { | 
 | 		unsigned long pc; | 
 |  | 
 | 		if (thread32_stack_is_64bit(ufp)) { | 
 | 			struct sparc_stackf __user *usf; | 
 | 			struct sparc_stackf sf; | 
 |  | 
 | 			ufp += STACK_BIAS; | 
 | 			usf = (struct sparc_stackf __user *)ufp; | 
 | 			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) | 
 | 				break; | 
 | 			pc = sf.callers_pc & 0xffffffff; | 
 | 			ufp = ((unsigned long) sf.fp) & 0xffffffff; | 
 | 		} else { | 
 | 			struct sparc_stackf32 __user *usf; | 
 | 			struct sparc_stackf32 sf; | 
 | 			usf = (struct sparc_stackf32 __user *)ufp; | 
 | 			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) | 
 | 				break; | 
 | 			pc = sf.callers_pc; | 
 | 			ufp = (unsigned long)sf.fp; | 
 | 		} | 
 | 		perf_callchain_store(entry, pc); | 
 | 	} while (entry->nr < PERF_MAX_STACK_DEPTH); | 
 | } | 
 |  | 
 | void | 
 | perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) | 
 | { | 
 | 	u64 saved_fault_address = current_thread_info()->fault_address; | 
 | 	u8 saved_fault_code = get_thread_fault_code(); | 
 | 	mm_segment_t old_fs; | 
 |  | 
 | 	perf_callchain_store(entry, regs->tpc); | 
 |  | 
 | 	if (!current->mm) | 
 | 		return; | 
 |  | 
 | 	old_fs = get_fs(); | 
 | 	set_fs(USER_DS); | 
 |  | 
 | 	flushw_user(); | 
 |  | 
 | 	pagefault_disable(); | 
 |  | 
 | 	if (test_thread_flag(TIF_32BIT)) | 
 | 		perf_callchain_user_32(entry, regs); | 
 | 	else | 
 | 		perf_callchain_user_64(entry, regs); | 
 |  | 
 | 	pagefault_enable(); | 
 |  | 
 | 	set_fs(old_fs); | 
 | 	set_thread_fault_code(saved_fault_code); | 
 | 	current_thread_info()->fault_address = saved_fault_address; | 
 | } |