| /*  | 
 |  * Cryptographic API. | 
 |  * | 
 |  * Support for VIA PadLock hardware crypto engine. | 
 |  * | 
 |  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz> | 
 |  * | 
 |  */ | 
 |  | 
 | #include <crypto/algapi.h> | 
 | #include <crypto/aes.h> | 
 | #include <crypto/padlock.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/types.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/slab.h> | 
 | #include <asm/byteorder.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/i387.h> | 
 |  | 
 | /* | 
 |  * Number of data blocks actually fetched for each xcrypt insn. | 
 |  * Processors with prefetch errata will fetch extra blocks. | 
 |  */ | 
 | static unsigned int ecb_fetch_blocks = 2; | 
 | #define MAX_ECB_FETCH_BLOCKS (8) | 
 | #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE) | 
 |  | 
 | static unsigned int cbc_fetch_blocks = 1; | 
 | #define MAX_CBC_FETCH_BLOCKS (4) | 
 | #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE) | 
 |  | 
 | /* Control word. */ | 
 | struct cword { | 
 | 	unsigned int __attribute__ ((__packed__)) | 
 | 		rounds:4, | 
 | 		algo:3, | 
 | 		keygen:1, | 
 | 		interm:1, | 
 | 		encdec:1, | 
 | 		ksize:2; | 
 | } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); | 
 |  | 
 | /* Whenever making any changes to the following | 
 |  * structure *make sure* you keep E, d_data | 
 |  * and cword aligned on 16 Bytes boundaries and | 
 |  * the Hardware can access 16 * 16 bytes of E and d_data | 
 |  * (only the first 15 * 16 bytes matter but the HW reads | 
 |  * more). | 
 |  */ | 
 | struct aes_ctx { | 
 | 	u32 E[AES_MAX_KEYLENGTH_U32] | 
 | 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); | 
 | 	u32 d_data[AES_MAX_KEYLENGTH_U32] | 
 | 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); | 
 | 	struct { | 
 | 		struct cword encrypt; | 
 | 		struct cword decrypt; | 
 | 	} cword; | 
 | 	u32 *D; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct cword *, paes_last_cword); | 
 |  | 
 | /* Tells whether the ACE is capable to generate | 
 |    the extended key for a given key_len. */ | 
 | static inline int | 
 | aes_hw_extkey_available(uint8_t key_len) | 
 | { | 
 | 	/* TODO: We should check the actual CPU model/stepping | 
 | 	         as it's possible that the capability will be | 
 | 	         added in the next CPU revisions. */ | 
 | 	if (key_len == 16) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline struct aes_ctx *aes_ctx_common(void *ctx) | 
 | { | 
 | 	unsigned long addr = (unsigned long)ctx; | 
 | 	unsigned long align = PADLOCK_ALIGNMENT; | 
 |  | 
 | 	if (align <= crypto_tfm_ctx_alignment()) | 
 | 		align = 1; | 
 | 	return (struct aes_ctx *)ALIGN(addr, align); | 
 | } | 
 |  | 
 | static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm) | 
 | { | 
 | 	return aes_ctx_common(crypto_tfm_ctx(tfm)); | 
 | } | 
 |  | 
 | static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm) | 
 | { | 
 | 	return aes_ctx_common(crypto_blkcipher_ctx(tfm)); | 
 | } | 
 |  | 
 | static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, | 
 | 		       unsigned int key_len) | 
 | { | 
 | 	struct aes_ctx *ctx = aes_ctx(tfm); | 
 | 	const __le32 *key = (const __le32 *)in_key; | 
 | 	u32 *flags = &tfm->crt_flags; | 
 | 	struct crypto_aes_ctx gen_aes; | 
 | 	int cpu; | 
 |  | 
 | 	if (key_len % 8) { | 
 | 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the hardware is capable of generating the extended key | 
 | 	 * itself we must supply the plain key for both encryption | 
 | 	 * and decryption. | 
 | 	 */ | 
 | 	ctx->D = ctx->E; | 
 |  | 
 | 	ctx->E[0] = le32_to_cpu(key[0]); | 
 | 	ctx->E[1] = le32_to_cpu(key[1]); | 
 | 	ctx->E[2] = le32_to_cpu(key[2]); | 
 | 	ctx->E[3] = le32_to_cpu(key[3]); | 
 |  | 
 | 	/* Prepare control words. */ | 
 | 	memset(&ctx->cword, 0, sizeof(ctx->cword)); | 
 |  | 
 | 	ctx->cword.decrypt.encdec = 1; | 
 | 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4; | 
 | 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds; | 
 | 	ctx->cword.encrypt.ksize = (key_len - 16) / 8; | 
 | 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize; | 
 |  | 
 | 	/* Don't generate extended keys if the hardware can do it. */ | 
 | 	if (aes_hw_extkey_available(key_len)) | 
 | 		goto ok; | 
 |  | 
 | 	ctx->D = ctx->d_data; | 
 | 	ctx->cword.encrypt.keygen = 1; | 
 | 	ctx->cword.decrypt.keygen = 1; | 
 |  | 
 | 	if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) { | 
 | 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH); | 
 | 	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH); | 
 |  | 
 | ok: | 
 | 	for_each_online_cpu(cpu) | 
 | 		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) || | 
 | 		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu)) | 
 | 			per_cpu(paes_last_cword, cpu) = NULL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* ====== Encryption/decryption routines ====== */ | 
 |  | 
 | /* These are the real call to PadLock. */ | 
 | static inline void padlock_reset_key(struct cword *cword) | 
 | { | 
 | 	int cpu = raw_smp_processor_id(); | 
 |  | 
 | 	if (cword != per_cpu(paes_last_cword, cpu)) | 
 | #ifndef CONFIG_X86_64 | 
 | 		asm volatile ("pushfl; popfl"); | 
 | #else | 
 | 		asm volatile ("pushfq; popfq"); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void padlock_store_cword(struct cword *cword) | 
 | { | 
 | 	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword; | 
 | } | 
 |  | 
 | /* | 
 |  * While the padlock instructions don't use FP/SSE registers, they | 
 |  * generate a spurious DNA fault when cr0.ts is '1'. These instructions | 
 |  * should be used only inside the irq_ts_save/restore() context | 
 |  */ | 
 |  | 
 | static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key, | 
 | 				  struct cword *control_word, int count) | 
 | { | 
 | 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */ | 
 | 		      : "+S"(input), "+D"(output) | 
 | 		      : "d"(control_word), "b"(key), "c"(count)); | 
 | } | 
 |  | 
 | static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key, | 
 | 				 u8 *iv, struct cword *control_word, int count) | 
 | { | 
 | 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */ | 
 | 		      : "+S" (input), "+D" (output), "+a" (iv) | 
 | 		      : "d" (control_word), "b" (key), "c" (count)); | 
 | 	return iv; | 
 | } | 
 |  | 
 | static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key, | 
 | 			   struct cword *cword, int count) | 
 | { | 
 | 	/* | 
 | 	 * Padlock prefetches extra data so we must provide mapped input buffers. | 
 | 	 * Assume there are at least 16 bytes of stack already in use. | 
 | 	 */ | 
 | 	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1]; | 
 | 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); | 
 |  | 
 | 	memcpy(tmp, in, count * AES_BLOCK_SIZE); | 
 | 	rep_xcrypt_ecb(tmp, out, key, cword, count); | 
 | } | 
 |  | 
 | static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key, | 
 | 			   u8 *iv, struct cword *cword, int count) | 
 | { | 
 | 	/* | 
 | 	 * Padlock prefetches extra data so we must provide mapped input buffers. | 
 | 	 * Assume there are at least 16 bytes of stack already in use. | 
 | 	 */ | 
 | 	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1]; | 
 | 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); | 
 |  | 
 | 	memcpy(tmp, in, count * AES_BLOCK_SIZE); | 
 | 	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count); | 
 | } | 
 |  | 
 | static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key, | 
 | 			     struct cword *cword, int count) | 
 | { | 
 | 	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data. | 
 | 	 * We could avoid some copying here but it's probably not worth it. | 
 | 	 */ | 
 | 	if (unlikely(((unsigned long)in & ~PAGE_MASK) + ecb_fetch_bytes > PAGE_SIZE)) { | 
 | 		ecb_crypt_copy(in, out, key, cword, count); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	rep_xcrypt_ecb(in, out, key, cword, count); | 
 | } | 
 |  | 
 | static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key, | 
 | 			    u8 *iv, struct cword *cword, int count) | 
 | { | 
 | 	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */ | 
 | 	if (unlikely(((unsigned long)in & ~PAGE_MASK) + cbc_fetch_bytes > PAGE_SIZE)) | 
 | 		return cbc_crypt_copy(in, out, key, iv, cword, count); | 
 |  | 
 | 	return rep_xcrypt_cbc(in, out, key, iv, cword, count); | 
 | } | 
 |  | 
 | static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key, | 
 | 				      void *control_word, u32 count) | 
 | { | 
 | 	u32 initial = count & (ecb_fetch_blocks - 1); | 
 |  | 
 | 	if (count < ecb_fetch_blocks) { | 
 | 		ecb_crypt(input, output, key, control_word, count); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (initial) | 
 | 		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */ | 
 | 			      : "+S"(input), "+D"(output) | 
 | 			      : "d"(control_word), "b"(key), "c"(initial)); | 
 |  | 
 | 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */ | 
 | 		      : "+S"(input), "+D"(output) | 
 | 		      : "d"(control_word), "b"(key), "c"(count - initial)); | 
 | } | 
 |  | 
 | static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key, | 
 | 				     u8 *iv, void *control_word, u32 count) | 
 | { | 
 | 	u32 initial = count & (cbc_fetch_blocks - 1); | 
 |  | 
 | 	if (count < cbc_fetch_blocks) | 
 | 		return cbc_crypt(input, output, key, iv, control_word, count); | 
 |  | 
 | 	if (initial) | 
 | 		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */ | 
 | 			      : "+S" (input), "+D" (output), "+a" (iv) | 
 | 			      : "d" (control_word), "b" (key), "c" (initial)); | 
 |  | 
 | 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */ | 
 | 		      : "+S" (input), "+D" (output), "+a" (iv) | 
 | 		      : "d" (control_word), "b" (key), "c" (count-initial)); | 
 | 	return iv; | 
 | } | 
 |  | 
 | static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
 | { | 
 | 	struct aes_ctx *ctx = aes_ctx(tfm); | 
 | 	int ts_state; | 
 |  | 
 | 	padlock_reset_key(&ctx->cword.encrypt); | 
 | 	ts_state = irq_ts_save(); | 
 | 	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1); | 
 | 	irq_ts_restore(ts_state); | 
 | 	padlock_store_cword(&ctx->cword.encrypt); | 
 | } | 
 |  | 
 | static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
 | { | 
 | 	struct aes_ctx *ctx = aes_ctx(tfm); | 
 | 	int ts_state; | 
 |  | 
 | 	padlock_reset_key(&ctx->cword.encrypt); | 
 | 	ts_state = irq_ts_save(); | 
 | 	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1); | 
 | 	irq_ts_restore(ts_state); | 
 | 	padlock_store_cword(&ctx->cword.encrypt); | 
 | } | 
 |  | 
 | static struct crypto_alg aes_alg = { | 
 | 	.cra_name		=	"aes", | 
 | 	.cra_driver_name	=	"aes-padlock", | 
 | 	.cra_priority		=	PADLOCK_CRA_PRIORITY, | 
 | 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER, | 
 | 	.cra_blocksize		=	AES_BLOCK_SIZE, | 
 | 	.cra_ctxsize		=	sizeof(struct aes_ctx), | 
 | 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1, | 
 | 	.cra_module		=	THIS_MODULE, | 
 | 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list), | 
 | 	.cra_u			=	{ | 
 | 		.cipher = { | 
 | 			.cia_min_keysize	=	AES_MIN_KEY_SIZE, | 
 | 			.cia_max_keysize	=	AES_MAX_KEY_SIZE, | 
 | 			.cia_setkey	   	= 	aes_set_key, | 
 | 			.cia_encrypt	 	=	aes_encrypt, | 
 | 			.cia_decrypt	  	=	aes_decrypt, | 
 | 		} | 
 | 	} | 
 | }; | 
 |  | 
 | static int ecb_aes_encrypt(struct blkcipher_desc *desc, | 
 | 			   struct scatterlist *dst, struct scatterlist *src, | 
 | 			   unsigned int nbytes) | 
 | { | 
 | 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm); | 
 | 	struct blkcipher_walk walk; | 
 | 	int err; | 
 | 	int ts_state; | 
 |  | 
 | 	padlock_reset_key(&ctx->cword.encrypt); | 
 |  | 
 | 	blkcipher_walk_init(&walk, dst, src, nbytes); | 
 | 	err = blkcipher_walk_virt(desc, &walk); | 
 |  | 
 | 	ts_state = irq_ts_save(); | 
 | 	while ((nbytes = walk.nbytes)) { | 
 | 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr, | 
 | 				   ctx->E, &ctx->cword.encrypt, | 
 | 				   nbytes / AES_BLOCK_SIZE); | 
 | 		nbytes &= AES_BLOCK_SIZE - 1; | 
 | 		err = blkcipher_walk_done(desc, &walk, nbytes); | 
 | 	} | 
 | 	irq_ts_restore(ts_state); | 
 |  | 
 | 	padlock_store_cword(&ctx->cword.encrypt); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int ecb_aes_decrypt(struct blkcipher_desc *desc, | 
 | 			   struct scatterlist *dst, struct scatterlist *src, | 
 | 			   unsigned int nbytes) | 
 | { | 
 | 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm); | 
 | 	struct blkcipher_walk walk; | 
 | 	int err; | 
 | 	int ts_state; | 
 |  | 
 | 	padlock_reset_key(&ctx->cword.decrypt); | 
 |  | 
 | 	blkcipher_walk_init(&walk, dst, src, nbytes); | 
 | 	err = blkcipher_walk_virt(desc, &walk); | 
 |  | 
 | 	ts_state = irq_ts_save(); | 
 | 	while ((nbytes = walk.nbytes)) { | 
 | 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr, | 
 | 				   ctx->D, &ctx->cword.decrypt, | 
 | 				   nbytes / AES_BLOCK_SIZE); | 
 | 		nbytes &= AES_BLOCK_SIZE - 1; | 
 | 		err = blkcipher_walk_done(desc, &walk, nbytes); | 
 | 	} | 
 | 	irq_ts_restore(ts_state); | 
 |  | 
 | 	padlock_store_cword(&ctx->cword.encrypt); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static struct crypto_alg ecb_aes_alg = { | 
 | 	.cra_name		=	"ecb(aes)", | 
 | 	.cra_driver_name	=	"ecb-aes-padlock", | 
 | 	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY, | 
 | 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER, | 
 | 	.cra_blocksize		=	AES_BLOCK_SIZE, | 
 | 	.cra_ctxsize		=	sizeof(struct aes_ctx), | 
 | 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1, | 
 | 	.cra_type		=	&crypto_blkcipher_type, | 
 | 	.cra_module		=	THIS_MODULE, | 
 | 	.cra_list		=	LIST_HEAD_INIT(ecb_aes_alg.cra_list), | 
 | 	.cra_u			=	{ | 
 | 		.blkcipher = { | 
 | 			.min_keysize		=	AES_MIN_KEY_SIZE, | 
 | 			.max_keysize		=	AES_MAX_KEY_SIZE, | 
 | 			.setkey	   		= 	aes_set_key, | 
 | 			.encrypt		=	ecb_aes_encrypt, | 
 | 			.decrypt		=	ecb_aes_decrypt, | 
 | 		} | 
 | 	} | 
 | }; | 
 |  | 
 | static int cbc_aes_encrypt(struct blkcipher_desc *desc, | 
 | 			   struct scatterlist *dst, struct scatterlist *src, | 
 | 			   unsigned int nbytes) | 
 | { | 
 | 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm); | 
 | 	struct blkcipher_walk walk; | 
 | 	int err; | 
 | 	int ts_state; | 
 |  | 
 | 	padlock_reset_key(&ctx->cword.encrypt); | 
 |  | 
 | 	blkcipher_walk_init(&walk, dst, src, nbytes); | 
 | 	err = blkcipher_walk_virt(desc, &walk); | 
 |  | 
 | 	ts_state = irq_ts_save(); | 
 | 	while ((nbytes = walk.nbytes)) { | 
 | 		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr, | 
 | 					    walk.dst.virt.addr, ctx->E, | 
 | 					    walk.iv, &ctx->cword.encrypt, | 
 | 					    nbytes / AES_BLOCK_SIZE); | 
 | 		memcpy(walk.iv, iv, AES_BLOCK_SIZE); | 
 | 		nbytes &= AES_BLOCK_SIZE - 1; | 
 | 		err = blkcipher_walk_done(desc, &walk, nbytes); | 
 | 	} | 
 | 	irq_ts_restore(ts_state); | 
 |  | 
 | 	padlock_store_cword(&ctx->cword.decrypt); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int cbc_aes_decrypt(struct blkcipher_desc *desc, | 
 | 			   struct scatterlist *dst, struct scatterlist *src, | 
 | 			   unsigned int nbytes) | 
 | { | 
 | 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm); | 
 | 	struct blkcipher_walk walk; | 
 | 	int err; | 
 | 	int ts_state; | 
 |  | 
 | 	padlock_reset_key(&ctx->cword.encrypt); | 
 |  | 
 | 	blkcipher_walk_init(&walk, dst, src, nbytes); | 
 | 	err = blkcipher_walk_virt(desc, &walk); | 
 |  | 
 | 	ts_state = irq_ts_save(); | 
 | 	while ((nbytes = walk.nbytes)) { | 
 | 		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr, | 
 | 				   ctx->D, walk.iv, &ctx->cword.decrypt, | 
 | 				   nbytes / AES_BLOCK_SIZE); | 
 | 		nbytes &= AES_BLOCK_SIZE - 1; | 
 | 		err = blkcipher_walk_done(desc, &walk, nbytes); | 
 | 	} | 
 |  | 
 | 	irq_ts_restore(ts_state); | 
 |  | 
 | 	padlock_store_cword(&ctx->cword.encrypt); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static struct crypto_alg cbc_aes_alg = { | 
 | 	.cra_name		=	"cbc(aes)", | 
 | 	.cra_driver_name	=	"cbc-aes-padlock", | 
 | 	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY, | 
 | 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER, | 
 | 	.cra_blocksize		=	AES_BLOCK_SIZE, | 
 | 	.cra_ctxsize		=	sizeof(struct aes_ctx), | 
 | 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1, | 
 | 	.cra_type		=	&crypto_blkcipher_type, | 
 | 	.cra_module		=	THIS_MODULE, | 
 | 	.cra_list		=	LIST_HEAD_INIT(cbc_aes_alg.cra_list), | 
 | 	.cra_u			=	{ | 
 | 		.blkcipher = { | 
 | 			.min_keysize		=	AES_MIN_KEY_SIZE, | 
 | 			.max_keysize		=	AES_MAX_KEY_SIZE, | 
 | 			.ivsize			=	AES_BLOCK_SIZE, | 
 | 			.setkey	   		= 	aes_set_key, | 
 | 			.encrypt		=	cbc_aes_encrypt, | 
 | 			.decrypt		=	cbc_aes_decrypt, | 
 | 		} | 
 | 	} | 
 | }; | 
 |  | 
 | static int __init padlock_init(void) | 
 | { | 
 | 	int ret; | 
 | 	struct cpuinfo_x86 *c = &cpu_data(0); | 
 |  | 
 | 	if (!cpu_has_xcrypt) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (!cpu_has_xcrypt_enabled) { | 
 | 		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if ((ret = crypto_register_alg(&aes_alg))) | 
 | 		goto aes_err; | 
 |  | 
 | 	if ((ret = crypto_register_alg(&ecb_aes_alg))) | 
 | 		goto ecb_aes_err; | 
 |  | 
 | 	if ((ret = crypto_register_alg(&cbc_aes_alg))) | 
 | 		goto cbc_aes_err; | 
 |  | 
 | 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n"); | 
 |  | 
 | 	if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) { | 
 | 		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS; | 
 | 		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS; | 
 | 		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n"); | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret; | 
 |  | 
 | cbc_aes_err: | 
 | 	crypto_unregister_alg(&ecb_aes_alg); | 
 | ecb_aes_err: | 
 | 	crypto_unregister_alg(&aes_alg); | 
 | aes_err: | 
 | 	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n"); | 
 | 	goto out; | 
 | } | 
 |  | 
 | static void __exit padlock_fini(void) | 
 | { | 
 | 	crypto_unregister_alg(&cbc_aes_alg); | 
 | 	crypto_unregister_alg(&ecb_aes_alg); | 
 | 	crypto_unregister_alg(&aes_alg); | 
 | } | 
 |  | 
 | module_init(padlock_init); | 
 | module_exit(padlock_fini); | 
 |  | 
 | MODULE_DESCRIPTION("VIA PadLock AES algorithm support"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Michal Ludvig"); | 
 |  | 
 | MODULE_ALIAS("aes"); |