| /* SPDX-License-Identifier: GPL-2.0 */ |
| #include <linux/device.h> |
| #include <linux/types.h> |
| #include <linux/io.h> |
| #include <linux/mm.h> |
| |
| #ifndef ioremap_cache |
| /* temporary while we convert existing ioremap_cache users to memremap */ |
| __weak void __iomem *ioremap_cache(resource_size_t offset, unsigned long size) |
| { |
| return ioremap(offset, size); |
| } |
| #endif |
| |
| #ifndef arch_memremap_wb |
| static void *arch_memremap_wb(resource_size_t offset, unsigned long size) |
| { |
| return (__force void *)ioremap_cache(offset, size); |
| } |
| #endif |
| |
| #ifndef arch_memremap_can_ram_remap |
| static bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size, |
| unsigned long flags) |
| { |
| return true; |
| } |
| #endif |
| |
| static void *try_ram_remap(resource_size_t offset, size_t size, |
| unsigned long flags) |
| { |
| unsigned long pfn = PHYS_PFN(offset); |
| |
| /* In the simple case just return the existing linear address */ |
| if (pfn_valid(pfn) && !PageHighMem(pfn_to_page(pfn)) && |
| arch_memremap_can_ram_remap(offset, size, flags)) |
| return __va(offset); |
| |
| return NULL; /* fallback to arch_memremap_wb */ |
| } |
| |
| /** |
| * memremap() - remap an iomem_resource as cacheable memory |
| * @offset: iomem resource start address |
| * @size: size of remap |
| * @flags: any of MEMREMAP_WB, MEMREMAP_WT, MEMREMAP_WC, |
| * MEMREMAP_ENC, MEMREMAP_DEC |
| * |
| * memremap() is "ioremap" for cases where it is known that the resource |
| * being mapped does not have i/o side effects and the __iomem |
| * annotation is not applicable. In the case of multiple flags, the different |
| * mapping types will be attempted in the order listed below until one of |
| * them succeeds. |
| * |
| * MEMREMAP_WB - matches the default mapping for System RAM on |
| * the architecture. This is usually a read-allocate write-back cache. |
| * Morever, if MEMREMAP_WB is specified and the requested remap region is RAM |
| * memremap() will bypass establishing a new mapping and instead return |
| * a pointer into the direct map. |
| * |
| * MEMREMAP_WT - establish a mapping whereby writes either bypass the |
| * cache or are written through to memory and never exist in a |
| * cache-dirty state with respect to program visibility. Attempts to |
| * map System RAM with this mapping type will fail. |
| * |
| * MEMREMAP_WC - establish a writecombine mapping, whereby writes may |
| * be coalesced together (e.g. in the CPU's write buffers), but is otherwise |
| * uncached. Attempts to map System RAM with this mapping type will fail. |
| */ |
| void *memremap(resource_size_t offset, size_t size, unsigned long flags) |
| { |
| int is_ram = region_intersects(offset, size, |
| IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE); |
| void *addr = NULL; |
| |
| if (!flags) |
| return NULL; |
| |
| if (is_ram == REGION_MIXED) { |
| WARN_ONCE(1, "memremap attempted on mixed range %pa size: %#lx\n", |
| &offset, (unsigned long) size); |
| return NULL; |
| } |
| |
| /* Try all mapping types requested until one returns non-NULL */ |
| if (flags & MEMREMAP_WB) { |
| /* |
| * MEMREMAP_WB is special in that it can be satisifed |
| * from the direct map. Some archs depend on the |
| * capability of memremap() to autodetect cases where |
| * the requested range is potentially in System RAM. |
| */ |
| if (is_ram == REGION_INTERSECTS) |
| addr = try_ram_remap(offset, size, flags); |
| if (!addr) |
| addr = arch_memremap_wb(offset, size); |
| } |
| |
| /* |
| * If we don't have a mapping yet and other request flags are |
| * present then we will be attempting to establish a new virtual |
| * address mapping. Enforce that this mapping is not aliasing |
| * System RAM. |
| */ |
| if (!addr && is_ram == REGION_INTERSECTS && flags != MEMREMAP_WB) { |
| WARN_ONCE(1, "memremap attempted on ram %pa size: %#lx\n", |
| &offset, (unsigned long) size); |
| return NULL; |
| } |
| |
| if (!addr && (flags & MEMREMAP_WT)) |
| addr = ioremap_wt(offset, size); |
| |
| if (!addr && (flags & MEMREMAP_WC)) |
| addr = ioremap_wc(offset, size); |
| |
| return addr; |
| } |
| EXPORT_SYMBOL(memremap); |
| |
| void memunmap(void *addr) |
| { |
| if (is_vmalloc_addr(addr)) |
| iounmap((void __iomem *) addr); |
| } |
| EXPORT_SYMBOL(memunmap); |
| |
| static void devm_memremap_release(struct device *dev, void *res) |
| { |
| memunmap(*(void **)res); |
| } |
| |
| static int devm_memremap_match(struct device *dev, void *res, void *match_data) |
| { |
| return *(void **)res == match_data; |
| } |
| |
| void *devm_memremap(struct device *dev, resource_size_t offset, |
| size_t size, unsigned long flags) |
| { |
| void **ptr, *addr; |
| |
| ptr = devres_alloc_node(devm_memremap_release, sizeof(*ptr), GFP_KERNEL, |
| dev_to_node(dev)); |
| if (!ptr) |
| return ERR_PTR(-ENOMEM); |
| |
| addr = memremap(offset, size, flags); |
| if (addr) { |
| *ptr = addr; |
| devres_add(dev, ptr); |
| } else { |
| devres_free(ptr); |
| return ERR_PTR(-ENXIO); |
| } |
| |
| return addr; |
| } |
| EXPORT_SYMBOL(devm_memremap); |
| |
| void devm_memunmap(struct device *dev, void *addr) |
| { |
| WARN_ON(devres_release(dev, devm_memremap_release, |
| devm_memremap_match, addr)); |
| } |
| EXPORT_SYMBOL(devm_memunmap); |