| #include <linux/slab.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fdtable.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/stat.h> | 
 | #include <linux/fcntl.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/string.h> | 
 | #include <linux/init.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/key.h> | 
 | #include <linux/personality.h> | 
 | #include <linux/binfmts.h> | 
 | #include <linux/coredump.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/pid_namespace.h> | 
 | #include <linux/module.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/security.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/tsacct_kern.h> | 
 | #include <linux/cn_proc.h> | 
 | #include <linux/audit.h> | 
 | #include <linux/tracehook.h> | 
 | #include <linux/kmod.h> | 
 | #include <linux/fsnotify.h> | 
 | #include <linux/fs_struct.h> | 
 | #include <linux/pipe_fs_i.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/compat.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/exec.h> | 
 |  | 
 | #include <trace/events/task.h> | 
 | #include "internal.h" | 
 | #include "coredump.h" | 
 |  | 
 | #include <trace/events/sched.h> | 
 |  | 
 | int core_uses_pid; | 
 | unsigned int core_pipe_limit; | 
 | char core_pattern[CORENAME_MAX_SIZE] = "core"; | 
 | static int core_name_size = CORENAME_MAX_SIZE; | 
 |  | 
 | struct core_name { | 
 | 	char *corename; | 
 | 	int used, size; | 
 | }; | 
 |  | 
 | /* The maximal length of core_pattern is also specified in sysctl.c */ | 
 |  | 
 | static int expand_corename(struct core_name *cn, int size) | 
 | { | 
 | 	char *corename = krealloc(cn->corename, size, GFP_KERNEL); | 
 |  | 
 | 	if (!corename) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (size > core_name_size) /* racy but harmless */ | 
 | 		core_name_size = size; | 
 |  | 
 | 	cn->size = ksize(corename); | 
 | 	cn->corename = corename; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cn_vprintf(struct core_name *cn, const char *fmt, va_list arg) | 
 | { | 
 | 	int free, need; | 
 |  | 
 | again: | 
 | 	free = cn->size - cn->used; | 
 | 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg); | 
 | 	if (need < free) { | 
 | 		cn->used += need; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!expand_corename(cn, cn->size + need - free + 1)) | 
 | 		goto again; | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int cn_printf(struct core_name *cn, const char *fmt, ...) | 
 | { | 
 | 	va_list arg; | 
 | 	int ret; | 
 |  | 
 | 	va_start(arg, fmt); | 
 | 	ret = cn_vprintf(cn, fmt, arg); | 
 | 	va_end(arg); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int cn_esc_printf(struct core_name *cn, const char *fmt, ...) | 
 | { | 
 | 	int cur = cn->used; | 
 | 	va_list arg; | 
 | 	int ret; | 
 |  | 
 | 	va_start(arg, fmt); | 
 | 	ret = cn_vprintf(cn, fmt, arg); | 
 | 	va_end(arg); | 
 |  | 
 | 	for (; cur < cn->used; ++cur) { | 
 | 		if (cn->corename[cur] == '/') | 
 | 			cn->corename[cur] = '!'; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int cn_print_exe_file(struct core_name *cn) | 
 | { | 
 | 	struct file *exe_file; | 
 | 	char *pathbuf, *path; | 
 | 	int ret; | 
 |  | 
 | 	exe_file = get_mm_exe_file(current->mm); | 
 | 	if (!exe_file) | 
 | 		return cn_esc_printf(cn, "%s (path unknown)", current->comm); | 
 |  | 
 | 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY); | 
 | 	if (!pathbuf) { | 
 | 		ret = -ENOMEM; | 
 | 		goto put_exe_file; | 
 | 	} | 
 |  | 
 | 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX); | 
 | 	if (IS_ERR(path)) { | 
 | 		ret = PTR_ERR(path); | 
 | 		goto free_buf; | 
 | 	} | 
 |  | 
 | 	ret = cn_esc_printf(cn, "%s", path); | 
 |  | 
 | free_buf: | 
 | 	kfree(pathbuf); | 
 | put_exe_file: | 
 | 	fput(exe_file); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* format_corename will inspect the pattern parameter, and output a | 
 |  * name into corename, which must have space for at least | 
 |  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. | 
 |  */ | 
 | static int format_corename(struct core_name *cn, struct coredump_params *cprm) | 
 | { | 
 | 	const struct cred *cred = current_cred(); | 
 | 	const char *pat_ptr = core_pattern; | 
 | 	int ispipe = (*pat_ptr == '|'); | 
 | 	int pid_in_pattern = 0; | 
 | 	int err = 0; | 
 |  | 
 | 	cn->used = 0; | 
 | 	cn->corename = NULL; | 
 | 	if (expand_corename(cn, core_name_size)) | 
 | 		return -ENOMEM; | 
 | 	cn->corename[0] = '\0'; | 
 |  | 
 | 	if (ispipe) | 
 | 		++pat_ptr; | 
 |  | 
 | 	/* Repeat as long as we have more pattern to process and more output | 
 | 	   space */ | 
 | 	while (*pat_ptr) { | 
 | 		if (*pat_ptr != '%') { | 
 | 			err = cn_printf(cn, "%c", *pat_ptr++); | 
 | 		} else { | 
 | 			switch (*++pat_ptr) { | 
 | 			/* single % at the end, drop that */ | 
 | 			case 0: | 
 | 				goto out; | 
 | 			/* Double percent, output one percent */ | 
 | 			case '%': | 
 | 				err = cn_printf(cn, "%c", '%'); | 
 | 				break; | 
 | 			/* pid */ | 
 | 			case 'p': | 
 | 				pid_in_pattern = 1; | 
 | 				err = cn_printf(cn, "%d", | 
 | 					      task_tgid_vnr(current)); | 
 | 				break; | 
 | 			/* uid */ | 
 | 			case 'u': | 
 | 				err = cn_printf(cn, "%d", cred->uid); | 
 | 				break; | 
 | 			/* gid */ | 
 | 			case 'g': | 
 | 				err = cn_printf(cn, "%d", cred->gid); | 
 | 				break; | 
 | 			case 'd': | 
 | 				err = cn_printf(cn, "%d", | 
 | 					__get_dumpable(cprm->mm_flags)); | 
 | 				break; | 
 | 			/* signal that caused the coredump */ | 
 | 			case 's': | 
 | 				err = cn_printf(cn, "%ld", cprm->siginfo->si_signo); | 
 | 				break; | 
 | 			/* UNIX time of coredump */ | 
 | 			case 't': { | 
 | 				struct timeval tv; | 
 | 				do_gettimeofday(&tv); | 
 | 				err = cn_printf(cn, "%lu", tv.tv_sec); | 
 | 				break; | 
 | 			} | 
 | 			/* hostname */ | 
 | 			case 'h': | 
 | 				down_read(&uts_sem); | 
 | 				err = cn_esc_printf(cn, "%s", | 
 | 					      utsname()->nodename); | 
 | 				up_read(&uts_sem); | 
 | 				break; | 
 | 			/* executable */ | 
 | 			case 'e': | 
 | 				err = cn_esc_printf(cn, "%s", current->comm); | 
 | 				break; | 
 | 			case 'E': | 
 | 				err = cn_print_exe_file(cn); | 
 | 				break; | 
 | 			/* core limit size */ | 
 | 			case 'c': | 
 | 				err = cn_printf(cn, "%lu", | 
 | 					      rlimit(RLIMIT_CORE)); | 
 | 				break; | 
 | 			default: | 
 | 				break; | 
 | 			} | 
 | 			++pat_ptr; | 
 | 		} | 
 |  | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* Backward compatibility with core_uses_pid: | 
 | 	 * | 
 | 	 * If core_pattern does not include a %p (as is the default) | 
 | 	 * and core_uses_pid is set, then .%pid will be appended to | 
 | 	 * the filename. Do not do this for piped commands. */ | 
 | 	if (!ispipe && !pid_in_pattern && core_uses_pid) { | 
 | 		err = cn_printf(cn, ".%d", task_tgid_vnr(current)); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 | 	return ispipe; | 
 | } | 
 |  | 
 | static int zap_process(struct task_struct *start, int exit_code) | 
 | { | 
 | 	struct task_struct *t; | 
 | 	int nr = 0; | 
 |  | 
 | 	start->signal->group_exit_code = exit_code; | 
 | 	start->signal->group_stop_count = 0; | 
 |  | 
 | 	t = start; | 
 | 	do { | 
 | 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); | 
 | 		if (t != current && t->mm) { | 
 | 			sigaddset(&t->pending.signal, SIGKILL); | 
 | 			signal_wake_up(t, 1); | 
 | 			nr++; | 
 | 		} | 
 | 	} while_each_thread(start, t); | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | static int zap_threads(struct task_struct *tsk, struct mm_struct *mm, | 
 | 			struct core_state *core_state, int exit_code) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 | 	unsigned long flags; | 
 | 	int nr = -EAGAIN; | 
 |  | 
 | 	spin_lock_irq(&tsk->sighand->siglock); | 
 | 	if (!signal_group_exit(tsk->signal)) { | 
 | 		mm->core_state = core_state; | 
 | 		nr = zap_process(tsk, exit_code); | 
 | 		tsk->signal->group_exit_task = tsk; | 
 | 		/* ignore all signals except SIGKILL, see prepare_signal() */ | 
 | 		tsk->signal->flags = SIGNAL_GROUP_COREDUMP; | 
 | 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING); | 
 | 	} | 
 | 	spin_unlock_irq(&tsk->sighand->siglock); | 
 | 	if (unlikely(nr < 0)) | 
 | 		return nr; | 
 |  | 
 | 	tsk->flags = PF_DUMPCORE; | 
 | 	if (atomic_read(&mm->mm_users) == nr + 1) | 
 | 		goto done; | 
 | 	/* | 
 | 	 * We should find and kill all tasks which use this mm, and we should | 
 | 	 * count them correctly into ->nr_threads. We don't take tasklist | 
 | 	 * lock, but this is safe wrt: | 
 | 	 * | 
 | 	 * fork: | 
 | 	 *	None of sub-threads can fork after zap_process(leader). All | 
 | 	 *	processes which were created before this point should be | 
 | 	 *	visible to zap_threads() because copy_process() adds the new | 
 | 	 *	process to the tail of init_task.tasks list, and lock/unlock | 
 | 	 *	of ->siglock provides a memory barrier. | 
 | 	 * | 
 | 	 * do_exit: | 
 | 	 *	The caller holds mm->mmap_sem. This means that the task which | 
 | 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear | 
 | 	 *	its ->mm. | 
 | 	 * | 
 | 	 * de_thread: | 
 | 	 *	It does list_replace_rcu(&leader->tasks, ¤t->tasks), | 
 | 	 *	we must see either old or new leader, this does not matter. | 
 | 	 *	However, it can change p->sighand, so lock_task_sighand(p) | 
 | 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem | 
 | 	 *	it can't fail. | 
 | 	 * | 
 | 	 *	Note also that "g" can be the old leader with ->mm == NULL | 
 | 	 *	and already unhashed and thus removed from ->thread_group. | 
 | 	 *	This is OK, __unhash_process()->list_del_rcu() does not | 
 | 	 *	clear the ->next pointer, we will find the new leader via | 
 | 	 *	next_thread(). | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	for_each_process(g) { | 
 | 		if (g == tsk->group_leader) | 
 | 			continue; | 
 | 		if (g->flags & PF_KTHREAD) | 
 | 			continue; | 
 | 		p = g; | 
 | 		do { | 
 | 			if (p->mm) { | 
 | 				if (unlikely(p->mm == mm)) { | 
 | 					lock_task_sighand(p, &flags); | 
 | 					nr += zap_process(p, exit_code); | 
 | 					p->signal->flags = SIGNAL_GROUP_EXIT; | 
 | 					unlock_task_sighand(p, &flags); | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 		} while_each_thread(g, p); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | done: | 
 | 	atomic_set(&core_state->nr_threads, nr); | 
 | 	return nr; | 
 | } | 
 |  | 
 | static int coredump_wait(int exit_code, struct core_state *core_state) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	struct mm_struct *mm = tsk->mm; | 
 | 	int core_waiters = -EBUSY; | 
 |  | 
 | 	init_completion(&core_state->startup); | 
 | 	core_state->dumper.task = tsk; | 
 | 	core_state->dumper.next = NULL; | 
 |  | 
 | 	down_write(&mm->mmap_sem); | 
 | 	if (!mm->core_state) | 
 | 		core_waiters = zap_threads(tsk, mm, core_state, exit_code); | 
 | 	up_write(&mm->mmap_sem); | 
 |  | 
 | 	if (core_waiters > 0) { | 
 | 		struct core_thread *ptr; | 
 |  | 
 | 		wait_for_completion(&core_state->startup); | 
 | 		/* | 
 | 		 * Wait for all the threads to become inactive, so that | 
 | 		 * all the thread context (extended register state, like | 
 | 		 * fpu etc) gets copied to the memory. | 
 | 		 */ | 
 | 		ptr = core_state->dumper.next; | 
 | 		while (ptr != NULL) { | 
 | 			wait_task_inactive(ptr->task, 0); | 
 | 			ptr = ptr->next; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return core_waiters; | 
 | } | 
 |  | 
 | static void coredump_finish(struct mm_struct *mm, bool core_dumped) | 
 | { | 
 | 	struct core_thread *curr, *next; | 
 | 	struct task_struct *task; | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	if (core_dumped && !__fatal_signal_pending(current)) | 
 | 		current->signal->group_exit_code |= 0x80; | 
 | 	current->signal->group_exit_task = NULL; | 
 | 	current->signal->flags = SIGNAL_GROUP_EXIT; | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 	next = mm->core_state->dumper.next; | 
 | 	while ((curr = next) != NULL) { | 
 | 		next = curr->next; | 
 | 		task = curr->task; | 
 | 		/* | 
 | 		 * see exit_mm(), curr->task must not see | 
 | 		 * ->task == NULL before we read ->next. | 
 | 		 */ | 
 | 		smp_mb(); | 
 | 		curr->task = NULL; | 
 | 		wake_up_process(task); | 
 | 	} | 
 |  | 
 | 	mm->core_state = NULL; | 
 | } | 
 |  | 
 | static bool dump_interrupted(void) | 
 | { | 
 | 	/* | 
 | 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we | 
 | 	 * can do try_to_freeze() and check __fatal_signal_pending(), | 
 | 	 * but then we need to teach dump_write() to restart and clear | 
 | 	 * TIF_SIGPENDING. | 
 | 	 */ | 
 | 	return signal_pending(current); | 
 | } | 
 |  | 
 | static void wait_for_dump_helpers(struct file *file) | 
 | { | 
 | 	struct pipe_inode_info *pipe = file->private_data; | 
 |  | 
 | 	pipe_lock(pipe); | 
 | 	pipe->readers++; | 
 | 	pipe->writers--; | 
 | 	wake_up_interruptible_sync(&pipe->wait); | 
 | 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); | 
 | 	pipe_unlock(pipe); | 
 |  | 
 | 	/* | 
 | 	 * We actually want wait_event_freezable() but then we need | 
 | 	 * to clear TIF_SIGPENDING and improve dump_interrupted(). | 
 | 	 */ | 
 | 	wait_event_interruptible(pipe->wait, pipe->readers == 1); | 
 |  | 
 | 	pipe_lock(pipe); | 
 | 	pipe->readers--; | 
 | 	pipe->writers++; | 
 | 	pipe_unlock(pipe); | 
 | } | 
 |  | 
 | /* | 
 |  * umh_pipe_setup | 
 |  * helper function to customize the process used | 
 |  * to collect the core in userspace.  Specifically | 
 |  * it sets up a pipe and installs it as fd 0 (stdin) | 
 |  * for the process.  Returns 0 on success, or | 
 |  * PTR_ERR on failure. | 
 |  * Note that it also sets the core limit to 1.  This | 
 |  * is a special value that we use to trap recursive | 
 |  * core dumps | 
 |  */ | 
 | static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) | 
 | { | 
 | 	struct file *files[2]; | 
 | 	struct coredump_params *cp = (struct coredump_params *)info->data; | 
 | 	int err = create_pipe_files(files, 0); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	cp->file = files[1]; | 
 |  | 
 | 	err = replace_fd(0, files[0], 0); | 
 | 	fput(files[0]); | 
 | 	/* and disallow core files too */ | 
 | 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | void do_coredump(siginfo_t *siginfo) | 
 | { | 
 | 	struct core_state core_state; | 
 | 	struct core_name cn; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct linux_binfmt * binfmt; | 
 | 	const struct cred *old_cred; | 
 | 	struct cred *cred; | 
 | 	int retval = 0; | 
 | 	int flag = 0; | 
 | 	int ispipe; | 
 | 	struct files_struct *displaced; | 
 | 	bool need_nonrelative = false; | 
 | 	bool core_dumped = false; | 
 | 	static atomic_t core_dump_count = ATOMIC_INIT(0); | 
 | 	struct coredump_params cprm = { | 
 | 		.siginfo = siginfo, | 
 | 		.regs = signal_pt_regs(), | 
 | 		.limit = rlimit(RLIMIT_CORE), | 
 | 		/* | 
 | 		 * We must use the same mm->flags while dumping core to avoid | 
 | 		 * inconsistency of bit flags, since this flag is not protected | 
 | 		 * by any locks. | 
 | 		 */ | 
 | 		.mm_flags = mm->flags, | 
 | 	}; | 
 |  | 
 | 	audit_core_dumps(siginfo->si_signo); | 
 |  | 
 | 	binfmt = mm->binfmt; | 
 | 	if (!binfmt || !binfmt->core_dump) | 
 | 		goto fail; | 
 | 	if (!__get_dumpable(cprm.mm_flags)) | 
 | 		goto fail; | 
 |  | 
 | 	cred = prepare_creds(); | 
 | 	if (!cred) | 
 | 		goto fail; | 
 | 	/* | 
 | 	 * We cannot trust fsuid as being the "true" uid of the process | 
 | 	 * nor do we know its entire history. We only know it was tainted | 
 | 	 * so we dump it as root in mode 2, and only into a controlled | 
 | 	 * environment (pipe handler or fully qualified path). | 
 | 	 */ | 
 | 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) { | 
 | 		/* Setuid core dump mode */ | 
 | 		flag = O_EXCL;		/* Stop rewrite attacks */ | 
 | 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */ | 
 | 		need_nonrelative = true; | 
 | 	} | 
 |  | 
 | 	retval = coredump_wait(siginfo->si_signo, &core_state); | 
 | 	if (retval < 0) | 
 | 		goto fail_creds; | 
 |  | 
 | 	old_cred = override_creds(cred); | 
 |  | 
 | 	ispipe = format_corename(&cn, &cprm); | 
 |  | 
 | 	if (ispipe) { | 
 | 		int dump_count; | 
 | 		char **helper_argv; | 
 | 		struct subprocess_info *sub_info; | 
 |  | 
 | 		if (ispipe < 0) { | 
 | 			printk(KERN_WARNING "format_corename failed\n"); | 
 | 			printk(KERN_WARNING "Aborting core\n"); | 
 | 			goto fail_unlock; | 
 | 		} | 
 |  | 
 | 		if (cprm.limit == 1) { | 
 | 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1. | 
 | 			 * | 
 | 			 * Normally core limits are irrelevant to pipes, since | 
 | 			 * we're not writing to the file system, but we use | 
 | 			 * cprm.limit of 1 here as a speacial value, this is a | 
 | 			 * consistent way to catch recursive crashes. | 
 | 			 * We can still crash if the core_pattern binary sets | 
 | 			 * RLIM_CORE = !1, but it runs as root, and can do | 
 | 			 * lots of stupid things. | 
 | 			 * | 
 | 			 * Note that we use task_tgid_vnr here to grab the pid | 
 | 			 * of the process group leader.  That way we get the | 
 | 			 * right pid if a thread in a multi-threaded | 
 | 			 * core_pattern process dies. | 
 | 			 */ | 
 | 			printk(KERN_WARNING | 
 | 				"Process %d(%s) has RLIMIT_CORE set to 1\n", | 
 | 				task_tgid_vnr(current), current->comm); | 
 | 			printk(KERN_WARNING "Aborting core\n"); | 
 | 			goto fail_unlock; | 
 | 		} | 
 | 		cprm.limit = RLIM_INFINITY; | 
 |  | 
 | 		dump_count = atomic_inc_return(&core_dump_count); | 
 | 		if (core_pipe_limit && (core_pipe_limit < dump_count)) { | 
 | 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", | 
 | 			       task_tgid_vnr(current), current->comm); | 
 | 			printk(KERN_WARNING "Skipping core dump\n"); | 
 | 			goto fail_dropcount; | 
 | 		} | 
 |  | 
 | 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL); | 
 | 		if (!helper_argv) { | 
 | 			printk(KERN_WARNING "%s failed to allocate memory\n", | 
 | 			       __func__); | 
 | 			goto fail_dropcount; | 
 | 		} | 
 |  | 
 | 		retval = -ENOMEM; | 
 | 		sub_info = call_usermodehelper_setup(helper_argv[0], | 
 | 						helper_argv, NULL, GFP_KERNEL, | 
 | 						umh_pipe_setup, NULL, &cprm); | 
 | 		if (sub_info) | 
 | 			retval = call_usermodehelper_exec(sub_info, | 
 | 							  UMH_WAIT_EXEC); | 
 |  | 
 | 		argv_free(helper_argv); | 
 | 		if (retval) { | 
 | 			printk(KERN_INFO "Core dump to |%s pipe failed\n", | 
 | 			       cn.corename); | 
 | 			goto close_fail; | 
 | 		} | 
 | 	} else { | 
 | 		struct inode *inode; | 
 |  | 
 | 		if (cprm.limit < binfmt->min_coredump) | 
 | 			goto fail_unlock; | 
 |  | 
 | 		if (need_nonrelative && cn.corename[0] != '/') { | 
 | 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\ | 
 | 				"to fully qualified path!\n", | 
 | 				task_tgid_vnr(current), current->comm); | 
 | 			printk(KERN_WARNING "Skipping core dump\n"); | 
 | 			goto fail_unlock; | 
 | 		} | 
 |  | 
 | 		cprm.file = filp_open(cn.corename, | 
 | 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, | 
 | 				 0600); | 
 | 		if (IS_ERR(cprm.file)) | 
 | 			goto fail_unlock; | 
 |  | 
 | 		inode = file_inode(cprm.file); | 
 | 		if (inode->i_nlink > 1) | 
 | 			goto close_fail; | 
 | 		if (d_unhashed(cprm.file->f_path.dentry)) | 
 | 			goto close_fail; | 
 | 		/* | 
 | 		 * AK: actually i see no reason to not allow this for named | 
 | 		 * pipes etc, but keep the previous behaviour for now. | 
 | 		 */ | 
 | 		if (!S_ISREG(inode->i_mode)) | 
 | 			goto close_fail; | 
 | 		/* | 
 | 		 * Dont allow local users get cute and trick others to coredump | 
 | 		 * into their pre-created files. | 
 | 		 */ | 
 | 		if (!uid_eq(inode->i_uid, current_fsuid())) | 
 | 			goto close_fail; | 
 | 		if (!cprm.file->f_op || !cprm.file->f_op->write) | 
 | 			goto close_fail; | 
 | 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) | 
 | 			goto close_fail; | 
 | 	} | 
 |  | 
 | 	/* get us an unshared descriptor table; almost always a no-op */ | 
 | 	retval = unshare_files(&displaced); | 
 | 	if (retval) | 
 | 		goto close_fail; | 
 | 	if (displaced) | 
 | 		put_files_struct(displaced); | 
 | 	if (!dump_interrupted()) { | 
 | 		file_start_write(cprm.file); | 
 | 		core_dumped = binfmt->core_dump(&cprm); | 
 | 		file_end_write(cprm.file); | 
 | 	} | 
 | 	if (ispipe && core_pipe_limit) | 
 | 		wait_for_dump_helpers(cprm.file); | 
 | close_fail: | 
 | 	if (cprm.file) | 
 | 		filp_close(cprm.file, NULL); | 
 | fail_dropcount: | 
 | 	if (ispipe) | 
 | 		atomic_dec(&core_dump_count); | 
 | fail_unlock: | 
 | 	kfree(cn.corename); | 
 | 	coredump_finish(mm, core_dumped); | 
 | 	revert_creds(old_cred); | 
 | fail_creds: | 
 | 	put_cred(cred); | 
 | fail: | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Core dumping helper functions.  These are the only things you should | 
 |  * do on a core-file: use only these functions to write out all the | 
 |  * necessary info. | 
 |  */ | 
 | int dump_write(struct file *file, const void *addr, int nr) | 
 | { | 
 | 	return !dump_interrupted() && | 
 | 		access_ok(VERIFY_READ, addr, nr) && | 
 | 		file->f_op->write(file, addr, nr, &file->f_pos) == nr; | 
 | } | 
 | EXPORT_SYMBOL(dump_write); | 
 |  | 
 | int dump_seek(struct file *file, loff_t off) | 
 | { | 
 | 	int ret = 1; | 
 |  | 
 | 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) { | 
 | 		if (dump_interrupted() || | 
 | 		    file->f_op->llseek(file, off, SEEK_CUR) < 0) | 
 | 			return 0; | 
 | 	} else { | 
 | 		char *buf = (char *)get_zeroed_page(GFP_KERNEL); | 
 |  | 
 | 		if (!buf) | 
 | 			return 0; | 
 | 		while (off > 0) { | 
 | 			unsigned long n = off; | 
 |  | 
 | 			if (n > PAGE_SIZE) | 
 | 				n = PAGE_SIZE; | 
 | 			if (!dump_write(file, buf, n)) { | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 			off -= n; | 
 | 		} | 
 | 		free_page((unsigned long)buf); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(dump_seek); |