|  | /* memcontrol.c - Memory Controller | 
|  | * | 
|  | * Copyright IBM Corporation, 2007 | 
|  | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | 
|  | * | 
|  | * Copyright 2007 OpenVZ SWsoft Inc | 
|  | * Author: Pavel Emelianov <xemul@openvz.org> | 
|  | * | 
|  | * Memory thresholds | 
|  | * Copyright (C) 2009 Nokia Corporation | 
|  | * Author: Kirill A. Shutemov | 
|  | * | 
|  | * Kernel Memory Controller | 
|  | * Copyright (C) 2012 Parallels Inc. and Google Inc. | 
|  | * Authors: Glauber Costa and Suleiman Souhlal | 
|  | * | 
|  | * Native page reclaim | 
|  | * Charge lifetime sanitation | 
|  | * Lockless page tracking & accounting | 
|  | * Unified hierarchy configuration model | 
|  | * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/page_counter.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/limits.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/eventfd.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/vmpressure.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/swap_cgroup.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/lockdep.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/tracehook.h> | 
|  | #include "internal.h" | 
|  | #include <net/sock.h> | 
|  | #include <net/ip.h> | 
|  | #include "slab.h" | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include <trace/events/vmscan.h> | 
|  |  | 
|  | struct cgroup_subsys memory_cgrp_subsys __read_mostly; | 
|  | EXPORT_SYMBOL(memory_cgrp_subsys); | 
|  |  | 
|  | struct mem_cgroup *root_mem_cgroup __read_mostly; | 
|  |  | 
|  | #define MEM_CGROUP_RECLAIM_RETRIES	5 | 
|  |  | 
|  | /* Socket memory accounting disabled? */ | 
|  | static bool cgroup_memory_nosocket; | 
|  |  | 
|  | /* Kernel memory accounting disabled? */ | 
|  | static bool cgroup_memory_nokmem; | 
|  |  | 
|  | /* Whether the swap controller is active */ | 
|  | #ifdef CONFIG_MEMCG_SWAP | 
|  | int do_swap_account __read_mostly; | 
|  | #else | 
|  | #define do_swap_account		0 | 
|  | #endif | 
|  |  | 
|  | /* Whether legacy memory+swap accounting is active */ | 
|  | static bool do_memsw_account(void) | 
|  | { | 
|  | return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; | 
|  | } | 
|  |  | 
|  | static const char * const mem_cgroup_stat_names[] = { | 
|  | "cache", | 
|  | "rss", | 
|  | "rss_huge", | 
|  | "mapped_file", | 
|  | "dirty", | 
|  | "writeback", | 
|  | "swap", | 
|  | }; | 
|  |  | 
|  | static const char * const mem_cgroup_events_names[] = { | 
|  | "pgpgin", | 
|  | "pgpgout", | 
|  | "pgfault", | 
|  | "pgmajfault", | 
|  | }; | 
|  |  | 
|  | static const char * const mem_cgroup_lru_names[] = { | 
|  | "inactive_anon", | 
|  | "active_anon", | 
|  | "inactive_file", | 
|  | "active_file", | 
|  | "unevictable", | 
|  | }; | 
|  |  | 
|  | #define THRESHOLDS_EVENTS_TARGET 128 | 
|  | #define SOFTLIMIT_EVENTS_TARGET 1024 | 
|  | #define NUMAINFO_EVENTS_TARGET	1024 | 
|  |  | 
|  | /* | 
|  | * Cgroups above their limits are maintained in a RB-Tree, independent of | 
|  | * their hierarchy representation | 
|  | */ | 
|  |  | 
|  | struct mem_cgroup_tree_per_zone { | 
|  | struct rb_root rb_root; | 
|  | spinlock_t lock; | 
|  | }; | 
|  |  | 
|  | struct mem_cgroup_tree_per_node { | 
|  | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | 
|  | }; | 
|  |  | 
|  | struct mem_cgroup_tree { | 
|  | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | 
|  | }; | 
|  |  | 
|  | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | 
|  |  | 
|  | /* for OOM */ | 
|  | struct mem_cgroup_eventfd_list { | 
|  | struct list_head list; | 
|  | struct eventfd_ctx *eventfd; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * cgroup_event represents events which userspace want to receive. | 
|  | */ | 
|  | struct mem_cgroup_event { | 
|  | /* | 
|  | * memcg which the event belongs to. | 
|  | */ | 
|  | struct mem_cgroup *memcg; | 
|  | /* | 
|  | * eventfd to signal userspace about the event. | 
|  | */ | 
|  | struct eventfd_ctx *eventfd; | 
|  | /* | 
|  | * Each of these stored in a list by the cgroup. | 
|  | */ | 
|  | struct list_head list; | 
|  | /* | 
|  | * register_event() callback will be used to add new userspace | 
|  | * waiter for changes related to this event.  Use eventfd_signal() | 
|  | * on eventfd to send notification to userspace. | 
|  | */ | 
|  | int (*register_event)(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd, const char *args); | 
|  | /* | 
|  | * unregister_event() callback will be called when userspace closes | 
|  | * the eventfd or on cgroup removing.  This callback must be set, | 
|  | * if you want provide notification functionality. | 
|  | */ | 
|  | void (*unregister_event)(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd); | 
|  | /* | 
|  | * All fields below needed to unregister event when | 
|  | * userspace closes eventfd. | 
|  | */ | 
|  | poll_table pt; | 
|  | wait_queue_head_t *wqh; | 
|  | wait_queue_t wait; | 
|  | struct work_struct remove; | 
|  | }; | 
|  |  | 
|  | static void mem_cgroup_threshold(struct mem_cgroup *memcg); | 
|  | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | 
|  |  | 
|  | /* Stuffs for move charges at task migration. */ | 
|  | /* | 
|  | * Types of charges to be moved. | 
|  | */ | 
|  | #define MOVE_ANON	0x1U | 
|  | #define MOVE_FILE	0x2U | 
|  | #define MOVE_MASK	(MOVE_ANON | MOVE_FILE) | 
|  |  | 
|  | /* "mc" and its members are protected by cgroup_mutex */ | 
|  | static struct move_charge_struct { | 
|  | spinlock_t	  lock; /* for from, to */ | 
|  | struct mem_cgroup *from; | 
|  | struct mem_cgroup *to; | 
|  | unsigned long flags; | 
|  | unsigned long precharge; | 
|  | unsigned long moved_charge; | 
|  | unsigned long moved_swap; | 
|  | struct task_struct *moving_task;	/* a task moving charges */ | 
|  | wait_queue_head_t waitq;		/* a waitq for other context */ | 
|  | } mc = { | 
|  | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), | 
|  | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | 
|  | * limit reclaim to prevent infinite loops, if they ever occur. | 
|  | */ | 
|  | #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100 | 
|  | #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2 | 
|  |  | 
|  | enum charge_type { | 
|  | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 
|  | MEM_CGROUP_CHARGE_TYPE_ANON, | 
|  | MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */ | 
|  | MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */ | 
|  | NR_CHARGE_TYPE, | 
|  | }; | 
|  |  | 
|  | /* for encoding cft->private value on file */ | 
|  | enum res_type { | 
|  | _MEM, | 
|  | _MEMSWAP, | 
|  | _OOM_TYPE, | 
|  | _KMEM, | 
|  | _TCP, | 
|  | }; | 
|  |  | 
|  | #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val)) | 
|  | #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff) | 
|  | #define MEMFILE_ATTR(val)	((val) & 0xffff) | 
|  | /* Used for OOM nofiier */ | 
|  | #define OOM_CONTROL		(0) | 
|  |  | 
|  | /* Some nice accessors for the vmpressure. */ | 
|  | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | 
|  | { | 
|  | if (!memcg) | 
|  | memcg = root_mem_cgroup; | 
|  | return &memcg->vmpressure; | 
|  | } | 
|  |  | 
|  | struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) | 
|  | { | 
|  | return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; | 
|  | } | 
|  |  | 
|  | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) | 
|  | { | 
|  | return (memcg == root_mem_cgroup); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SLOB | 
|  | /* | 
|  | * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. | 
|  | * The main reason for not using cgroup id for this: | 
|  | *  this works better in sparse environments, where we have a lot of memcgs, | 
|  | *  but only a few kmem-limited. Or also, if we have, for instance, 200 | 
|  | *  memcgs, and none but the 200th is kmem-limited, we'd have to have a | 
|  | *  200 entry array for that. | 
|  | * | 
|  | * The current size of the caches array is stored in memcg_nr_cache_ids. It | 
|  | * will double each time we have to increase it. | 
|  | */ | 
|  | static DEFINE_IDA(memcg_cache_ida); | 
|  | int memcg_nr_cache_ids; | 
|  |  | 
|  | /* Protects memcg_nr_cache_ids */ | 
|  | static DECLARE_RWSEM(memcg_cache_ids_sem); | 
|  |  | 
|  | void memcg_get_cache_ids(void) | 
|  | { | 
|  | down_read(&memcg_cache_ids_sem); | 
|  | } | 
|  |  | 
|  | void memcg_put_cache_ids(void) | 
|  | { | 
|  | up_read(&memcg_cache_ids_sem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MIN_SIZE is different than 1, because we would like to avoid going through | 
|  | * the alloc/free process all the time. In a small machine, 4 kmem-limited | 
|  | * cgroups is a reasonable guess. In the future, it could be a parameter or | 
|  | * tunable, but that is strictly not necessary. | 
|  | * | 
|  | * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get | 
|  | * this constant directly from cgroup, but it is understandable that this is | 
|  | * better kept as an internal representation in cgroup.c. In any case, the | 
|  | * cgrp_id space is not getting any smaller, and we don't have to necessarily | 
|  | * increase ours as well if it increases. | 
|  | */ | 
|  | #define MEMCG_CACHES_MIN_SIZE 4 | 
|  | #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX | 
|  |  | 
|  | /* | 
|  | * A lot of the calls to the cache allocation functions are expected to be | 
|  | * inlined by the compiler. Since the calls to memcg_kmem_get_cache are | 
|  | * conditional to this static branch, we'll have to allow modules that does | 
|  | * kmem_cache_alloc and the such to see this symbol as well | 
|  | */ | 
|  | DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); | 
|  | EXPORT_SYMBOL(memcg_kmem_enabled_key); | 
|  |  | 
|  | #endif /* !CONFIG_SLOB */ | 
|  |  | 
|  | static struct mem_cgroup_per_zone * | 
|  | mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) | 
|  | { | 
|  | int nid = zone_to_nid(zone); | 
|  | int zid = zone_idx(zone); | 
|  |  | 
|  | return &memcg->nodeinfo[nid]->zoneinfo[zid]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_css_from_page - css of the memcg associated with a page | 
|  | * @page: page of interest | 
|  | * | 
|  | * If memcg is bound to the default hierarchy, css of the memcg associated | 
|  | * with @page is returned.  The returned css remains associated with @page | 
|  | * until it is released. | 
|  | * | 
|  | * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup | 
|  | * is returned. | 
|  | */ | 
|  | struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | memcg = page->mem_cgroup; | 
|  |  | 
|  | if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | memcg = root_mem_cgroup; | 
|  |  | 
|  | return &memcg->css; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_cgroup_ino - return inode number of the memcg a page is charged to | 
|  | * @page: the page | 
|  | * | 
|  | * Look up the closest online ancestor of the memory cgroup @page is charged to | 
|  | * and return its inode number or 0 if @page is not charged to any cgroup. It | 
|  | * is safe to call this function without holding a reference to @page. | 
|  | * | 
|  | * Note, this function is inherently racy, because there is nothing to prevent | 
|  | * the cgroup inode from getting torn down and potentially reallocated a moment | 
|  | * after page_cgroup_ino() returns, so it only should be used by callers that | 
|  | * do not care (such as procfs interfaces). | 
|  | */ | 
|  | ino_t page_cgroup_ino(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned long ino = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = READ_ONCE(page->mem_cgroup); | 
|  | while (memcg && !(memcg->css.flags & CSS_ONLINE)) | 
|  | memcg = parent_mem_cgroup(memcg); | 
|  | if (memcg) | 
|  | ino = cgroup_ino(memcg->css.cgroup); | 
|  | rcu_read_unlock(); | 
|  | return ino; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_per_zone * | 
|  | mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) | 
|  | { | 
|  | int nid = page_to_nid(page); | 
|  | int zid = page_zonenum(page); | 
|  |  | 
|  | return &memcg->nodeinfo[nid]->zoneinfo[zid]; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_tree_per_zone * | 
|  | soft_limit_tree_node_zone(int nid, int zid) | 
|  | { | 
|  | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_tree_per_zone * | 
|  | soft_limit_tree_from_page(struct page *page) | 
|  | { | 
|  | int nid = page_to_nid(page); | 
|  | int zid = page_zonenum(page); | 
|  |  | 
|  | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, | 
|  | struct mem_cgroup_tree_per_zone *mctz, | 
|  | unsigned long new_usage_in_excess) | 
|  | { | 
|  | struct rb_node **p = &mctz->rb_root.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct mem_cgroup_per_zone *mz_node; | 
|  |  | 
|  | if (mz->on_tree) | 
|  | return; | 
|  |  | 
|  | mz->usage_in_excess = new_usage_in_excess; | 
|  | if (!mz->usage_in_excess) | 
|  | return; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | 
|  | tree_node); | 
|  | if (mz->usage_in_excess < mz_node->usage_in_excess) | 
|  | p = &(*p)->rb_left; | 
|  | /* | 
|  | * We can't avoid mem cgroups that are over their soft | 
|  | * limit by the same amount | 
|  | */ | 
|  | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | 
|  | p = &(*p)->rb_right; | 
|  | } | 
|  | rb_link_node(&mz->tree_node, parent, p); | 
|  | rb_insert_color(&mz->tree_node, &mctz->rb_root); | 
|  | mz->on_tree = true; | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, | 
|  | struct mem_cgroup_tree_per_zone *mctz) | 
|  | { | 
|  | if (!mz->on_tree) | 
|  | return; | 
|  | rb_erase(&mz->tree_node, &mctz->rb_root); | 
|  | mz->on_tree = false; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, | 
|  | struct mem_cgroup_tree_per_zone *mctz) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&mctz->lock, flags); | 
|  | __mem_cgroup_remove_exceeded(mz, mctz); | 
|  | spin_unlock_irqrestore(&mctz->lock, flags); | 
|  | } | 
|  |  | 
|  | static unsigned long soft_limit_excess(struct mem_cgroup *memcg) | 
|  | { | 
|  | unsigned long nr_pages = page_counter_read(&memcg->memory); | 
|  | unsigned long soft_limit = READ_ONCE(memcg->soft_limit); | 
|  | unsigned long excess = 0; | 
|  |  | 
|  | if (nr_pages > soft_limit) | 
|  | excess = nr_pages - soft_limit; | 
|  |  | 
|  | return excess; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) | 
|  | { | 
|  | unsigned long excess; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | struct mem_cgroup_tree_per_zone *mctz; | 
|  |  | 
|  | mctz = soft_limit_tree_from_page(page); | 
|  | /* | 
|  | * Necessary to update all ancestors when hierarchy is used. | 
|  | * because their event counter is not touched. | 
|  | */ | 
|  | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | 
|  | mz = mem_cgroup_page_zoneinfo(memcg, page); | 
|  | excess = soft_limit_excess(memcg); | 
|  | /* | 
|  | * We have to update the tree if mz is on RB-tree or | 
|  | * mem is over its softlimit. | 
|  | */ | 
|  | if (excess || mz->on_tree) { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&mctz->lock, flags); | 
|  | /* if on-tree, remove it */ | 
|  | if (mz->on_tree) | 
|  | __mem_cgroup_remove_exceeded(mz, mctz); | 
|  | /* | 
|  | * Insert again. mz->usage_in_excess will be updated. | 
|  | * If excess is 0, no tree ops. | 
|  | */ | 
|  | __mem_cgroup_insert_exceeded(mz, mctz, excess); | 
|  | spin_unlock_irqrestore(&mctz->lock, flags); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup_tree_per_zone *mctz; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | int nid, zid; | 
|  |  | 
|  | for_each_node(nid) { | 
|  | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | 
|  | mctz = soft_limit_tree_node_zone(nid, zid); | 
|  | mem_cgroup_remove_exceeded(mz, mctz); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_per_zone * | 
|  | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | 
|  | { | 
|  | struct rb_node *rightmost = NULL; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  |  | 
|  | retry: | 
|  | mz = NULL; | 
|  | rightmost = rb_last(&mctz->rb_root); | 
|  | if (!rightmost) | 
|  | goto done;		/* Nothing to reclaim from */ | 
|  |  | 
|  | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | 
|  | /* | 
|  | * Remove the node now but someone else can add it back, | 
|  | * we will to add it back at the end of reclaim to its correct | 
|  | * position in the tree. | 
|  | */ | 
|  | __mem_cgroup_remove_exceeded(mz, mctz); | 
|  | if (!soft_limit_excess(mz->memcg) || | 
|  | !css_tryget_online(&mz->memcg->css)) | 
|  | goto retry; | 
|  | done: | 
|  | return mz; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_per_zone * | 
|  | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | 
|  | { | 
|  | struct mem_cgroup_per_zone *mz; | 
|  |  | 
|  | spin_lock_irq(&mctz->lock); | 
|  | mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
|  | spin_unlock_irq(&mctz->lock); | 
|  | return mz; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return page count for single (non recursive) @memcg. | 
|  | * | 
|  | * Implementation Note: reading percpu statistics for memcg. | 
|  | * | 
|  | * Both of vmstat[] and percpu_counter has threshold and do periodic | 
|  | * synchronization to implement "quick" read. There are trade-off between | 
|  | * reading cost and precision of value. Then, we may have a chance to implement | 
|  | * a periodic synchronization of counter in memcg's counter. | 
|  | * | 
|  | * But this _read() function is used for user interface now. The user accounts | 
|  | * memory usage by memory cgroup and he _always_ requires exact value because | 
|  | * he accounts memory. Even if we provide quick-and-fuzzy read, we always | 
|  | * have to visit all online cpus and make sum. So, for now, unnecessary | 
|  | * synchronization is not implemented. (just implemented for cpu hotplug) | 
|  | * | 
|  | * If there are kernel internal actions which can make use of some not-exact | 
|  | * value, and reading all cpu value can be performance bottleneck in some | 
|  | * common workload, threshold and synchronization as vmstat[] should be | 
|  | * implemented. | 
|  | */ | 
|  | static unsigned long | 
|  | mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) | 
|  | { | 
|  | long val = 0; | 
|  | int cpu; | 
|  |  | 
|  | /* Per-cpu values can be negative, use a signed accumulator */ | 
|  | for_each_possible_cpu(cpu) | 
|  | val += per_cpu(memcg->stat->count[idx], cpu); | 
|  | /* | 
|  | * Summing races with updates, so val may be negative.  Avoid exposing | 
|  | * transient negative values. | 
|  | */ | 
|  | if (val < 0) | 
|  | val = 0; | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, | 
|  | enum mem_cgroup_events_index idx) | 
|  | { | 
|  | unsigned long val = 0; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | val += per_cpu(memcg->stat->events[idx], cpu); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, | 
|  | struct page *page, | 
|  | bool compound, int nr_pages) | 
|  | { | 
|  | /* | 
|  | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | 
|  | * counted as CACHE even if it's on ANON LRU. | 
|  | */ | 
|  | if (PageAnon(page)) | 
|  | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], | 
|  | nr_pages); | 
|  | else | 
|  | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], | 
|  | nr_pages); | 
|  |  | 
|  | if (compound) { | 
|  | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | 
|  | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], | 
|  | nr_pages); | 
|  | } | 
|  |  | 
|  | /* pagein of a big page is an event. So, ignore page size */ | 
|  | if (nr_pages > 0) | 
|  | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); | 
|  | else { | 
|  | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); | 
|  | nr_pages = -nr_pages; /* for event */ | 
|  | } | 
|  |  | 
|  | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); | 
|  | } | 
|  |  | 
|  | unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, | 
|  | int nid, unsigned int lru_mask) | 
|  | { | 
|  | unsigned long nr = 0; | 
|  | int zid; | 
|  |  | 
|  | VM_BUG_ON((unsigned)nid >= nr_node_ids); | 
|  |  | 
|  | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | enum lru_list lru; | 
|  |  | 
|  | for_each_lru(lru) { | 
|  | if (!(BIT(lru) & lru_mask)) | 
|  | continue; | 
|  | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | 
|  | nr += mz->lru_size[lru]; | 
|  | } | 
|  | } | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, | 
|  | unsigned int lru_mask) | 
|  | { | 
|  | unsigned long nr = 0; | 
|  | int nid; | 
|  |  | 
|  | for_each_node_state(nid, N_MEMORY) | 
|  | nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, | 
|  | enum mem_cgroup_events_target target) | 
|  | { | 
|  | unsigned long val, next; | 
|  |  | 
|  | val = __this_cpu_read(memcg->stat->nr_page_events); | 
|  | next = __this_cpu_read(memcg->stat->targets[target]); | 
|  | /* from time_after() in jiffies.h */ | 
|  | if ((long)next - (long)val < 0) { | 
|  | switch (target) { | 
|  | case MEM_CGROUP_TARGET_THRESH: | 
|  | next = val + THRESHOLDS_EVENTS_TARGET; | 
|  | break; | 
|  | case MEM_CGROUP_TARGET_SOFTLIMIT: | 
|  | next = val + SOFTLIMIT_EVENTS_TARGET; | 
|  | break; | 
|  | case MEM_CGROUP_TARGET_NUMAINFO: | 
|  | next = val + NUMAINFO_EVENTS_TARGET; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | __this_cpu_write(memcg->stat->targets[target], next); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check events in order. | 
|  | * | 
|  | */ | 
|  | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) | 
|  | { | 
|  | /* threshold event is triggered in finer grain than soft limit */ | 
|  | if (unlikely(mem_cgroup_event_ratelimit(memcg, | 
|  | MEM_CGROUP_TARGET_THRESH))) { | 
|  | bool do_softlimit; | 
|  | bool do_numainfo __maybe_unused; | 
|  |  | 
|  | do_softlimit = mem_cgroup_event_ratelimit(memcg, | 
|  | MEM_CGROUP_TARGET_SOFTLIMIT); | 
|  | #if MAX_NUMNODES > 1 | 
|  | do_numainfo = mem_cgroup_event_ratelimit(memcg, | 
|  | MEM_CGROUP_TARGET_NUMAINFO); | 
|  | #endif | 
|  | mem_cgroup_threshold(memcg); | 
|  | if (unlikely(do_softlimit)) | 
|  | mem_cgroup_update_tree(memcg, page); | 
|  | #if MAX_NUMNODES > 1 | 
|  | if (unlikely(do_numainfo)) | 
|  | atomic_inc(&memcg->numainfo_events); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * mm_update_next_owner() may clear mm->owner to NULL | 
|  | * if it races with swapoff, page migration, etc. | 
|  | * So this can be called with p == NULL. | 
|  | */ | 
|  | if (unlikely(!p)) | 
|  | return NULL; | 
|  |  | 
|  | return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); | 
|  | } | 
|  | EXPORT_SYMBOL(mem_cgroup_from_task); | 
|  |  | 
|  | static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) | 
|  | { | 
|  | struct mem_cgroup *memcg = NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | /* | 
|  | * Page cache insertions can happen withou an | 
|  | * actual mm context, e.g. during disk probing | 
|  | * on boot, loopback IO, acct() writes etc. | 
|  | */ | 
|  | if (unlikely(!mm)) | 
|  | memcg = root_mem_cgroup; | 
|  | else { | 
|  | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 
|  | if (unlikely(!memcg)) | 
|  | memcg = root_mem_cgroup; | 
|  | } | 
|  | } while (!css_tryget_online(&memcg->css)); | 
|  | rcu_read_unlock(); | 
|  | return memcg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_iter - iterate over memory cgroup hierarchy | 
|  | * @root: hierarchy root | 
|  | * @prev: previously returned memcg, NULL on first invocation | 
|  | * @reclaim: cookie for shared reclaim walks, NULL for full walks | 
|  | * | 
|  | * Returns references to children of the hierarchy below @root, or | 
|  | * @root itself, or %NULL after a full round-trip. | 
|  | * | 
|  | * Caller must pass the return value in @prev on subsequent | 
|  | * invocations for reference counting, or use mem_cgroup_iter_break() | 
|  | * to cancel a hierarchy walk before the round-trip is complete. | 
|  | * | 
|  | * Reclaimers can specify a zone and a priority level in @reclaim to | 
|  | * divide up the memcgs in the hierarchy among all concurrent | 
|  | * reclaimers operating on the same zone and priority. | 
|  | */ | 
|  | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, | 
|  | struct mem_cgroup *prev, | 
|  | struct mem_cgroup_reclaim_cookie *reclaim) | 
|  | { | 
|  | struct mem_cgroup_reclaim_iter *uninitialized_var(iter); | 
|  | struct cgroup_subsys_state *css = NULL; | 
|  | struct mem_cgroup *memcg = NULL; | 
|  | struct mem_cgroup *pos = NULL; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return NULL; | 
|  |  | 
|  | if (!root) | 
|  | root = root_mem_cgroup; | 
|  |  | 
|  | if (prev && !reclaim) | 
|  | pos = prev; | 
|  |  | 
|  | if (!root->use_hierarchy && root != root_mem_cgroup) { | 
|  | if (prev) | 
|  | goto out; | 
|  | return root; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | if (reclaim) { | 
|  | struct mem_cgroup_per_zone *mz; | 
|  |  | 
|  | mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); | 
|  | iter = &mz->iter[reclaim->priority]; | 
|  |  | 
|  | if (prev && reclaim->generation != iter->generation) | 
|  | goto out_unlock; | 
|  |  | 
|  | while (1) { | 
|  | pos = READ_ONCE(iter->position); | 
|  | if (!pos || css_tryget(&pos->css)) | 
|  | break; | 
|  | /* | 
|  | * css reference reached zero, so iter->position will | 
|  | * be cleared by ->css_released. However, we should not | 
|  | * rely on this happening soon, because ->css_released | 
|  | * is called from a work queue, and by busy-waiting we | 
|  | * might block it. So we clear iter->position right | 
|  | * away. | 
|  | */ | 
|  | (void)cmpxchg(&iter->position, pos, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pos) | 
|  | css = &pos->css; | 
|  |  | 
|  | for (;;) { | 
|  | css = css_next_descendant_pre(css, &root->css); | 
|  | if (!css) { | 
|  | /* | 
|  | * Reclaimers share the hierarchy walk, and a | 
|  | * new one might jump in right at the end of | 
|  | * the hierarchy - make sure they see at least | 
|  | * one group and restart from the beginning. | 
|  | */ | 
|  | if (!prev) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify the css and acquire a reference.  The root | 
|  | * is provided by the caller, so we know it's alive | 
|  | * and kicking, and don't take an extra reference. | 
|  | */ | 
|  | memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | if (css == &root->css) | 
|  | break; | 
|  |  | 
|  | if (css_tryget(css)) | 
|  | break; | 
|  |  | 
|  | memcg = NULL; | 
|  | } | 
|  |  | 
|  | if (reclaim) { | 
|  | /* | 
|  | * The position could have already been updated by a competing | 
|  | * thread, so check that the value hasn't changed since we read | 
|  | * it to avoid reclaiming from the same cgroup twice. | 
|  | */ | 
|  | (void)cmpxchg(&iter->position, pos, memcg); | 
|  |  | 
|  | if (pos) | 
|  | css_put(&pos->css); | 
|  |  | 
|  | if (!memcg) | 
|  | iter->generation++; | 
|  | else if (!prev) | 
|  | reclaim->generation = iter->generation; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | rcu_read_unlock(); | 
|  | out: | 
|  | if (prev && prev != root) | 
|  | css_put(&prev->css); | 
|  |  | 
|  | return memcg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | 
|  | * @root: hierarchy root | 
|  | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | 
|  | */ | 
|  | void mem_cgroup_iter_break(struct mem_cgroup *root, | 
|  | struct mem_cgroup *prev) | 
|  | { | 
|  | if (!root) | 
|  | root = root_mem_cgroup; | 
|  | if (prev && prev != root) | 
|  | css_put(&prev->css); | 
|  | } | 
|  |  | 
|  | static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) | 
|  | { | 
|  | struct mem_cgroup *memcg = dead_memcg; | 
|  | struct mem_cgroup_reclaim_iter *iter; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | int nid, zid; | 
|  | int i; | 
|  |  | 
|  | while ((memcg = parent_mem_cgroup(memcg))) { | 
|  | for_each_node(nid) { | 
|  | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | 
|  | for (i = 0; i <= DEF_PRIORITY; i++) { | 
|  | iter = &mz->iter[i]; | 
|  | cmpxchg(&iter->position, | 
|  | dead_memcg, NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iteration constructs for visiting all cgroups (under a tree).  If | 
|  | * loops are exited prematurely (break), mem_cgroup_iter_break() must | 
|  | * be used for reference counting. | 
|  | */ | 
|  | #define for_each_mem_cgroup_tree(iter, root)		\ | 
|  | for (iter = mem_cgroup_iter(root, NULL, NULL);	\ | 
|  | iter != NULL;				\ | 
|  | iter = mem_cgroup_iter(root, iter, NULL)) | 
|  |  | 
|  | #define for_each_mem_cgroup(iter)			\ | 
|  | for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\ | 
|  | iter != NULL;				\ | 
|  | iter = mem_cgroup_iter(NULL, iter, NULL)) | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg | 
|  | * @zone: zone of the wanted lruvec | 
|  | * @memcg: memcg of the wanted lruvec | 
|  | * | 
|  | * Returns the lru list vector holding pages for the given @zone and | 
|  | * @mem.  This can be the global zone lruvec, if the memory controller | 
|  | * is disabled. | 
|  | */ | 
|  | struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, | 
|  | struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | if (mem_cgroup_disabled()) { | 
|  | lruvec = &zone->lruvec; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mz = mem_cgroup_zone_zoneinfo(memcg, zone); | 
|  | lruvec = &mz->lruvec; | 
|  | out: | 
|  | /* | 
|  | * Since a node can be onlined after the mem_cgroup was created, | 
|  | * we have to be prepared to initialize lruvec->zone here; | 
|  | * and if offlined then reonlined, we need to reinitialize it. | 
|  | */ | 
|  | if (unlikely(lruvec->zone != zone)) | 
|  | lruvec->zone = zone; | 
|  | return lruvec; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page | 
|  | * @page: the page | 
|  | * @zone: zone of the page | 
|  | * | 
|  | * This function is only safe when following the LRU page isolation | 
|  | * and putback protocol: the LRU lock must be held, and the page must | 
|  | * either be PageLRU() or the caller must have isolated/allocated it. | 
|  | */ | 
|  | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) | 
|  | { | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | struct mem_cgroup *memcg; | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | if (mem_cgroup_disabled()) { | 
|  | lruvec = &zone->lruvec; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | memcg = page->mem_cgroup; | 
|  | /* | 
|  | * Swapcache readahead pages are added to the LRU - and | 
|  | * possibly migrated - before they are charged. | 
|  | */ | 
|  | if (!memcg) | 
|  | memcg = root_mem_cgroup; | 
|  |  | 
|  | mz = mem_cgroup_page_zoneinfo(memcg, page); | 
|  | lruvec = &mz->lruvec; | 
|  | out: | 
|  | /* | 
|  | * Since a node can be onlined after the mem_cgroup was created, | 
|  | * we have to be prepared to initialize lruvec->zone here; | 
|  | * and if offlined then reonlined, we need to reinitialize it. | 
|  | */ | 
|  | if (unlikely(lruvec->zone != zone)) | 
|  | lruvec->zone = zone; | 
|  | return lruvec; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_update_lru_size - account for adding or removing an lru page | 
|  | * @lruvec: mem_cgroup per zone lru vector | 
|  | * @lru: index of lru list the page is sitting on | 
|  | * @nr_pages: positive when adding or negative when removing | 
|  | * | 
|  | * This function must be called when a page is added to or removed from an | 
|  | * lru list. | 
|  | */ | 
|  | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, | 
|  | int nr_pages) | 
|  | { | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | unsigned long *lru_size; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); | 
|  | lru_size = mz->lru_size + lru; | 
|  | *lru_size += nr_pages; | 
|  | VM_BUG_ON((long)(*lru_size) < 0); | 
|  | } | 
|  |  | 
|  | bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *task_memcg; | 
|  | struct task_struct *p; | 
|  | bool ret; | 
|  |  | 
|  | p = find_lock_task_mm(task); | 
|  | if (p) { | 
|  | task_memcg = get_mem_cgroup_from_mm(p->mm); | 
|  | task_unlock(p); | 
|  | } else { | 
|  | /* | 
|  | * All threads may have already detached their mm's, but the oom | 
|  | * killer still needs to detect if they have already been oom | 
|  | * killed to prevent needlessly killing additional tasks. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | task_memcg = mem_cgroup_from_task(task); | 
|  | css_get(&task_memcg->css); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | ret = mem_cgroup_is_descendant(task_memcg, memcg); | 
|  | css_put(&task_memcg->css); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_margin - calculate chargeable space of a memory cgroup | 
|  | * @memcg: the memory cgroup | 
|  | * | 
|  | * Returns the maximum amount of memory @mem can be charged with, in | 
|  | * pages. | 
|  | */ | 
|  | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) | 
|  | { | 
|  | unsigned long margin = 0; | 
|  | unsigned long count; | 
|  | unsigned long limit; | 
|  |  | 
|  | count = page_counter_read(&memcg->memory); | 
|  | limit = READ_ONCE(memcg->memory.limit); | 
|  | if (count < limit) | 
|  | margin = limit - count; | 
|  |  | 
|  | if (do_memsw_account()) { | 
|  | count = page_counter_read(&memcg->memsw); | 
|  | limit = READ_ONCE(memcg->memsw.limit); | 
|  | if (count <= limit) | 
|  | margin = min(margin, limit - count); | 
|  | } | 
|  |  | 
|  | return margin; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A routine for checking "mem" is under move_account() or not. | 
|  | * | 
|  | * Checking a cgroup is mc.from or mc.to or under hierarchy of | 
|  | * moving cgroups. This is for waiting at high-memory pressure | 
|  | * caused by "move". | 
|  | */ | 
|  | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *from; | 
|  | struct mem_cgroup *to; | 
|  | bool ret = false; | 
|  | /* | 
|  | * Unlike task_move routines, we access mc.to, mc.from not under | 
|  | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | 
|  | */ | 
|  | spin_lock(&mc.lock); | 
|  | from = mc.from; | 
|  | to = mc.to; | 
|  | if (!from) | 
|  | goto unlock; | 
|  |  | 
|  | ret = mem_cgroup_is_descendant(from, memcg) || | 
|  | mem_cgroup_is_descendant(to, memcg); | 
|  | unlock: | 
|  | spin_unlock(&mc.lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) | 
|  | { | 
|  | if (mc.moving_task && current != mc.moving_task) { | 
|  | if (mem_cgroup_under_move(memcg)) { | 
|  | DEFINE_WAIT(wait); | 
|  | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | 
|  | /* moving charge context might have finished. */ | 
|  | if (mc.moving_task) | 
|  | schedule(); | 
|  | finish_wait(&mc.waitq, &wait); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
|  | /** | 
|  | * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. | 
|  | * @memcg: The memory cgroup that went over limit | 
|  | * @p: Task that is going to be killed | 
|  | * | 
|  | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | 
|  | * enabled | 
|  | */ | 
|  | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  | unsigned int i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | if (p) { | 
|  | pr_info("Task in "); | 
|  | pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); | 
|  | pr_cont(" killed as a result of limit of "); | 
|  | } else { | 
|  | pr_info("Memory limit reached of cgroup "); | 
|  | } | 
|  |  | 
|  | pr_cont_cgroup_path(memcg->css.cgroup); | 
|  | pr_cont("\n"); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | K((u64)page_counter_read(&memcg->memory)), | 
|  | K((u64)memcg->memory.limit), memcg->memory.failcnt); | 
|  | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | K((u64)page_counter_read(&memcg->memsw)), | 
|  | K((u64)memcg->memsw.limit), memcg->memsw.failcnt); | 
|  | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | K((u64)page_counter_read(&memcg->kmem)), | 
|  | K((u64)memcg->kmem.limit), memcg->kmem.failcnt); | 
|  |  | 
|  | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | pr_info("Memory cgroup stats for "); | 
|  | pr_cont_cgroup_path(iter->css.cgroup); | 
|  | pr_cont(":"); | 
|  |  | 
|  | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | 
|  | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | 
|  | continue; | 
|  | pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], | 
|  | K(mem_cgroup_read_stat(iter, i))); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NR_LRU_LISTS; i++) | 
|  | pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], | 
|  | K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); | 
|  |  | 
|  | pr_cont("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function returns the number of memcg under hierarchy tree. Returns | 
|  | * 1(self count) if no children. | 
|  | */ | 
|  | static int mem_cgroup_count_children(struct mem_cgroup *memcg) | 
|  | { | 
|  | int num = 0; | 
|  | struct mem_cgroup *iter; | 
|  |  | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | num++; | 
|  | return num; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the memory (and swap, if configured) limit for a memcg. | 
|  | */ | 
|  | static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) | 
|  | { | 
|  | unsigned long limit; | 
|  |  | 
|  | limit = memcg->memory.limit; | 
|  | if (mem_cgroup_swappiness(memcg)) { | 
|  | unsigned long memsw_limit; | 
|  | unsigned long swap_limit; | 
|  |  | 
|  | memsw_limit = memcg->memsw.limit; | 
|  | swap_limit = memcg->swap.limit; | 
|  | swap_limit = min(swap_limit, (unsigned long)total_swap_pages); | 
|  | limit = min(limit + swap_limit, memsw_limit); | 
|  | } | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
|  | int order) | 
|  | { | 
|  | struct oom_control oc = { | 
|  | .zonelist = NULL, | 
|  | .nodemask = NULL, | 
|  | .gfp_mask = gfp_mask, | 
|  | .order = order, | 
|  | }; | 
|  | struct mem_cgroup *iter; | 
|  | unsigned long chosen_points = 0; | 
|  | unsigned long totalpages; | 
|  | unsigned int points = 0; | 
|  | struct task_struct *chosen = NULL; | 
|  |  | 
|  | mutex_lock(&oom_lock); | 
|  |  | 
|  | /* | 
|  | * If current has a pending SIGKILL or is exiting, then automatically | 
|  | * select it.  The goal is to allow it to allocate so that it may | 
|  | * quickly exit and free its memory. | 
|  | */ | 
|  | if (fatal_signal_pending(current) || task_will_free_mem(current)) { | 
|  | mark_oom_victim(current); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg); | 
|  | totalpages = mem_cgroup_get_limit(memcg) ? : 1; | 
|  | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | struct css_task_iter it; | 
|  | struct task_struct *task; | 
|  |  | 
|  | css_task_iter_start(&iter->css, &it); | 
|  | while ((task = css_task_iter_next(&it))) { | 
|  | switch (oom_scan_process_thread(&oc, task, totalpages)) { | 
|  | case OOM_SCAN_SELECT: | 
|  | if (chosen) | 
|  | put_task_struct(chosen); | 
|  | chosen = task; | 
|  | chosen_points = ULONG_MAX; | 
|  | get_task_struct(chosen); | 
|  | /* fall through */ | 
|  | case OOM_SCAN_CONTINUE: | 
|  | continue; | 
|  | case OOM_SCAN_ABORT: | 
|  | css_task_iter_end(&it); | 
|  | mem_cgroup_iter_break(memcg, iter); | 
|  | if (chosen) | 
|  | put_task_struct(chosen); | 
|  | goto unlock; | 
|  | case OOM_SCAN_OK: | 
|  | break; | 
|  | }; | 
|  | points = oom_badness(task, memcg, NULL, totalpages); | 
|  | if (!points || points < chosen_points) | 
|  | continue; | 
|  | /* Prefer thread group leaders for display purposes */ | 
|  | if (points == chosen_points && | 
|  | thread_group_leader(chosen)) | 
|  | continue; | 
|  |  | 
|  | if (chosen) | 
|  | put_task_struct(chosen); | 
|  | chosen = task; | 
|  | chosen_points = points; | 
|  | get_task_struct(chosen); | 
|  | } | 
|  | css_task_iter_end(&it); | 
|  | } | 
|  |  | 
|  | if (chosen) { | 
|  | points = chosen_points * 1000 / totalpages; | 
|  | oom_kill_process(&oc, chosen, points, totalpages, memcg, | 
|  | "Memory cgroup out of memory"); | 
|  | } | 
|  | unlock: | 
|  | mutex_unlock(&oom_lock); | 
|  | return chosen; | 
|  | } | 
|  |  | 
|  | #if MAX_NUMNODES > 1 | 
|  |  | 
|  | /** | 
|  | * test_mem_cgroup_node_reclaimable | 
|  | * @memcg: the target memcg | 
|  | * @nid: the node ID to be checked. | 
|  | * @noswap : specify true here if the user wants flle only information. | 
|  | * | 
|  | * This function returns whether the specified memcg contains any | 
|  | * reclaimable pages on a node. Returns true if there are any reclaimable | 
|  | * pages in the node. | 
|  | */ | 
|  | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, | 
|  | int nid, bool noswap) | 
|  | { | 
|  | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) | 
|  | return true; | 
|  | if (noswap || !total_swap_pages) | 
|  | return false; | 
|  | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) | 
|  | return true; | 
|  | return false; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Always updating the nodemask is not very good - even if we have an empty | 
|  | * list or the wrong list here, we can start from some node and traverse all | 
|  | * nodes based on the zonelist. So update the list loosely once per 10 secs. | 
|  | * | 
|  | */ | 
|  | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) | 
|  | { | 
|  | int nid; | 
|  | /* | 
|  | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | 
|  | * pagein/pageout changes since the last update. | 
|  | */ | 
|  | if (!atomic_read(&memcg->numainfo_events)) | 
|  | return; | 
|  | if (atomic_inc_return(&memcg->numainfo_updating) > 1) | 
|  | return; | 
|  |  | 
|  | /* make a nodemask where this memcg uses memory from */ | 
|  | memcg->scan_nodes = node_states[N_MEMORY]; | 
|  |  | 
|  | for_each_node_mask(nid, node_states[N_MEMORY]) { | 
|  |  | 
|  | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) | 
|  | node_clear(nid, memcg->scan_nodes); | 
|  | } | 
|  |  | 
|  | atomic_set(&memcg->numainfo_events, 0); | 
|  | atomic_set(&memcg->numainfo_updating, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Selecting a node where we start reclaim from. Because what we need is just | 
|  | * reducing usage counter, start from anywhere is O,K. Considering | 
|  | * memory reclaim from current node, there are pros. and cons. | 
|  | * | 
|  | * Freeing memory from current node means freeing memory from a node which | 
|  | * we'll use or we've used. So, it may make LRU bad. And if several threads | 
|  | * hit limits, it will see a contention on a node. But freeing from remote | 
|  | * node means more costs for memory reclaim because of memory latency. | 
|  | * | 
|  | * Now, we use round-robin. Better algorithm is welcomed. | 
|  | */ | 
|  | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | mem_cgroup_may_update_nodemask(memcg); | 
|  | node = memcg->last_scanned_node; | 
|  |  | 
|  | node = next_node(node, memcg->scan_nodes); | 
|  | if (node == MAX_NUMNODES) | 
|  | node = first_node(memcg->scan_nodes); | 
|  | /* | 
|  | * We call this when we hit limit, not when pages are added to LRU. | 
|  | * No LRU may hold pages because all pages are UNEVICTABLE or | 
|  | * memcg is too small and all pages are not on LRU. In that case, | 
|  | * we use curret node. | 
|  | */ | 
|  | if (unlikely(node == MAX_NUMNODES)) | 
|  | node = numa_node_id(); | 
|  |  | 
|  | memcg->last_scanned_node = node; | 
|  | return node; | 
|  | } | 
|  | #else | 
|  | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, | 
|  | struct zone *zone, | 
|  | gfp_t gfp_mask, | 
|  | unsigned long *total_scanned) | 
|  | { | 
|  | struct mem_cgroup *victim = NULL; | 
|  | int total = 0; | 
|  | int loop = 0; | 
|  | unsigned long excess; | 
|  | unsigned long nr_scanned; | 
|  | struct mem_cgroup_reclaim_cookie reclaim = { | 
|  | .zone = zone, | 
|  | .priority = 0, | 
|  | }; | 
|  |  | 
|  | excess = soft_limit_excess(root_memcg); | 
|  |  | 
|  | while (1) { | 
|  | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | 
|  | if (!victim) { | 
|  | loop++; | 
|  | if (loop >= 2) { | 
|  | /* | 
|  | * If we have not been able to reclaim | 
|  | * anything, it might because there are | 
|  | * no reclaimable pages under this hierarchy | 
|  | */ | 
|  | if (!total) | 
|  | break; | 
|  | /* | 
|  | * We want to do more targeted reclaim. | 
|  | * excess >> 2 is not to excessive so as to | 
|  | * reclaim too much, nor too less that we keep | 
|  | * coming back to reclaim from this cgroup | 
|  | */ | 
|  | if (total >= (excess >> 2) || | 
|  | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, | 
|  | zone, &nr_scanned); | 
|  | *total_scanned += nr_scanned; | 
|  | if (!soft_limit_excess(root_memcg)) | 
|  | break; | 
|  | } | 
|  | mem_cgroup_iter_break(root_memcg, victim); | 
|  | return total; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | static struct lockdep_map memcg_oom_lock_dep_map = { | 
|  | .name = "memcg_oom_lock", | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static DEFINE_SPINLOCK(memcg_oom_lock); | 
|  |  | 
|  | /* | 
|  | * Check OOM-Killer is already running under our hierarchy. | 
|  | * If someone is running, return false. | 
|  | */ | 
|  | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *iter, *failed = NULL; | 
|  |  | 
|  | spin_lock(&memcg_oom_lock); | 
|  |  | 
|  | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | if (iter->oom_lock) { | 
|  | /* | 
|  | * this subtree of our hierarchy is already locked | 
|  | * so we cannot give a lock. | 
|  | */ | 
|  | failed = iter; | 
|  | mem_cgroup_iter_break(memcg, iter); | 
|  | break; | 
|  | } else | 
|  | iter->oom_lock = true; | 
|  | } | 
|  |  | 
|  | if (failed) { | 
|  | /* | 
|  | * OK, we failed to lock the whole subtree so we have | 
|  | * to clean up what we set up to the failing subtree | 
|  | */ | 
|  | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | if (iter == failed) { | 
|  | mem_cgroup_iter_break(memcg, iter); | 
|  | break; | 
|  | } | 
|  | iter->oom_lock = false; | 
|  | } | 
|  | } else | 
|  | mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); | 
|  |  | 
|  | spin_unlock(&memcg_oom_lock); | 
|  |  | 
|  | return !failed; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  |  | 
|  | spin_lock(&memcg_oom_lock); | 
|  | mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | iter->oom_lock = false; | 
|  | spin_unlock(&memcg_oom_lock); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  |  | 
|  | spin_lock(&memcg_oom_lock); | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | iter->under_oom++; | 
|  | spin_unlock(&memcg_oom_lock); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  |  | 
|  | /* | 
|  | * When a new child is created while the hierarchy is under oom, | 
|  | * mem_cgroup_oom_lock() may not be called. Watch for underflow. | 
|  | */ | 
|  | spin_lock(&memcg_oom_lock); | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | if (iter->under_oom > 0) | 
|  | iter->under_oom--; | 
|  | spin_unlock(&memcg_oom_lock); | 
|  | } | 
|  |  | 
|  | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | 
|  |  | 
|  | struct oom_wait_info { | 
|  | struct mem_cgroup *memcg; | 
|  | wait_queue_t	wait; | 
|  | }; | 
|  |  | 
|  | static int memcg_oom_wake_function(wait_queue_t *wait, | 
|  | unsigned mode, int sync, void *arg) | 
|  | { | 
|  | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; | 
|  | struct mem_cgroup *oom_wait_memcg; | 
|  | struct oom_wait_info *oom_wait_info; | 
|  |  | 
|  | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | 
|  | oom_wait_memcg = oom_wait_info->memcg; | 
|  |  | 
|  | if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && | 
|  | !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) | 
|  | return 0; | 
|  | return autoremove_wake_function(wait, mode, sync, arg); | 
|  | } | 
|  |  | 
|  | static void memcg_oom_recover(struct mem_cgroup *memcg) | 
|  | { | 
|  | /* | 
|  | * For the following lockless ->under_oom test, the only required | 
|  | * guarantee is that it must see the state asserted by an OOM when | 
|  | * this function is called as a result of userland actions | 
|  | * triggered by the notification of the OOM.  This is trivially | 
|  | * achieved by invoking mem_cgroup_mark_under_oom() before | 
|  | * triggering notification. | 
|  | */ | 
|  | if (memcg && memcg->under_oom) | 
|  | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) | 
|  | { | 
|  | if (!current->memcg_may_oom) | 
|  | return; | 
|  | /* | 
|  | * We are in the middle of the charge context here, so we | 
|  | * don't want to block when potentially sitting on a callstack | 
|  | * that holds all kinds of filesystem and mm locks. | 
|  | * | 
|  | * Also, the caller may handle a failed allocation gracefully | 
|  | * (like optional page cache readahead) and so an OOM killer | 
|  | * invocation might not even be necessary. | 
|  | * | 
|  | * That's why we don't do anything here except remember the | 
|  | * OOM context and then deal with it at the end of the page | 
|  | * fault when the stack is unwound, the locks are released, | 
|  | * and when we know whether the fault was overall successful. | 
|  | */ | 
|  | css_get(&memcg->css); | 
|  | current->memcg_in_oom = memcg; | 
|  | current->memcg_oom_gfp_mask = mask; | 
|  | current->memcg_oom_order = order; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_oom_synchronize - complete memcg OOM handling | 
|  | * @handle: actually kill/wait or just clean up the OOM state | 
|  | * | 
|  | * This has to be called at the end of a page fault if the memcg OOM | 
|  | * handler was enabled. | 
|  | * | 
|  | * Memcg supports userspace OOM handling where failed allocations must | 
|  | * sleep on a waitqueue until the userspace task resolves the | 
|  | * situation.  Sleeping directly in the charge context with all kinds | 
|  | * of locks held is not a good idea, instead we remember an OOM state | 
|  | * in the task and mem_cgroup_oom_synchronize() has to be called at | 
|  | * the end of the page fault to complete the OOM handling. | 
|  | * | 
|  | * Returns %true if an ongoing memcg OOM situation was detected and | 
|  | * completed, %false otherwise. | 
|  | */ | 
|  | bool mem_cgroup_oom_synchronize(bool handle) | 
|  | { | 
|  | struct mem_cgroup *memcg = current->memcg_in_oom; | 
|  | struct oom_wait_info owait; | 
|  | bool locked; | 
|  |  | 
|  | /* OOM is global, do not handle */ | 
|  | if (!memcg) | 
|  | return false; | 
|  |  | 
|  | if (!handle || oom_killer_disabled) | 
|  | goto cleanup; | 
|  |  | 
|  | owait.memcg = memcg; | 
|  | owait.wait.flags = 0; | 
|  | owait.wait.func = memcg_oom_wake_function; | 
|  | owait.wait.private = current; | 
|  | INIT_LIST_HEAD(&owait.wait.task_list); | 
|  |  | 
|  | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); | 
|  | mem_cgroup_mark_under_oom(memcg); | 
|  |  | 
|  | locked = mem_cgroup_oom_trylock(memcg); | 
|  |  | 
|  | if (locked) | 
|  | mem_cgroup_oom_notify(memcg); | 
|  |  | 
|  | if (locked && !memcg->oom_kill_disable) { | 
|  | mem_cgroup_unmark_under_oom(memcg); | 
|  | finish_wait(&memcg_oom_waitq, &owait.wait); | 
|  | mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, | 
|  | current->memcg_oom_order); | 
|  | } else { | 
|  | schedule(); | 
|  | mem_cgroup_unmark_under_oom(memcg); | 
|  | finish_wait(&memcg_oom_waitq, &owait.wait); | 
|  | } | 
|  |  | 
|  | if (locked) { | 
|  | mem_cgroup_oom_unlock(memcg); | 
|  | /* | 
|  | * There is no guarantee that an OOM-lock contender | 
|  | * sees the wakeups triggered by the OOM kill | 
|  | * uncharges.  Wake any sleepers explicitely. | 
|  | */ | 
|  | memcg_oom_recover(memcg); | 
|  | } | 
|  | cleanup: | 
|  | current->memcg_in_oom = NULL; | 
|  | css_put(&memcg->css); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * lock_page_memcg - lock a page->mem_cgroup binding | 
|  | * @page: the page | 
|  | * | 
|  | * This function protects unlocked LRU pages from being moved to | 
|  | * another cgroup and stabilizes their page->mem_cgroup binding. | 
|  | */ | 
|  | void lock_page_memcg(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * The RCU lock is held throughout the transaction.  The fast | 
|  | * path can get away without acquiring the memcg->move_lock | 
|  | * because page moving starts with an RCU grace period. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  | again: | 
|  | memcg = page->mem_cgroup; | 
|  | if (unlikely(!memcg)) | 
|  | return; | 
|  |  | 
|  | if (atomic_read(&memcg->moving_account) <= 0) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&memcg->move_lock, flags); | 
|  | if (memcg != page->mem_cgroup) { | 
|  | spin_unlock_irqrestore(&memcg->move_lock, flags); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When charge migration first begins, we can have locked and | 
|  | * unlocked page stat updates happening concurrently.  Track | 
|  | * the task who has the lock for unlock_page_memcg(). | 
|  | */ | 
|  | memcg->move_lock_task = current; | 
|  | memcg->move_lock_flags = flags; | 
|  |  | 
|  | return; | 
|  | } | 
|  | EXPORT_SYMBOL(lock_page_memcg); | 
|  |  | 
|  | /** | 
|  | * unlock_page_memcg - unlock a page->mem_cgroup binding | 
|  | * @page: the page | 
|  | */ | 
|  | void unlock_page_memcg(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *memcg = page->mem_cgroup; | 
|  |  | 
|  | if (memcg && memcg->move_lock_task == current) { | 
|  | unsigned long flags = memcg->move_lock_flags; | 
|  |  | 
|  | memcg->move_lock_task = NULL; | 
|  | memcg->move_lock_flags = 0; | 
|  |  | 
|  | spin_unlock_irqrestore(&memcg->move_lock, flags); | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | EXPORT_SYMBOL(unlock_page_memcg); | 
|  |  | 
|  | /* | 
|  | * size of first charge trial. "32" comes from vmscan.c's magic value. | 
|  | * TODO: maybe necessary to use big numbers in big irons. | 
|  | */ | 
|  | #define CHARGE_BATCH	32U | 
|  | struct memcg_stock_pcp { | 
|  | struct mem_cgroup *cached; /* this never be root cgroup */ | 
|  | unsigned int nr_pages; | 
|  | struct work_struct work; | 
|  | unsigned long flags; | 
|  | #define FLUSHING_CACHED_CHARGE	0 | 
|  | }; | 
|  | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | 
|  | static DEFINE_MUTEX(percpu_charge_mutex); | 
|  |  | 
|  | /** | 
|  | * consume_stock: Try to consume stocked charge on this cpu. | 
|  | * @memcg: memcg to consume from. | 
|  | * @nr_pages: how many pages to charge. | 
|  | * | 
|  | * The charges will only happen if @memcg matches the current cpu's memcg | 
|  | * stock, and at least @nr_pages are available in that stock.  Failure to | 
|  | * service an allocation will refill the stock. | 
|  | * | 
|  | * returns true if successful, false otherwise. | 
|  | */ | 
|  | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | struct memcg_stock_pcp *stock; | 
|  | bool ret = false; | 
|  |  | 
|  | if (nr_pages > CHARGE_BATCH) | 
|  | return ret; | 
|  |  | 
|  | stock = &get_cpu_var(memcg_stock); | 
|  | if (memcg == stock->cached && stock->nr_pages >= nr_pages) { | 
|  | stock->nr_pages -= nr_pages; | 
|  | ret = true; | 
|  | } | 
|  | put_cpu_var(memcg_stock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns stocks cached in percpu and reset cached information. | 
|  | */ | 
|  | static void drain_stock(struct memcg_stock_pcp *stock) | 
|  | { | 
|  | struct mem_cgroup *old = stock->cached; | 
|  |  | 
|  | if (stock->nr_pages) { | 
|  | page_counter_uncharge(&old->memory, stock->nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&old->memsw, stock->nr_pages); | 
|  | css_put_many(&old->css, stock->nr_pages); | 
|  | stock->nr_pages = 0; | 
|  | } | 
|  | stock->cached = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must be called under preempt disabled or must be called by | 
|  | * a thread which is pinned to local cpu. | 
|  | */ | 
|  | static void drain_local_stock(struct work_struct *dummy) | 
|  | { | 
|  | struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); | 
|  | drain_stock(stock); | 
|  | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cache charges(val) to local per_cpu area. | 
|  | * This will be consumed by consume_stock() function, later. | 
|  | */ | 
|  | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | 
|  |  | 
|  | if (stock->cached != memcg) { /* reset if necessary */ | 
|  | drain_stock(stock); | 
|  | stock->cached = memcg; | 
|  | } | 
|  | stock->nr_pages += nr_pages; | 
|  | put_cpu_var(memcg_stock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drains all per-CPU charge caches for given root_memcg resp. subtree | 
|  | * of the hierarchy under it. | 
|  | */ | 
|  | static void drain_all_stock(struct mem_cgroup *root_memcg) | 
|  | { | 
|  | int cpu, curcpu; | 
|  |  | 
|  | /* If someone's already draining, avoid adding running more workers. */ | 
|  | if (!mutex_trylock(&percpu_charge_mutex)) | 
|  | return; | 
|  | /* Notify other cpus that system-wide "drain" is running */ | 
|  | get_online_cpus(); | 
|  | curcpu = get_cpu(); | 
|  | for_each_online_cpu(cpu) { | 
|  | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | memcg = stock->cached; | 
|  | if (!memcg || !stock->nr_pages) | 
|  | continue; | 
|  | if (!mem_cgroup_is_descendant(memcg, root_memcg)) | 
|  | continue; | 
|  | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { | 
|  | if (cpu == curcpu) | 
|  | drain_local_stock(&stock->work); | 
|  | else | 
|  | schedule_work_on(cpu, &stock->work); | 
|  | } | 
|  | } | 
|  | put_cpu(); | 
|  | put_online_cpus(); | 
|  | mutex_unlock(&percpu_charge_mutex); | 
|  | } | 
|  |  | 
|  | static int memcg_cpu_hotplug_callback(struct notifier_block *nb, | 
|  | unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | int cpu = (unsigned long)hcpu; | 
|  | struct memcg_stock_pcp *stock; | 
|  |  | 
|  | if (action == CPU_ONLINE) | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | stock = &per_cpu(memcg_stock, cpu); | 
|  | drain_stock(stock); | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static void reclaim_high(struct mem_cgroup *memcg, | 
|  | unsigned int nr_pages, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | do { | 
|  | if (page_counter_read(&memcg->memory) <= memcg->high) | 
|  | continue; | 
|  | mem_cgroup_events(memcg, MEMCG_HIGH, 1); | 
|  | try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); | 
|  | } while ((memcg = parent_mem_cgroup(memcg))); | 
|  | } | 
|  |  | 
|  | static void high_work_func(struct work_struct *work) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | memcg = container_of(work, struct mem_cgroup, high_work); | 
|  | reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scheduled by try_charge() to be executed from the userland return path | 
|  | * and reclaims memory over the high limit. | 
|  | */ | 
|  | void mem_cgroup_handle_over_high(void) | 
|  | { | 
|  | unsigned int nr_pages = current->memcg_nr_pages_over_high; | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (likely(!nr_pages)) | 
|  | return; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_mm(current->mm); | 
|  | reclaim_high(memcg, nr_pages, GFP_KERNEL); | 
|  | css_put(&memcg->css); | 
|  | current->memcg_nr_pages_over_high = 0; | 
|  | } | 
|  |  | 
|  | static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
|  | unsigned int nr_pages) | 
|  | { | 
|  | unsigned int batch = max(CHARGE_BATCH, nr_pages); | 
|  | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | struct mem_cgroup *mem_over_limit; | 
|  | struct page_counter *counter; | 
|  | unsigned long nr_reclaimed; | 
|  | bool may_swap = true; | 
|  | bool drained = false; | 
|  |  | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | return 0; | 
|  | retry: | 
|  | if (consume_stock(memcg, nr_pages)) | 
|  | return 0; | 
|  |  | 
|  | if (!do_memsw_account() || | 
|  | page_counter_try_charge(&memcg->memsw, batch, &counter)) { | 
|  | if (page_counter_try_charge(&memcg->memory, batch, &counter)) | 
|  | goto done_restock; | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&memcg->memsw, batch); | 
|  | mem_over_limit = mem_cgroup_from_counter(counter, memory); | 
|  | } else { | 
|  | mem_over_limit = mem_cgroup_from_counter(counter, memsw); | 
|  | may_swap = false; | 
|  | } | 
|  |  | 
|  | if (batch > nr_pages) { | 
|  | batch = nr_pages; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlike in global OOM situations, memcg is not in a physical | 
|  | * memory shortage.  Allow dying and OOM-killed tasks to | 
|  | * bypass the last charges so that they can exit quickly and | 
|  | * free their memory. | 
|  | */ | 
|  | if (unlikely(test_thread_flag(TIF_MEMDIE) || | 
|  | fatal_signal_pending(current) || | 
|  | current->flags & PF_EXITING)) | 
|  | goto force; | 
|  |  | 
|  | if (unlikely(task_in_memcg_oom(current))) | 
|  | goto nomem; | 
|  |  | 
|  | if (!gfpflags_allow_blocking(gfp_mask)) | 
|  | goto nomem; | 
|  |  | 
|  | mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); | 
|  |  | 
|  | nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, | 
|  | gfp_mask, may_swap); | 
|  |  | 
|  | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) | 
|  | goto retry; | 
|  |  | 
|  | if (!drained) { | 
|  | drain_all_stock(mem_over_limit); | 
|  | drained = true; | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (gfp_mask & __GFP_NORETRY) | 
|  | goto nomem; | 
|  | /* | 
|  | * Even though the limit is exceeded at this point, reclaim | 
|  | * may have been able to free some pages.  Retry the charge | 
|  | * before killing the task. | 
|  | * | 
|  | * Only for regular pages, though: huge pages are rather | 
|  | * unlikely to succeed so close to the limit, and we fall back | 
|  | * to regular pages anyway in case of failure. | 
|  | */ | 
|  | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) | 
|  | goto retry; | 
|  | /* | 
|  | * At task move, charge accounts can be doubly counted. So, it's | 
|  | * better to wait until the end of task_move if something is going on. | 
|  | */ | 
|  | if (mem_cgroup_wait_acct_move(mem_over_limit)) | 
|  | goto retry; | 
|  |  | 
|  | if (nr_retries--) | 
|  | goto retry; | 
|  |  | 
|  | if (gfp_mask & __GFP_NOFAIL) | 
|  | goto force; | 
|  |  | 
|  | if (fatal_signal_pending(current)) | 
|  | goto force; | 
|  |  | 
|  | mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); | 
|  |  | 
|  | mem_cgroup_oom(mem_over_limit, gfp_mask, | 
|  | get_order(nr_pages * PAGE_SIZE)); | 
|  | nomem: | 
|  | if (!(gfp_mask & __GFP_NOFAIL)) | 
|  | return -ENOMEM; | 
|  | force: | 
|  | /* | 
|  | * The allocation either can't fail or will lead to more memory | 
|  | * being freed very soon.  Allow memory usage go over the limit | 
|  | * temporarily by force charging it. | 
|  | */ | 
|  | page_counter_charge(&memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_charge(&memcg->memsw, nr_pages); | 
|  | css_get_many(&memcg->css, nr_pages); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | done_restock: | 
|  | css_get_many(&memcg->css, batch); | 
|  | if (batch > nr_pages) | 
|  | refill_stock(memcg, batch - nr_pages); | 
|  |  | 
|  | /* | 
|  | * If the hierarchy is above the normal consumption range, schedule | 
|  | * reclaim on returning to userland.  We can perform reclaim here | 
|  | * if __GFP_RECLAIM but let's always punt for simplicity and so that | 
|  | * GFP_KERNEL can consistently be used during reclaim.  @memcg is | 
|  | * not recorded as it most likely matches current's and won't | 
|  | * change in the meantime.  As high limit is checked again before | 
|  | * reclaim, the cost of mismatch is negligible. | 
|  | */ | 
|  | do { | 
|  | if (page_counter_read(&memcg->memory) > memcg->high) { | 
|  | /* Don't bother a random interrupted task */ | 
|  | if (in_interrupt()) { | 
|  | schedule_work(&memcg->high_work); | 
|  | break; | 
|  | } | 
|  | current->memcg_nr_pages_over_high += batch; | 
|  | set_notify_resume(current); | 
|  | break; | 
|  | } | 
|  | } while ((memcg = parent_mem_cgroup(memcg))); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | return; | 
|  |  | 
|  | page_counter_uncharge(&memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&memcg->memsw, nr_pages); | 
|  |  | 
|  | css_put_many(&memcg->css, nr_pages); | 
|  | } | 
|  |  | 
|  | static void lock_page_lru(struct page *page, int *isolated) | 
|  | { | 
|  | struct zone *zone = page_zone(page); | 
|  |  | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  | if (PageLRU(page)) { | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | lruvec = mem_cgroup_page_lruvec(page, zone); | 
|  | ClearPageLRU(page); | 
|  | del_page_from_lru_list(page, lruvec, page_lru(page)); | 
|  | *isolated = 1; | 
|  | } else | 
|  | *isolated = 0; | 
|  | } | 
|  |  | 
|  | static void unlock_page_lru(struct page *page, int isolated) | 
|  | { | 
|  | struct zone *zone = page_zone(page); | 
|  |  | 
|  | if (isolated) { | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | lruvec = mem_cgroup_page_lruvec(page, zone); | 
|  | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | SetPageLRU(page); | 
|  | add_page_to_lru_list(page, lruvec, page_lru(page)); | 
|  | } | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  | } | 
|  |  | 
|  | static void commit_charge(struct page *page, struct mem_cgroup *memcg, | 
|  | bool lrucare) | 
|  | { | 
|  | int isolated; | 
|  |  | 
|  | VM_BUG_ON_PAGE(page->mem_cgroup, page); | 
|  |  | 
|  | /* | 
|  | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | 
|  | * may already be on some other mem_cgroup's LRU.  Take care of it. | 
|  | */ | 
|  | if (lrucare) | 
|  | lock_page_lru(page, &isolated); | 
|  |  | 
|  | /* | 
|  | * Nobody should be changing or seriously looking at | 
|  | * page->mem_cgroup at this point: | 
|  | * | 
|  | * - the page is uncharged | 
|  | * | 
|  | * - the page is off-LRU | 
|  | * | 
|  | * - an anonymous fault has exclusive page access, except for | 
|  | *   a locked page table | 
|  | * | 
|  | * - a page cache insertion, a swapin fault, or a migration | 
|  | *   have the page locked | 
|  | */ | 
|  | page->mem_cgroup = memcg; | 
|  |  | 
|  | if (lrucare) | 
|  | unlock_page_lru(page, isolated); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SLOB | 
|  | static int memcg_alloc_cache_id(void) | 
|  | { | 
|  | int id, size; | 
|  | int err; | 
|  |  | 
|  | id = ida_simple_get(&memcg_cache_ida, | 
|  | 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); | 
|  | if (id < 0) | 
|  | return id; | 
|  |  | 
|  | if (id < memcg_nr_cache_ids) | 
|  | return id; | 
|  |  | 
|  | /* | 
|  | * There's no space for the new id in memcg_caches arrays, | 
|  | * so we have to grow them. | 
|  | */ | 
|  | down_write(&memcg_cache_ids_sem); | 
|  |  | 
|  | size = 2 * (id + 1); | 
|  | if (size < MEMCG_CACHES_MIN_SIZE) | 
|  | size = MEMCG_CACHES_MIN_SIZE; | 
|  | else if (size > MEMCG_CACHES_MAX_SIZE) | 
|  | size = MEMCG_CACHES_MAX_SIZE; | 
|  |  | 
|  | err = memcg_update_all_caches(size); | 
|  | if (!err) | 
|  | err = memcg_update_all_list_lrus(size); | 
|  | if (!err) | 
|  | memcg_nr_cache_ids = size; | 
|  |  | 
|  | up_write(&memcg_cache_ids_sem); | 
|  |  | 
|  | if (err) { | 
|  | ida_simple_remove(&memcg_cache_ida, id); | 
|  | return err; | 
|  | } | 
|  | return id; | 
|  | } | 
|  |  | 
|  | static void memcg_free_cache_id(int id) | 
|  | { | 
|  | ida_simple_remove(&memcg_cache_ida, id); | 
|  | } | 
|  |  | 
|  | struct memcg_kmem_cache_create_work { | 
|  | struct mem_cgroup *memcg; | 
|  | struct kmem_cache *cachep; | 
|  | struct work_struct work; | 
|  | }; | 
|  |  | 
|  | static void memcg_kmem_cache_create_func(struct work_struct *w) | 
|  | { | 
|  | struct memcg_kmem_cache_create_work *cw = | 
|  | container_of(w, struct memcg_kmem_cache_create_work, work); | 
|  | struct mem_cgroup *memcg = cw->memcg; | 
|  | struct kmem_cache *cachep = cw->cachep; | 
|  |  | 
|  | memcg_create_kmem_cache(memcg, cachep); | 
|  |  | 
|  | css_put(&memcg->css); | 
|  | kfree(cw); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enqueue the creation of a per-memcg kmem_cache. | 
|  | */ | 
|  | static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, | 
|  | struct kmem_cache *cachep) | 
|  | { | 
|  | struct memcg_kmem_cache_create_work *cw; | 
|  |  | 
|  | cw = kmalloc(sizeof(*cw), GFP_NOWAIT); | 
|  | if (!cw) | 
|  | return; | 
|  |  | 
|  | css_get(&memcg->css); | 
|  |  | 
|  | cw->memcg = memcg; | 
|  | cw->cachep = cachep; | 
|  | INIT_WORK(&cw->work, memcg_kmem_cache_create_func); | 
|  |  | 
|  | schedule_work(&cw->work); | 
|  | } | 
|  |  | 
|  | static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, | 
|  | struct kmem_cache *cachep) | 
|  | { | 
|  | /* | 
|  | * We need to stop accounting when we kmalloc, because if the | 
|  | * corresponding kmalloc cache is not yet created, the first allocation | 
|  | * in __memcg_schedule_kmem_cache_create will recurse. | 
|  | * | 
|  | * However, it is better to enclose the whole function. Depending on | 
|  | * the debugging options enabled, INIT_WORK(), for instance, can | 
|  | * trigger an allocation. This too, will make us recurse. Because at | 
|  | * this point we can't allow ourselves back into memcg_kmem_get_cache, | 
|  | * the safest choice is to do it like this, wrapping the whole function. | 
|  | */ | 
|  | current->memcg_kmem_skip_account = 1; | 
|  | __memcg_schedule_kmem_cache_create(memcg, cachep); | 
|  | current->memcg_kmem_skip_account = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the kmem_cache we're supposed to use for a slab allocation. | 
|  | * We try to use the current memcg's version of the cache. | 
|  | * | 
|  | * If the cache does not exist yet, if we are the first user of it, | 
|  | * we either create it immediately, if possible, or create it asynchronously | 
|  | * in a workqueue. | 
|  | * In the latter case, we will let the current allocation go through with | 
|  | * the original cache. | 
|  | * | 
|  | * Can't be called in interrupt context or from kernel threads. | 
|  | * This function needs to be called with rcu_read_lock() held. | 
|  | */ | 
|  | struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | struct kmem_cache *memcg_cachep; | 
|  | int kmemcg_id; | 
|  |  | 
|  | VM_BUG_ON(!is_root_cache(cachep)); | 
|  |  | 
|  | if (cachep->flags & SLAB_ACCOUNT) | 
|  | gfp |= __GFP_ACCOUNT; | 
|  |  | 
|  | if (!(gfp & __GFP_ACCOUNT)) | 
|  | return cachep; | 
|  |  | 
|  | if (current->memcg_kmem_skip_account) | 
|  | return cachep; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_mm(current->mm); | 
|  | kmemcg_id = READ_ONCE(memcg->kmemcg_id); | 
|  | if (kmemcg_id < 0) | 
|  | goto out; | 
|  |  | 
|  | memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); | 
|  | if (likely(memcg_cachep)) | 
|  | return memcg_cachep; | 
|  |  | 
|  | /* | 
|  | * If we are in a safe context (can wait, and not in interrupt | 
|  | * context), we could be be predictable and return right away. | 
|  | * This would guarantee that the allocation being performed | 
|  | * already belongs in the new cache. | 
|  | * | 
|  | * However, there are some clashes that can arrive from locking. | 
|  | * For instance, because we acquire the slab_mutex while doing | 
|  | * memcg_create_kmem_cache, this means no further allocation | 
|  | * could happen with the slab_mutex held. So it's better to | 
|  | * defer everything. | 
|  | */ | 
|  | memcg_schedule_kmem_cache_create(memcg, cachep); | 
|  | out: | 
|  | css_put(&memcg->css); | 
|  | return cachep; | 
|  | } | 
|  |  | 
|  | void __memcg_kmem_put_cache(struct kmem_cache *cachep) | 
|  | { | 
|  | if (!is_root_cache(cachep)) | 
|  | css_put(&cachep->memcg_params.memcg->css); | 
|  | } | 
|  |  | 
|  | int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, | 
|  | struct mem_cgroup *memcg) | 
|  | { | 
|  | unsigned int nr_pages = 1 << order; | 
|  | struct page_counter *counter; | 
|  | int ret; | 
|  |  | 
|  | ret = try_charge(memcg, gfp, nr_pages); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && | 
|  | !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { | 
|  | cancel_charge(memcg, nr_pages); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | page->mem_cgroup = memcg; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | int ret = 0; | 
|  |  | 
|  | memcg = get_mem_cgroup_from_mm(current->mm); | 
|  | if (!mem_cgroup_is_root(memcg)) | 
|  | ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); | 
|  | css_put(&memcg->css); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void __memcg_kmem_uncharge(struct page *page, int order) | 
|  | { | 
|  | struct mem_cgroup *memcg = page->mem_cgroup; | 
|  | unsigned int nr_pages = 1 << order; | 
|  |  | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | page_counter_uncharge(&memcg->kmem, nr_pages); | 
|  |  | 
|  | page_counter_uncharge(&memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&memcg->memsw, nr_pages); | 
|  |  | 
|  | page->mem_cgroup = NULL; | 
|  | css_put_many(&memcg->css, nr_pages); | 
|  | } | 
|  | #endif /* !CONFIG_SLOB */ | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  |  | 
|  | /* | 
|  | * Because tail pages are not marked as "used", set it. We're under | 
|  | * zone->lru_lock and migration entries setup in all page mappings. | 
|  | */ | 
|  | void mem_cgroup_split_huge_fixup(struct page *head) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | for (i = 1; i < HPAGE_PMD_NR; i++) | 
|  | head[i].mem_cgroup = head->mem_cgroup; | 
|  |  | 
|  | __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], | 
|  | HPAGE_PMD_NR); | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_SWAP | 
|  | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, | 
|  | bool charge) | 
|  | { | 
|  | int val = (charge) ? 1 : -1; | 
|  | this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | 
|  | * @entry: swap entry to be moved | 
|  | * @from:  mem_cgroup which the entry is moved from | 
|  | * @to:  mem_cgroup which the entry is moved to | 
|  | * | 
|  | * It succeeds only when the swap_cgroup's record for this entry is the same | 
|  | * as the mem_cgroup's id of @from. | 
|  | * | 
|  | * Returns 0 on success, -EINVAL on failure. | 
|  | * | 
|  | * The caller must have charged to @to, IOW, called page_counter_charge() about | 
|  | * both res and memsw, and called css_get(). | 
|  | */ | 
|  | static int mem_cgroup_move_swap_account(swp_entry_t entry, | 
|  | struct mem_cgroup *from, struct mem_cgroup *to) | 
|  | { | 
|  | unsigned short old_id, new_id; | 
|  |  | 
|  | old_id = mem_cgroup_id(from); | 
|  | new_id = mem_cgroup_id(to); | 
|  |  | 
|  | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | 
|  | mem_cgroup_swap_statistics(from, false); | 
|  | mem_cgroup_swap_statistics(to, true); | 
|  | return 0; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  | #else | 
|  | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | 
|  | struct mem_cgroup *from, struct mem_cgroup *to) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static DEFINE_MUTEX(memcg_limit_mutex); | 
|  |  | 
|  | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | 
|  | unsigned long limit) | 
|  | { | 
|  | unsigned long curusage; | 
|  | unsigned long oldusage; | 
|  | bool enlarge = false; | 
|  | int retry_count; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * For keeping hierarchical_reclaim simple, how long we should retry | 
|  | * is depends on callers. We set our retry-count to be function | 
|  | * of # of children which we should visit in this loop. | 
|  | */ | 
|  | retry_count = MEM_CGROUP_RECLAIM_RETRIES * | 
|  | mem_cgroup_count_children(memcg); | 
|  |  | 
|  | oldusage = page_counter_read(&memcg->memory); | 
|  |  | 
|  | do { | 
|  | if (signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mutex_lock(&memcg_limit_mutex); | 
|  | if (limit > memcg->memsw.limit) { | 
|  | mutex_unlock(&memcg_limit_mutex); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | if (limit > memcg->memory.limit) | 
|  | enlarge = true; | 
|  | ret = page_counter_limit(&memcg->memory, limit); | 
|  | mutex_unlock(&memcg_limit_mutex); | 
|  |  | 
|  | if (!ret) | 
|  | break; | 
|  |  | 
|  | try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); | 
|  |  | 
|  | curusage = page_counter_read(&memcg->memory); | 
|  | /* Usage is reduced ? */ | 
|  | if (curusage >= oldusage) | 
|  | retry_count--; | 
|  | else | 
|  | oldusage = curusage; | 
|  | } while (retry_count); | 
|  |  | 
|  | if (!ret && enlarge) | 
|  | memcg_oom_recover(memcg); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | 
|  | unsigned long limit) | 
|  | { | 
|  | unsigned long curusage; | 
|  | unsigned long oldusage; | 
|  | bool enlarge = false; | 
|  | int retry_count; | 
|  | int ret; | 
|  |  | 
|  | /* see mem_cgroup_resize_res_limit */ | 
|  | retry_count = MEM_CGROUP_RECLAIM_RETRIES * | 
|  | mem_cgroup_count_children(memcg); | 
|  |  | 
|  | oldusage = page_counter_read(&memcg->memsw); | 
|  |  | 
|  | do { | 
|  | if (signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mutex_lock(&memcg_limit_mutex); | 
|  | if (limit < memcg->memory.limit) { | 
|  | mutex_unlock(&memcg_limit_mutex); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | if (limit > memcg->memsw.limit) | 
|  | enlarge = true; | 
|  | ret = page_counter_limit(&memcg->memsw, limit); | 
|  | mutex_unlock(&memcg_limit_mutex); | 
|  |  | 
|  | if (!ret) | 
|  | break; | 
|  |  | 
|  | try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); | 
|  |  | 
|  | curusage = page_counter_read(&memcg->memsw); | 
|  | /* Usage is reduced ? */ | 
|  | if (curusage >= oldusage) | 
|  | retry_count--; | 
|  | else | 
|  | oldusage = curusage; | 
|  | } while (retry_count); | 
|  |  | 
|  | if (!ret && enlarge) | 
|  | memcg_oom_recover(memcg); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | 
|  | gfp_t gfp_mask, | 
|  | unsigned long *total_scanned) | 
|  | { | 
|  | unsigned long nr_reclaimed = 0; | 
|  | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | 
|  | unsigned long reclaimed; | 
|  | int loop = 0; | 
|  | struct mem_cgroup_tree_per_zone *mctz; | 
|  | unsigned long excess; | 
|  | unsigned long nr_scanned; | 
|  |  | 
|  | if (order > 0) | 
|  | return 0; | 
|  |  | 
|  | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); | 
|  | /* | 
|  | * This loop can run a while, specially if mem_cgroup's continuously | 
|  | * keep exceeding their soft limit and putting the system under | 
|  | * pressure | 
|  | */ | 
|  | do { | 
|  | if (next_mz) | 
|  | mz = next_mz; | 
|  | else | 
|  | mz = mem_cgroup_largest_soft_limit_node(mctz); | 
|  | if (!mz) | 
|  | break; | 
|  |  | 
|  | nr_scanned = 0; | 
|  | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, | 
|  | gfp_mask, &nr_scanned); | 
|  | nr_reclaimed += reclaimed; | 
|  | *total_scanned += nr_scanned; | 
|  | spin_lock_irq(&mctz->lock); | 
|  | __mem_cgroup_remove_exceeded(mz, mctz); | 
|  |  | 
|  | /* | 
|  | * If we failed to reclaim anything from this memory cgroup | 
|  | * it is time to move on to the next cgroup | 
|  | */ | 
|  | next_mz = NULL; | 
|  | if (!reclaimed) | 
|  | next_mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
|  |  | 
|  | excess = soft_limit_excess(mz->memcg); | 
|  | /* | 
|  | * One school of thought says that we should not add | 
|  | * back the node to the tree if reclaim returns 0. | 
|  | * But our reclaim could return 0, simply because due | 
|  | * to priority we are exposing a smaller subset of | 
|  | * memory to reclaim from. Consider this as a longer | 
|  | * term TODO. | 
|  | */ | 
|  | /* If excess == 0, no tree ops */ | 
|  | __mem_cgroup_insert_exceeded(mz, mctz, excess); | 
|  | spin_unlock_irq(&mctz->lock); | 
|  | css_put(&mz->memcg->css); | 
|  | loop++; | 
|  | /* | 
|  | * Could not reclaim anything and there are no more | 
|  | * mem cgroups to try or we seem to be looping without | 
|  | * reclaiming anything. | 
|  | */ | 
|  | if (!nr_reclaimed && | 
|  | (next_mz == NULL || | 
|  | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | 
|  | break; | 
|  | } while (!nr_reclaimed); | 
|  | if (next_mz) | 
|  | css_put(&next_mz->memcg->css); | 
|  | return nr_reclaimed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test whether @memcg has children, dead or alive.  Note that this | 
|  | * function doesn't care whether @memcg has use_hierarchy enabled and | 
|  | * returns %true if there are child csses according to the cgroup | 
|  | * hierarchy.  Testing use_hierarchy is the caller's responsiblity. | 
|  | */ | 
|  | static inline bool memcg_has_children(struct mem_cgroup *memcg) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ret = css_next_child(NULL, &memcg->css); | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reclaims as many pages from the given memcg as possible and moves | 
|  | * the rest to the parent. | 
|  | * | 
|  | * Caller is responsible for holding css reference for memcg. | 
|  | */ | 
|  | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | 
|  | { | 
|  | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
|  |  | 
|  | /* we call try-to-free pages for make this cgroup empty */ | 
|  | lru_add_drain_all(); | 
|  | /* try to free all pages in this cgroup */ | 
|  | while (nr_retries && page_counter_read(&memcg->memory)) { | 
|  | int progress; | 
|  |  | 
|  | if (signal_pending(current)) | 
|  | return -EINTR; | 
|  |  | 
|  | progress = try_to_free_mem_cgroup_pages(memcg, 1, | 
|  | GFP_KERNEL, true); | 
|  | if (!progress) { | 
|  | nr_retries--; | 
|  | /* maybe some writeback is necessary */ | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/10); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, | 
|  | loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  |  | 
|  | if (mem_cgroup_is_root(memcg)) | 
|  | return -EINVAL; | 
|  | return mem_cgroup_force_empty(memcg) ?: nbytes; | 
|  | } | 
|  |  | 
|  | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return mem_cgroup_from_css(css)->use_hierarchy; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | int retval = 0; | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); | 
|  |  | 
|  | if (memcg->use_hierarchy == val) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If parent's use_hierarchy is set, we can't make any modifications | 
|  | * in the child subtrees. If it is unset, then the change can | 
|  | * occur, provided the current cgroup has no children. | 
|  | * | 
|  | * For the root cgroup, parent_mem is NULL, we allow value to be | 
|  | * set if there are no children. | 
|  | */ | 
|  | if ((!parent_memcg || !parent_memcg->use_hierarchy) && | 
|  | (val == 1 || val == 0)) { | 
|  | if (!memcg_has_children(memcg)) | 
|  | memcg->use_hierarchy = val; | 
|  | else | 
|  | retval = -EBUSY; | 
|  | } else | 
|  | retval = -EINVAL; | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  | int i; | 
|  |  | 
|  | memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); | 
|  |  | 
|  | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | for (i = 0; i < MEMCG_NR_STAT; i++) | 
|  | stat[i] += mem_cgroup_read_stat(iter, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tree_events(struct mem_cgroup *memcg, unsigned long *events) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  | int i; | 
|  |  | 
|  | memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); | 
|  |  | 
|  | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | for (i = 0; i < MEMCG_NR_EVENTS; i++) | 
|  | events[i] += mem_cgroup_read_events(iter, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) | 
|  | { | 
|  | unsigned long val = 0; | 
|  |  | 
|  | if (mem_cgroup_is_root(memcg)) { | 
|  | struct mem_cgroup *iter; | 
|  |  | 
|  | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | val += mem_cgroup_read_stat(iter, | 
|  | MEM_CGROUP_STAT_CACHE); | 
|  | val += mem_cgroup_read_stat(iter, | 
|  | MEM_CGROUP_STAT_RSS); | 
|  | if (swap) | 
|  | val += mem_cgroup_read_stat(iter, | 
|  | MEM_CGROUP_STAT_SWAP); | 
|  | } | 
|  | } else { | 
|  | if (!swap) | 
|  | val = page_counter_read(&memcg->memory); | 
|  | else | 
|  | val = page_counter_read(&memcg->memsw); | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | RES_USAGE, | 
|  | RES_LIMIT, | 
|  | RES_MAX_USAGE, | 
|  | RES_FAILCNT, | 
|  | RES_SOFT_LIMIT, | 
|  | }; | 
|  |  | 
|  | static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | struct page_counter *counter; | 
|  |  | 
|  | switch (MEMFILE_TYPE(cft->private)) { | 
|  | case _MEM: | 
|  | counter = &memcg->memory; | 
|  | break; | 
|  | case _MEMSWAP: | 
|  | counter = &memcg->memsw; | 
|  | break; | 
|  | case _KMEM: | 
|  | counter = &memcg->kmem; | 
|  | break; | 
|  | case _TCP: | 
|  | counter = &memcg->tcpmem; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | switch (MEMFILE_ATTR(cft->private)) { | 
|  | case RES_USAGE: | 
|  | if (counter == &memcg->memory) | 
|  | return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; | 
|  | if (counter == &memcg->memsw) | 
|  | return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; | 
|  | return (u64)page_counter_read(counter) * PAGE_SIZE; | 
|  | case RES_LIMIT: | 
|  | return (u64)counter->limit * PAGE_SIZE; | 
|  | case RES_MAX_USAGE: | 
|  | return (u64)counter->watermark * PAGE_SIZE; | 
|  | case RES_FAILCNT: | 
|  | return counter->failcnt; | 
|  | case RES_SOFT_LIMIT: | 
|  | return (u64)memcg->soft_limit * PAGE_SIZE; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SLOB | 
|  | static int memcg_online_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | int memcg_id; | 
|  |  | 
|  | if (cgroup_memory_nokmem) | 
|  | return 0; | 
|  |  | 
|  | BUG_ON(memcg->kmemcg_id >= 0); | 
|  | BUG_ON(memcg->kmem_state); | 
|  |  | 
|  | memcg_id = memcg_alloc_cache_id(); | 
|  | if (memcg_id < 0) | 
|  | return memcg_id; | 
|  |  | 
|  | static_branch_inc(&memcg_kmem_enabled_key); | 
|  | /* | 
|  | * A memory cgroup is considered kmem-online as soon as it gets | 
|  | * kmemcg_id. Setting the id after enabling static branching will | 
|  | * guarantee no one starts accounting before all call sites are | 
|  | * patched. | 
|  | */ | 
|  | memcg->kmemcg_id = memcg_id; | 
|  | memcg->kmem_state = KMEM_ONLINE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void memcg_offline_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  | struct mem_cgroup *parent, *child; | 
|  | int kmemcg_id; | 
|  |  | 
|  | if (memcg->kmem_state != KMEM_ONLINE) | 
|  | return; | 
|  | /* | 
|  | * Clear the online state before clearing memcg_caches array | 
|  | * entries. The slab_mutex in memcg_deactivate_kmem_caches() | 
|  | * guarantees that no cache will be created for this cgroup | 
|  | * after we are done (see memcg_create_kmem_cache()). | 
|  | */ | 
|  | memcg->kmem_state = KMEM_ALLOCATED; | 
|  |  | 
|  | memcg_deactivate_kmem_caches(memcg); | 
|  |  | 
|  | kmemcg_id = memcg->kmemcg_id; | 
|  | BUG_ON(kmemcg_id < 0); | 
|  |  | 
|  | parent = parent_mem_cgroup(memcg); | 
|  | if (!parent) | 
|  | parent = root_mem_cgroup; | 
|  |  | 
|  | /* | 
|  | * Change kmemcg_id of this cgroup and all its descendants to the | 
|  | * parent's id, and then move all entries from this cgroup's list_lrus | 
|  | * to ones of the parent. After we have finished, all list_lrus | 
|  | * corresponding to this cgroup are guaranteed to remain empty. The | 
|  | * ordering is imposed by list_lru_node->lock taken by | 
|  | * memcg_drain_all_list_lrus(). | 
|  | */ | 
|  | css_for_each_descendant_pre(css, &memcg->css) { | 
|  | child = mem_cgroup_from_css(css); | 
|  | BUG_ON(child->kmemcg_id != kmemcg_id); | 
|  | child->kmemcg_id = parent->kmemcg_id; | 
|  | if (!memcg->use_hierarchy) | 
|  | break; | 
|  | } | 
|  | memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); | 
|  |  | 
|  | memcg_free_cache_id(kmemcg_id); | 
|  | } | 
|  |  | 
|  | static void memcg_free_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | /* css_alloc() failed, offlining didn't happen */ | 
|  | if (unlikely(memcg->kmem_state == KMEM_ONLINE)) | 
|  | memcg_offline_kmem(memcg); | 
|  |  | 
|  | if (memcg->kmem_state == KMEM_ALLOCATED) { | 
|  | memcg_destroy_kmem_caches(memcg); | 
|  | static_branch_dec(&memcg_kmem_enabled_key); | 
|  | WARN_ON(page_counter_read(&memcg->kmem)); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static int memcg_online_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static void memcg_offline_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | } | 
|  | static void memcg_free_kmem(struct mem_cgroup *memcg) | 
|  | { | 
|  | } | 
|  | #endif /* !CONFIG_SLOB */ | 
|  |  | 
|  | static int memcg_update_kmem_limit(struct mem_cgroup *memcg, | 
|  | unsigned long limit) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&memcg_limit_mutex); | 
|  | ret = page_counter_limit(&memcg->kmem, limit); | 
|  | mutex_unlock(&memcg_limit_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&memcg_limit_mutex); | 
|  |  | 
|  | ret = page_counter_limit(&memcg->tcpmem, limit); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (!memcg->tcpmem_active) { | 
|  | /* | 
|  | * The active flag needs to be written after the static_key | 
|  | * update. This is what guarantees that the socket activation | 
|  | * function is the last one to run. See sock_update_memcg() for | 
|  | * details, and note that we don't mark any socket as belonging | 
|  | * to this memcg until that flag is up. | 
|  | * | 
|  | * We need to do this, because static_keys will span multiple | 
|  | * sites, but we can't control their order. If we mark a socket | 
|  | * as accounted, but the accounting functions are not patched in | 
|  | * yet, we'll lose accounting. | 
|  | * | 
|  | * We never race with the readers in sock_update_memcg(), | 
|  | * because when this value change, the code to process it is not | 
|  | * patched in yet. | 
|  | */ | 
|  | static_branch_inc(&memcg_sockets_enabled_key); | 
|  | memcg->tcpmem_active = true; | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&memcg_limit_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The user of this function is... | 
|  | * RES_LIMIT. | 
|  | */ | 
|  | static ssize_t mem_cgroup_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long nr_pages; | 
|  | int ret; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | ret = page_counter_memparse(buf, "-1", &nr_pages); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | switch (MEMFILE_ATTR(of_cft(of)->private)) { | 
|  | case RES_LIMIT: | 
|  | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | switch (MEMFILE_TYPE(of_cft(of)->private)) { | 
|  | case _MEM: | 
|  | ret = mem_cgroup_resize_limit(memcg, nr_pages); | 
|  | break; | 
|  | case _MEMSWAP: | 
|  | ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); | 
|  | break; | 
|  | case _KMEM: | 
|  | ret = memcg_update_kmem_limit(memcg, nr_pages); | 
|  | break; | 
|  | case _TCP: | 
|  | ret = memcg_update_tcp_limit(memcg, nr_pages); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case RES_SOFT_LIMIT: | 
|  | memcg->soft_limit = nr_pages; | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | return ret ?: nbytes; | 
|  | } | 
|  |  | 
|  | static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, | 
|  | size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | struct page_counter *counter; | 
|  |  | 
|  | switch (MEMFILE_TYPE(of_cft(of)->private)) { | 
|  | case _MEM: | 
|  | counter = &memcg->memory; | 
|  | break; | 
|  | case _MEMSWAP: | 
|  | counter = &memcg->memsw; | 
|  | break; | 
|  | case _KMEM: | 
|  | counter = &memcg->kmem; | 
|  | break; | 
|  | case _TCP: | 
|  | counter = &memcg->tcpmem; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | switch (MEMFILE_ATTR(of_cft(of)->private)) { | 
|  | case RES_MAX_USAGE: | 
|  | page_counter_reset_watermark(counter); | 
|  | break; | 
|  | case RES_FAILCNT: | 
|  | counter->failcnt = 0; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return mem_cgroup_from_css(css)->move_charge_at_immigrate; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | if (val & ~MOVE_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * No kind of locking is needed in here, because ->can_attach() will | 
|  | * check this value once in the beginning of the process, and then carry | 
|  | * on with stale data. This means that changes to this value will only | 
|  | * affect task migrations starting after the change. | 
|  | */ | 
|  | memcg->move_charge_at_immigrate = val; | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static int memcg_numa_stat_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct numa_stat { | 
|  | const char *name; | 
|  | unsigned int lru_mask; | 
|  | }; | 
|  |  | 
|  | static const struct numa_stat stats[] = { | 
|  | { "total", LRU_ALL }, | 
|  | { "file", LRU_ALL_FILE }, | 
|  | { "anon", LRU_ALL_ANON }, | 
|  | { "unevictable", BIT(LRU_UNEVICTABLE) }, | 
|  | }; | 
|  | const struct numa_stat *stat; | 
|  | int nid; | 
|  | unsigned long nr; | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  |  | 
|  | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | 
|  | nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); | 
|  | seq_printf(m, "%s=%lu", stat->name, nr); | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | 
|  | stat->lru_mask); | 
|  | seq_printf(m, " N%d=%lu", nid, nr); | 
|  | } | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | 
|  | struct mem_cgroup *iter; | 
|  |  | 
|  | nr = 0; | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); | 
|  | seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); | 
|  | for_each_node_state(nid, N_MEMORY) { | 
|  | nr = 0; | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | nr += mem_cgroup_node_nr_lru_pages( | 
|  | iter, nid, stat->lru_mask); | 
|  | seq_printf(m, " N%d=%lu", nid, nr); | 
|  | } | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | static int memcg_stat_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | unsigned long memory, memsw; | 
|  | struct mem_cgroup *mi; | 
|  | unsigned int i; | 
|  |  | 
|  | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != | 
|  | MEM_CGROUP_STAT_NSTATS); | 
|  | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != | 
|  | MEM_CGROUP_EVENTS_NSTATS); | 
|  | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); | 
|  |  | 
|  | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | 
|  | if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) | 
|  | continue; | 
|  | seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], | 
|  | mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) | 
|  | seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], | 
|  | mem_cgroup_read_events(memcg, i)); | 
|  |  | 
|  | for (i = 0; i < NR_LRU_LISTS; i++) | 
|  | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | 
|  | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); | 
|  |  | 
|  | /* Hierarchical information */ | 
|  | memory = memsw = PAGE_COUNTER_MAX; | 
|  | for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { | 
|  | memory = min(memory, mi->memory.limit); | 
|  | memsw = min(memsw, mi->memsw.limit); | 
|  | } | 
|  | seq_printf(m, "hierarchical_memory_limit %llu\n", | 
|  | (u64)memory * PAGE_SIZE); | 
|  | if (do_memsw_account()) | 
|  | seq_printf(m, "hierarchical_memsw_limit %llu\n", | 
|  | (u64)memsw * PAGE_SIZE); | 
|  |  | 
|  | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | 
|  | unsigned long long val = 0; | 
|  |  | 
|  | if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) | 
|  | continue; | 
|  | for_each_mem_cgroup_tree(mi, memcg) | 
|  | val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; | 
|  | seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | 
|  | unsigned long long val = 0; | 
|  |  | 
|  | for_each_mem_cgroup_tree(mi, memcg) | 
|  | val += mem_cgroup_read_events(mi, i); | 
|  | seq_printf(m, "total_%s %llu\n", | 
|  | mem_cgroup_events_names[i], val); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NR_LRU_LISTS; i++) { | 
|  | unsigned long long val = 0; | 
|  |  | 
|  | for_each_mem_cgroup_tree(mi, memcg) | 
|  | val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; | 
|  | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | { | 
|  | int nid, zid; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | struct zone_reclaim_stat *rstat; | 
|  | unsigned long recent_rotated[2] = {0, 0}; | 
|  | unsigned long recent_scanned[2] = {0, 0}; | 
|  |  | 
|  | for_each_online_node(nid) | 
|  | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | 
|  | rstat = &mz->lruvec.reclaim_stat; | 
|  |  | 
|  | recent_rotated[0] += rstat->recent_rotated[0]; | 
|  | recent_rotated[1] += rstat->recent_rotated[1]; | 
|  | recent_scanned[0] += rstat->recent_scanned[0]; | 
|  | recent_scanned[1] += rstat->recent_scanned[1]; | 
|  | } | 
|  | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); | 
|  | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | 
|  | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | 
|  | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | return mem_cgroup_swappiness(memcg); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | if (val > 100) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (css->parent) | 
|  | memcg->swappiness = val; | 
|  | else | 
|  | vm_swappiness = val; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) | 
|  | { | 
|  | struct mem_cgroup_threshold_ary *t; | 
|  | unsigned long usage; | 
|  | int i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (!swap) | 
|  | t = rcu_dereference(memcg->thresholds.primary); | 
|  | else | 
|  | t = rcu_dereference(memcg->memsw_thresholds.primary); | 
|  |  | 
|  | if (!t) | 
|  | goto unlock; | 
|  |  | 
|  | usage = mem_cgroup_usage(memcg, swap); | 
|  |  | 
|  | /* | 
|  | * current_threshold points to threshold just below or equal to usage. | 
|  | * If it's not true, a threshold was crossed after last | 
|  | * call of __mem_cgroup_threshold(). | 
|  | */ | 
|  | i = t->current_threshold; | 
|  |  | 
|  | /* | 
|  | * Iterate backward over array of thresholds starting from | 
|  | * current_threshold and check if a threshold is crossed. | 
|  | * If none of thresholds below usage is crossed, we read | 
|  | * only one element of the array here. | 
|  | */ | 
|  | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | 
|  | eventfd_signal(t->entries[i].eventfd, 1); | 
|  |  | 
|  | /* i = current_threshold + 1 */ | 
|  | i++; | 
|  |  | 
|  | /* | 
|  | * Iterate forward over array of thresholds starting from | 
|  | * current_threshold+1 and check if a threshold is crossed. | 
|  | * If none of thresholds above usage is crossed, we read | 
|  | * only one element of the array here. | 
|  | */ | 
|  | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | 
|  | eventfd_signal(t->entries[i].eventfd, 1); | 
|  |  | 
|  | /* Update current_threshold */ | 
|  | t->current_threshold = i - 1; | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | 
|  | { | 
|  | while (memcg) { | 
|  | __mem_cgroup_threshold(memcg, false); | 
|  | if (do_memsw_account()) | 
|  | __mem_cgroup_threshold(memcg, true); | 
|  |  | 
|  | memcg = parent_mem_cgroup(memcg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int compare_thresholds(const void *a, const void *b) | 
|  | { | 
|  | const struct mem_cgroup_threshold *_a = a; | 
|  | const struct mem_cgroup_threshold *_b = b; | 
|  |  | 
|  | if (_a->threshold > _b->threshold) | 
|  | return 1; | 
|  |  | 
|  | if (_a->threshold < _b->threshold) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup_eventfd_list *ev; | 
|  |  | 
|  | spin_lock(&memcg_oom_lock); | 
|  |  | 
|  | list_for_each_entry(ev, &memcg->oom_notify, list) | 
|  | eventfd_signal(ev->eventfd, 1); | 
|  |  | 
|  | spin_unlock(&memcg_oom_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct mem_cgroup *iter; | 
|  |  | 
|  | for_each_mem_cgroup_tree(iter, memcg) | 
|  | mem_cgroup_oom_notify_cb(iter); | 
|  | } | 
|  |  | 
|  | static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd, const char *args, enum res_type type) | 
|  | { | 
|  | struct mem_cgroup_thresholds *thresholds; | 
|  | struct mem_cgroup_threshold_ary *new; | 
|  | unsigned long threshold; | 
|  | unsigned long usage; | 
|  | int i, size, ret; | 
|  |  | 
|  | ret = page_counter_memparse(args, "-1", &threshold); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&memcg->thresholds_lock); | 
|  |  | 
|  | if (type == _MEM) { | 
|  | thresholds = &memcg->thresholds; | 
|  | usage = mem_cgroup_usage(memcg, false); | 
|  | } else if (type == _MEMSWAP) { | 
|  | thresholds = &memcg->memsw_thresholds; | 
|  | usage = mem_cgroup_usage(memcg, true); | 
|  | } else | 
|  | BUG(); | 
|  |  | 
|  | /* Check if a threshold crossed before adding a new one */ | 
|  | if (thresholds->primary) | 
|  | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
|  |  | 
|  | size = thresholds->primary ? thresholds->primary->size + 1 : 1; | 
|  |  | 
|  | /* Allocate memory for new array of thresholds */ | 
|  | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), | 
|  | GFP_KERNEL); | 
|  | if (!new) { | 
|  | ret = -ENOMEM; | 
|  | goto unlock; | 
|  | } | 
|  | new->size = size; | 
|  |  | 
|  | /* Copy thresholds (if any) to new array */ | 
|  | if (thresholds->primary) { | 
|  | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | 
|  | sizeof(struct mem_cgroup_threshold)); | 
|  | } | 
|  |  | 
|  | /* Add new threshold */ | 
|  | new->entries[size - 1].eventfd = eventfd; | 
|  | new->entries[size - 1].threshold = threshold; | 
|  |  | 
|  | /* Sort thresholds. Registering of new threshold isn't time-critical */ | 
|  | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), | 
|  | compare_thresholds, NULL); | 
|  |  | 
|  | /* Find current threshold */ | 
|  | new->current_threshold = -1; | 
|  | for (i = 0; i < size; i++) { | 
|  | if (new->entries[i].threshold <= usage) { | 
|  | /* | 
|  | * new->current_threshold will not be used until | 
|  | * rcu_assign_pointer(), so it's safe to increment | 
|  | * it here. | 
|  | */ | 
|  | ++new->current_threshold; | 
|  | } else | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Free old spare buffer and save old primary buffer as spare */ | 
|  | kfree(thresholds->spare); | 
|  | thresholds->spare = thresholds->primary; | 
|  |  | 
|  | rcu_assign_pointer(thresholds->primary, new); | 
|  |  | 
|  | /* To be sure that nobody uses thresholds */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | unlock: | 
|  | mutex_unlock(&memcg->thresholds_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd, const char *args) | 
|  | { | 
|  | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); | 
|  | } | 
|  |  | 
|  | static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd, const char *args) | 
|  | { | 
|  | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd, enum res_type type) | 
|  | { | 
|  | struct mem_cgroup_thresholds *thresholds; | 
|  | struct mem_cgroup_threshold_ary *new; | 
|  | unsigned long usage; | 
|  | int i, j, size; | 
|  |  | 
|  | mutex_lock(&memcg->thresholds_lock); | 
|  |  | 
|  | if (type == _MEM) { | 
|  | thresholds = &memcg->thresholds; | 
|  | usage = mem_cgroup_usage(memcg, false); | 
|  | } else if (type == _MEMSWAP) { | 
|  | thresholds = &memcg->memsw_thresholds; | 
|  | usage = mem_cgroup_usage(memcg, true); | 
|  | } else | 
|  | BUG(); | 
|  |  | 
|  | if (!thresholds->primary) | 
|  | goto unlock; | 
|  |  | 
|  | /* Check if a threshold crossed before removing */ | 
|  | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
|  |  | 
|  | /* Calculate new number of threshold */ | 
|  | size = 0; | 
|  | for (i = 0; i < thresholds->primary->size; i++) { | 
|  | if (thresholds->primary->entries[i].eventfd != eventfd) | 
|  | size++; | 
|  | } | 
|  |  | 
|  | new = thresholds->spare; | 
|  |  | 
|  | /* Set thresholds array to NULL if we don't have thresholds */ | 
|  | if (!size) { | 
|  | kfree(new); | 
|  | new = NULL; | 
|  | goto swap_buffers; | 
|  | } | 
|  |  | 
|  | new->size = size; | 
|  |  | 
|  | /* Copy thresholds and find current threshold */ | 
|  | new->current_threshold = -1; | 
|  | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | 
|  | if (thresholds->primary->entries[i].eventfd == eventfd) | 
|  | continue; | 
|  |  | 
|  | new->entries[j] = thresholds->primary->entries[i]; | 
|  | if (new->entries[j].threshold <= usage) { | 
|  | /* | 
|  | * new->current_threshold will not be used | 
|  | * until rcu_assign_pointer(), so it's safe to increment | 
|  | * it here. | 
|  | */ | 
|  | ++new->current_threshold; | 
|  | } | 
|  | j++; | 
|  | } | 
|  |  | 
|  | swap_buffers: | 
|  | /* Swap primary and spare array */ | 
|  | thresholds->spare = thresholds->primary; | 
|  |  | 
|  | rcu_assign_pointer(thresholds->primary, new); | 
|  |  | 
|  | /* To be sure that nobody uses thresholds */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | /* If all events are unregistered, free the spare array */ | 
|  | if (!new) { | 
|  | kfree(thresholds->spare); | 
|  | thresholds->spare = NULL; | 
|  | } | 
|  | unlock: | 
|  | mutex_unlock(&memcg->thresholds_lock); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd) | 
|  | { | 
|  | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); | 
|  | } | 
|  |  | 
|  | static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd) | 
|  | { | 
|  | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd, const char *args) | 
|  | { | 
|  | struct mem_cgroup_eventfd_list *event; | 
|  |  | 
|  | event = kmalloc(sizeof(*event),	GFP_KERNEL); | 
|  | if (!event) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&memcg_oom_lock); | 
|  |  | 
|  | event->eventfd = eventfd; | 
|  | list_add(&event->list, &memcg->oom_notify); | 
|  |  | 
|  | /* already in OOM ? */ | 
|  | if (memcg->under_oom) | 
|  | eventfd_signal(eventfd, 1); | 
|  | spin_unlock(&memcg_oom_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, | 
|  | struct eventfd_ctx *eventfd) | 
|  | { | 
|  | struct mem_cgroup_eventfd_list *ev, *tmp; | 
|  |  | 
|  | spin_lock(&memcg_oom_lock); | 
|  |  | 
|  | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { | 
|  | if (ev->eventfd == eventfd) { | 
|  | list_del(&ev->list); | 
|  | kfree(ev); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&memcg_oom_lock); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); | 
|  |  | 
|  | seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); | 
|  | seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | /* cannot set to root cgroup and only 0 and 1 are allowed */ | 
|  | if (!css->parent || !((val == 0) || (val == 1))) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcg->oom_kill_disable = val; | 
|  | if (!val) | 
|  | memcg_oom_recover(memcg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  |  | 
|  | struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) | 
|  | { | 
|  | return &memcg->cgwb_list; | 
|  | } | 
|  |  | 
|  | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | 
|  | { | 
|  | return wb_domain_init(&memcg->cgwb_domain, gfp); | 
|  | } | 
|  |  | 
|  | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | 
|  | { | 
|  | wb_domain_exit(&memcg->cgwb_domain); | 
|  | } | 
|  |  | 
|  | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | 
|  | { | 
|  | wb_domain_size_changed(&memcg->cgwb_domain); | 
|  | } | 
|  |  | 
|  | struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | 
|  |  | 
|  | if (!memcg->css.parent) | 
|  | return NULL; | 
|  |  | 
|  | return &memcg->cgwb_domain; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg | 
|  | * @wb: bdi_writeback in question | 
|  | * @pfilepages: out parameter for number of file pages | 
|  | * @pheadroom: out parameter for number of allocatable pages according to memcg | 
|  | * @pdirty: out parameter for number of dirty pages | 
|  | * @pwriteback: out parameter for number of pages under writeback | 
|  | * | 
|  | * Determine the numbers of file, headroom, dirty, and writeback pages in | 
|  | * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom | 
|  | * is a bit more involved. | 
|  | * | 
|  | * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the | 
|  | * headroom is calculated as the lowest headroom of itself and the | 
|  | * ancestors.  Note that this doesn't consider the actual amount of | 
|  | * available memory in the system.  The caller should further cap | 
|  | * *@pheadroom accordingly. | 
|  | */ | 
|  | void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, | 
|  | unsigned long *pheadroom, unsigned long *pdirty, | 
|  | unsigned long *pwriteback) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | 
|  | struct mem_cgroup *parent; | 
|  |  | 
|  | *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); | 
|  |  | 
|  | /* this should eventually include NR_UNSTABLE_NFS */ | 
|  | *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); | 
|  | *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | | 
|  | (1 << LRU_ACTIVE_FILE)); | 
|  | *pheadroom = PAGE_COUNTER_MAX; | 
|  |  | 
|  | while ((parent = parent_mem_cgroup(memcg))) { | 
|  | unsigned long ceiling = min(memcg->memory.limit, memcg->high); | 
|  | unsigned long used = page_counter_read(&memcg->memory); | 
|  |  | 
|  | *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); | 
|  | memcg = parent; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_CGROUP_WRITEBACK */ | 
|  |  | 
|  | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_CGROUP_WRITEBACK */ | 
|  |  | 
|  | /* | 
|  | * DO NOT USE IN NEW FILES. | 
|  | * | 
|  | * "cgroup.event_control" implementation. | 
|  | * | 
|  | * This is way over-engineered.  It tries to support fully configurable | 
|  | * events for each user.  Such level of flexibility is completely | 
|  | * unnecessary especially in the light of the planned unified hierarchy. | 
|  | * | 
|  | * Please deprecate this and replace with something simpler if at all | 
|  | * possible. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Unregister event and free resources. | 
|  | * | 
|  | * Gets called from workqueue. | 
|  | */ | 
|  | static void memcg_event_remove(struct work_struct *work) | 
|  | { | 
|  | struct mem_cgroup_event *event = | 
|  | container_of(work, struct mem_cgroup_event, remove); | 
|  | struct mem_cgroup *memcg = event->memcg; | 
|  |  | 
|  | remove_wait_queue(event->wqh, &event->wait); | 
|  |  | 
|  | event->unregister_event(memcg, event->eventfd); | 
|  |  | 
|  | /* Notify userspace the event is going away. */ | 
|  | eventfd_signal(event->eventfd, 1); | 
|  |  | 
|  | eventfd_ctx_put(event->eventfd); | 
|  | kfree(event); | 
|  | css_put(&memcg->css); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gets called on POLLHUP on eventfd when user closes it. | 
|  | * | 
|  | * Called with wqh->lock held and interrupts disabled. | 
|  | */ | 
|  | static int memcg_event_wake(wait_queue_t *wait, unsigned mode, | 
|  | int sync, void *key) | 
|  | { | 
|  | struct mem_cgroup_event *event = | 
|  | container_of(wait, struct mem_cgroup_event, wait); | 
|  | struct mem_cgroup *memcg = event->memcg; | 
|  | unsigned long flags = (unsigned long)key; | 
|  |  | 
|  | if (flags & POLLHUP) { | 
|  | /* | 
|  | * If the event has been detached at cgroup removal, we | 
|  | * can simply return knowing the other side will cleanup | 
|  | * for us. | 
|  | * | 
|  | * We can't race against event freeing since the other | 
|  | * side will require wqh->lock via remove_wait_queue(), | 
|  | * which we hold. | 
|  | */ | 
|  | spin_lock(&memcg->event_list_lock); | 
|  | if (!list_empty(&event->list)) { | 
|  | list_del_init(&event->list); | 
|  | /* | 
|  | * We are in atomic context, but cgroup_event_remove() | 
|  | * may sleep, so we have to call it in workqueue. | 
|  | */ | 
|  | schedule_work(&event->remove); | 
|  | } | 
|  | spin_unlock(&memcg->event_list_lock); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void memcg_event_ptable_queue_proc(struct file *file, | 
|  | wait_queue_head_t *wqh, poll_table *pt) | 
|  | { | 
|  | struct mem_cgroup_event *event = | 
|  | container_of(pt, struct mem_cgroup_event, pt); | 
|  |  | 
|  | event->wqh = wqh; | 
|  | add_wait_queue(wqh, &event->wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DO NOT USE IN NEW FILES. | 
|  | * | 
|  | * Parse input and register new cgroup event handler. | 
|  | * | 
|  | * Input must be in format '<event_fd> <control_fd> <args>'. | 
|  | * Interpretation of args is defined by control file implementation. | 
|  | */ | 
|  | static ssize_t memcg_write_event_control(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct cgroup_subsys_state *css = of_css(of); | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | struct mem_cgroup_event *event; | 
|  | struct cgroup_subsys_state *cfile_css; | 
|  | unsigned int efd, cfd; | 
|  | struct fd efile; | 
|  | struct fd cfile; | 
|  | const char *name; | 
|  | char *endp; | 
|  | int ret; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  |  | 
|  | efd = simple_strtoul(buf, &endp, 10); | 
|  | if (*endp != ' ') | 
|  | return -EINVAL; | 
|  | buf = endp + 1; | 
|  |  | 
|  | cfd = simple_strtoul(buf, &endp, 10); | 
|  | if ((*endp != ' ') && (*endp != '\0')) | 
|  | return -EINVAL; | 
|  | buf = endp + 1; | 
|  |  | 
|  | event = kzalloc(sizeof(*event), GFP_KERNEL); | 
|  | if (!event) | 
|  | return -ENOMEM; | 
|  |  | 
|  | event->memcg = memcg; | 
|  | INIT_LIST_HEAD(&event->list); | 
|  | init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); | 
|  | init_waitqueue_func_entry(&event->wait, memcg_event_wake); | 
|  | INIT_WORK(&event->remove, memcg_event_remove); | 
|  |  | 
|  | efile = fdget(efd); | 
|  | if (!efile.file) { | 
|  | ret = -EBADF; | 
|  | goto out_kfree; | 
|  | } | 
|  |  | 
|  | event->eventfd = eventfd_ctx_fileget(efile.file); | 
|  | if (IS_ERR(event->eventfd)) { | 
|  | ret = PTR_ERR(event->eventfd); | 
|  | goto out_put_efile; | 
|  | } | 
|  |  | 
|  | cfile = fdget(cfd); | 
|  | if (!cfile.file) { | 
|  | ret = -EBADF; | 
|  | goto out_put_eventfd; | 
|  | } | 
|  |  | 
|  | /* the process need read permission on control file */ | 
|  | /* AV: shouldn't we check that it's been opened for read instead? */ | 
|  | ret = inode_permission(file_inode(cfile.file), MAY_READ); | 
|  | if (ret < 0) | 
|  | goto out_put_cfile; | 
|  |  | 
|  | /* | 
|  | * Determine the event callbacks and set them in @event.  This used | 
|  | * to be done via struct cftype but cgroup core no longer knows | 
|  | * about these events.  The following is crude but the whole thing | 
|  | * is for compatibility anyway. | 
|  | * | 
|  | * DO NOT ADD NEW FILES. | 
|  | */ | 
|  | name = cfile.file->f_path.dentry->d_name.name; | 
|  |  | 
|  | if (!strcmp(name, "memory.usage_in_bytes")) { | 
|  | event->register_event = mem_cgroup_usage_register_event; | 
|  | event->unregister_event = mem_cgroup_usage_unregister_event; | 
|  | } else if (!strcmp(name, "memory.oom_control")) { | 
|  | event->register_event = mem_cgroup_oom_register_event; | 
|  | event->unregister_event = mem_cgroup_oom_unregister_event; | 
|  | } else if (!strcmp(name, "memory.pressure_level")) { | 
|  | event->register_event = vmpressure_register_event; | 
|  | event->unregister_event = vmpressure_unregister_event; | 
|  | } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { | 
|  | event->register_event = memsw_cgroup_usage_register_event; | 
|  | event->unregister_event = memsw_cgroup_usage_unregister_event; | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | goto out_put_cfile; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify @cfile should belong to @css.  Also, remaining events are | 
|  | * automatically removed on cgroup destruction but the removal is | 
|  | * asynchronous, so take an extra ref on @css. | 
|  | */ | 
|  | cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, | 
|  | &memory_cgrp_subsys); | 
|  | ret = -EINVAL; | 
|  | if (IS_ERR(cfile_css)) | 
|  | goto out_put_cfile; | 
|  | if (cfile_css != css) { | 
|  | css_put(cfile_css); | 
|  | goto out_put_cfile; | 
|  | } | 
|  |  | 
|  | ret = event->register_event(memcg, event->eventfd, buf); | 
|  | if (ret) | 
|  | goto out_put_css; | 
|  |  | 
|  | efile.file->f_op->poll(efile.file, &event->pt); | 
|  |  | 
|  | spin_lock(&memcg->event_list_lock); | 
|  | list_add(&event->list, &memcg->event_list); | 
|  | spin_unlock(&memcg->event_list_lock); | 
|  |  | 
|  | fdput(cfile); | 
|  | fdput(efile); | 
|  |  | 
|  | return nbytes; | 
|  |  | 
|  | out_put_css: | 
|  | css_put(css); | 
|  | out_put_cfile: | 
|  | fdput(cfile); | 
|  | out_put_eventfd: | 
|  | eventfd_ctx_put(event->eventfd); | 
|  | out_put_efile: | 
|  | fdput(efile); | 
|  | out_kfree: | 
|  | kfree(event); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct cftype mem_cgroup_legacy_files[] = { | 
|  | { | 
|  | .name = "usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "max_usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), | 
|  | .write = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "soft_limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | 
|  | .write = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "failcnt", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "stat", | 
|  | .seq_show = memcg_stat_show, | 
|  | }, | 
|  | { | 
|  | .name = "force_empty", | 
|  | .write = mem_cgroup_force_empty_write, | 
|  | }, | 
|  | { | 
|  | .name = "use_hierarchy", | 
|  | .write_u64 = mem_cgroup_hierarchy_write, | 
|  | .read_u64 = mem_cgroup_hierarchy_read, | 
|  | }, | 
|  | { | 
|  | .name = "cgroup.event_control",		/* XXX: for compat */ | 
|  | .write = memcg_write_event_control, | 
|  | .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, | 
|  | }, | 
|  | { | 
|  | .name = "swappiness", | 
|  | .read_u64 = mem_cgroup_swappiness_read, | 
|  | .write_u64 = mem_cgroup_swappiness_write, | 
|  | }, | 
|  | { | 
|  | .name = "move_charge_at_immigrate", | 
|  | .read_u64 = mem_cgroup_move_charge_read, | 
|  | .write_u64 = mem_cgroup_move_charge_write, | 
|  | }, | 
|  | { | 
|  | .name = "oom_control", | 
|  | .seq_show = mem_cgroup_oom_control_read, | 
|  | .write_u64 = mem_cgroup_oom_control_write, | 
|  | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | 
|  | }, | 
|  | { | 
|  | .name = "pressure_level", | 
|  | }, | 
|  | #ifdef CONFIG_NUMA | 
|  | { | 
|  | .name = "numa_stat", | 
|  | .seq_show = memcg_numa_stat_show, | 
|  | }, | 
|  | #endif | 
|  | { | 
|  | .name = "kmem.limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | 
|  | .write = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "kmem.usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "kmem.failcnt", | 
|  | .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "kmem.max_usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | #ifdef CONFIG_SLABINFO | 
|  | { | 
|  | .name = "kmem.slabinfo", | 
|  | .seq_start = slab_start, | 
|  | .seq_next = slab_next, | 
|  | .seq_stop = slab_stop, | 
|  | .seq_show = memcg_slab_show, | 
|  | }, | 
|  | #endif | 
|  | { | 
|  | .name = "kmem.tcp.limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), | 
|  | .write = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "kmem.tcp.usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "kmem.tcp.failcnt", | 
|  | .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "kmem.tcp.max_usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { },	/* terminate */ | 
|  | }; | 
|  |  | 
|  | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) | 
|  | { | 
|  | struct mem_cgroup_per_node *pn; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | int zone, tmp = node; | 
|  | /* | 
|  | * This routine is called against possible nodes. | 
|  | * But it's BUG to call kmalloc() against offline node. | 
|  | * | 
|  | * TODO: this routine can waste much memory for nodes which will | 
|  | *       never be onlined. It's better to use memory hotplug callback | 
|  | *       function. | 
|  | */ | 
|  | if (!node_state(node, N_NORMAL_MEMORY)) | 
|  | tmp = -1; | 
|  | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | 
|  | if (!pn) | 
|  | return 1; | 
|  |  | 
|  | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
|  | mz = &pn->zoneinfo[zone]; | 
|  | lruvec_init(&mz->lruvec); | 
|  | mz->usage_in_excess = 0; | 
|  | mz->on_tree = false; | 
|  | mz->memcg = memcg; | 
|  | } | 
|  | memcg->nodeinfo[node] = pn; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) | 
|  | { | 
|  | kfree(memcg->nodeinfo[node]); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_free(struct mem_cgroup *memcg) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | memcg_wb_domain_exit(memcg); | 
|  | for_each_node(node) | 
|  | free_mem_cgroup_per_zone_info(memcg, node); | 
|  | free_percpu(memcg->stat); | 
|  | kfree(memcg); | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup *mem_cgroup_alloc(void) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | size_t size; | 
|  | int node; | 
|  |  | 
|  | size = sizeof(struct mem_cgroup); | 
|  | size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); | 
|  |  | 
|  | memcg = kzalloc(size, GFP_KERNEL); | 
|  | if (!memcg) | 
|  | return NULL; | 
|  |  | 
|  | memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); | 
|  | if (!memcg->stat) | 
|  | goto fail; | 
|  |  | 
|  | for_each_node(node) | 
|  | if (alloc_mem_cgroup_per_zone_info(memcg, node)) | 
|  | goto fail; | 
|  |  | 
|  | if (memcg_wb_domain_init(memcg, GFP_KERNEL)) | 
|  | goto fail; | 
|  |  | 
|  | INIT_WORK(&memcg->high_work, high_work_func); | 
|  | memcg->last_scanned_node = MAX_NUMNODES; | 
|  | INIT_LIST_HEAD(&memcg->oom_notify); | 
|  | mutex_init(&memcg->thresholds_lock); | 
|  | spin_lock_init(&memcg->move_lock); | 
|  | vmpressure_init(&memcg->vmpressure); | 
|  | INIT_LIST_HEAD(&memcg->event_list); | 
|  | spin_lock_init(&memcg->event_list_lock); | 
|  | memcg->socket_pressure = jiffies; | 
|  | #ifndef CONFIG_SLOB | 
|  | memcg->kmemcg_id = -1; | 
|  | #endif | 
|  | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | INIT_LIST_HEAD(&memcg->cgwb_list); | 
|  | #endif | 
|  | return memcg; | 
|  | fail: | 
|  | mem_cgroup_free(memcg); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct cgroup_subsys_state * __ref | 
|  | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | 
|  | { | 
|  | struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); | 
|  | struct mem_cgroup *memcg; | 
|  | long error = -ENOMEM; | 
|  |  | 
|  | memcg = mem_cgroup_alloc(); | 
|  | if (!memcg) | 
|  | return ERR_PTR(error); | 
|  |  | 
|  | memcg->high = PAGE_COUNTER_MAX; | 
|  | memcg->soft_limit = PAGE_COUNTER_MAX; | 
|  | if (parent) { | 
|  | memcg->swappiness = mem_cgroup_swappiness(parent); | 
|  | memcg->oom_kill_disable = parent->oom_kill_disable; | 
|  | } | 
|  | if (parent && parent->use_hierarchy) { | 
|  | memcg->use_hierarchy = true; | 
|  | page_counter_init(&memcg->memory, &parent->memory); | 
|  | page_counter_init(&memcg->swap, &parent->swap); | 
|  | page_counter_init(&memcg->memsw, &parent->memsw); | 
|  | page_counter_init(&memcg->kmem, &parent->kmem); | 
|  | page_counter_init(&memcg->tcpmem, &parent->tcpmem); | 
|  | } else { | 
|  | page_counter_init(&memcg->memory, NULL); | 
|  | page_counter_init(&memcg->swap, NULL); | 
|  | page_counter_init(&memcg->memsw, NULL); | 
|  | page_counter_init(&memcg->kmem, NULL); | 
|  | page_counter_init(&memcg->tcpmem, NULL); | 
|  | /* | 
|  | * Deeper hierachy with use_hierarchy == false doesn't make | 
|  | * much sense so let cgroup subsystem know about this | 
|  | * unfortunate state in our controller. | 
|  | */ | 
|  | if (parent != root_mem_cgroup) | 
|  | memory_cgrp_subsys.broken_hierarchy = true; | 
|  | } | 
|  |  | 
|  | /* The following stuff does not apply to the root */ | 
|  | if (!parent) { | 
|  | root_mem_cgroup = memcg; | 
|  | return &memcg->css; | 
|  | } | 
|  |  | 
|  | error = memcg_online_kmem(memcg); | 
|  | if (error) | 
|  | goto fail; | 
|  |  | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | 
|  | static_branch_inc(&memcg_sockets_enabled_key); | 
|  |  | 
|  | return &memcg->css; | 
|  | fail: | 
|  | mem_cgroup_free(memcg); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int | 
|  | mem_cgroup_css_online(struct cgroup_subsys_state *css) | 
|  | { | 
|  | if (css->id > MEM_CGROUP_ID_MAX) | 
|  | return -ENOSPC; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | struct mem_cgroup_event *event, *tmp; | 
|  |  | 
|  | /* | 
|  | * Unregister events and notify userspace. | 
|  | * Notify userspace about cgroup removing only after rmdir of cgroup | 
|  | * directory to avoid race between userspace and kernelspace. | 
|  | */ | 
|  | spin_lock(&memcg->event_list_lock); | 
|  | list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { | 
|  | list_del_init(&event->list); | 
|  | schedule_work(&event->remove); | 
|  | } | 
|  | spin_unlock(&memcg->event_list_lock); | 
|  |  | 
|  | memcg_offline_kmem(memcg); | 
|  | wb_memcg_offline(memcg); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_css_released(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | invalidate_reclaim_iterators(memcg); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | 
|  | static_branch_dec(&memcg_sockets_enabled_key); | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) | 
|  | static_branch_dec(&memcg_sockets_enabled_key); | 
|  |  | 
|  | vmpressure_cleanup(&memcg->vmpressure); | 
|  | cancel_work_sync(&memcg->high_work); | 
|  | mem_cgroup_remove_from_trees(memcg); | 
|  | memcg_free_kmem(memcg); | 
|  | mem_cgroup_free(memcg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_css_reset - reset the states of a mem_cgroup | 
|  | * @css: the target css | 
|  | * | 
|  | * Reset the states of the mem_cgroup associated with @css.  This is | 
|  | * invoked when the userland requests disabling on the default hierarchy | 
|  | * but the memcg is pinned through dependency.  The memcg should stop | 
|  | * applying policies and should revert to the vanilla state as it may be | 
|  | * made visible again. | 
|  | * | 
|  | * The current implementation only resets the essential configurations. | 
|  | * This needs to be expanded to cover all the visible parts. | 
|  | */ | 
|  | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); | 
|  | page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); | 
|  | page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); | 
|  | page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); | 
|  | page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); | 
|  | memcg->low = 0; | 
|  | memcg->high = PAGE_COUNTER_MAX; | 
|  | memcg->soft_limit = PAGE_COUNTER_MAX; | 
|  | memcg_wb_domain_size_changed(memcg); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | /* Handlers for move charge at task migration. */ | 
|  | static int mem_cgroup_do_precharge(unsigned long count) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Try a single bulk charge without reclaim first, kswapd may wake */ | 
|  | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); | 
|  | if (!ret) { | 
|  | mc.precharge += count; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Try charges one by one with reclaim */ | 
|  | while (count--) { | 
|  | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | mc.precharge++; | 
|  | cond_resched(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_mctgt_type - get target type of moving charge | 
|  | * @vma: the vma the pte to be checked belongs | 
|  | * @addr: the address corresponding to the pte to be checked | 
|  | * @ptent: the pte to be checked | 
|  | * @target: the pointer the target page or swap ent will be stored(can be NULL) | 
|  | * | 
|  | * Returns | 
|  | *   0(MC_TARGET_NONE): if the pte is not a target for move charge. | 
|  | *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | 
|  | *     move charge. if @target is not NULL, the page is stored in target->page | 
|  | *     with extra refcnt got(Callers should handle it). | 
|  | *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a | 
|  | *     target for charge migration. if @target is not NULL, the entry is stored | 
|  | *     in target->ent. | 
|  | * | 
|  | * Called with pte lock held. | 
|  | */ | 
|  | union mc_target { | 
|  | struct page	*page; | 
|  | swp_entry_t	ent; | 
|  | }; | 
|  |  | 
|  | enum mc_target_type { | 
|  | MC_TARGET_NONE = 0, | 
|  | MC_TARGET_PAGE, | 
|  | MC_TARGET_SWAP, | 
|  | }; | 
|  |  | 
|  | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t ptent) | 
|  | { | 
|  | struct page *page = vm_normal_page(vma, addr, ptent); | 
|  |  | 
|  | if (!page || !page_mapped(page)) | 
|  | return NULL; | 
|  | if (PageAnon(page)) { | 
|  | if (!(mc.flags & MOVE_ANON)) | 
|  | return NULL; | 
|  | } else { | 
|  | if (!(mc.flags & MOVE_FILE)) | 
|  | return NULL; | 
|  | } | 
|  | if (!get_page_unless_zero(page)) | 
|  | return NULL; | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SWAP | 
|  | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t ptent, swp_entry_t *entry) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | swp_entry_t ent = pte_to_swp_entry(ptent); | 
|  |  | 
|  | if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) | 
|  | return NULL; | 
|  | /* | 
|  | * Because lookup_swap_cache() updates some statistics counter, | 
|  | * we call find_get_page() with swapper_space directly. | 
|  | */ | 
|  | page = find_get_page(swap_address_space(ent), ent.val); | 
|  | if (do_memsw_account()) | 
|  | entry->val = ent.val; | 
|  |  | 
|  | return page; | 
|  | } | 
|  | #else | 
|  | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t ptent, swp_entry_t *entry) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t ptent, swp_entry_t *entry) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | struct address_space *mapping; | 
|  | pgoff_t pgoff; | 
|  |  | 
|  | if (!vma->vm_file) /* anonymous vma */ | 
|  | return NULL; | 
|  | if (!(mc.flags & MOVE_FILE)) | 
|  | return NULL; | 
|  |  | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | pgoff = linear_page_index(vma, addr); | 
|  |  | 
|  | /* page is moved even if it's not RSS of this task(page-faulted). */ | 
|  | #ifdef CONFIG_SWAP | 
|  | /* shmem/tmpfs may report page out on swap: account for that too. */ | 
|  | if (shmem_mapping(mapping)) { | 
|  | page = find_get_entry(mapping, pgoff); | 
|  | if (radix_tree_exceptional_entry(page)) { | 
|  | swp_entry_t swp = radix_to_swp_entry(page); | 
|  | if (do_memsw_account()) | 
|  | *entry = swp; | 
|  | page = find_get_page(swap_address_space(swp), swp.val); | 
|  | } | 
|  | } else | 
|  | page = find_get_page(mapping, pgoff); | 
|  | #else | 
|  | page = find_get_page(mapping, pgoff); | 
|  | #endif | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_move_account - move account of the page | 
|  | * @page: the page | 
|  | * @nr_pages: number of regular pages (>1 for huge pages) | 
|  | * @from: mem_cgroup which the page is moved from. | 
|  | * @to:	mem_cgroup which the page is moved to. @from != @to. | 
|  | * | 
|  | * The caller must make sure the page is not on LRU (isolate_page() is useful.) | 
|  | * | 
|  | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" | 
|  | * from old cgroup. | 
|  | */ | 
|  | static int mem_cgroup_move_account(struct page *page, | 
|  | bool compound, | 
|  | struct mem_cgroup *from, | 
|  | struct mem_cgroup *to) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
|  | int ret; | 
|  | bool anon; | 
|  |  | 
|  | VM_BUG_ON(from == to); | 
|  | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | VM_BUG_ON(compound && !PageTransHuge(page)); | 
|  |  | 
|  | /* | 
|  | * Prevent mem_cgroup_migrate() from looking at | 
|  | * page->mem_cgroup of its source page while we change it. | 
|  | */ | 
|  | ret = -EBUSY; | 
|  | if (!trylock_page(page)) | 
|  | goto out; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (page->mem_cgroup != from) | 
|  | goto out_unlock; | 
|  |  | 
|  | anon = PageAnon(page); | 
|  |  | 
|  | spin_lock_irqsave(&from->move_lock, flags); | 
|  |  | 
|  | if (!anon && page_mapped(page)) { | 
|  | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], | 
|  | nr_pages); | 
|  | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], | 
|  | nr_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * move_lock grabbed above and caller set from->moving_account, so | 
|  | * mem_cgroup_update_page_stat() will serialize updates to PageDirty. | 
|  | * So mapping should be stable for dirty pages. | 
|  | */ | 
|  | if (!anon && PageDirty(page)) { | 
|  | struct address_space *mapping = page_mapping(page); | 
|  |  | 
|  | if (mapping_cap_account_dirty(mapping)) { | 
|  | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], | 
|  | nr_pages); | 
|  | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], | 
|  | nr_pages); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (PageWriteback(page)) { | 
|  | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], | 
|  | nr_pages); | 
|  | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], | 
|  | nr_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is safe to change page->mem_cgroup here because the page | 
|  | * is referenced, charged, and isolated - we can't race with | 
|  | * uncharging, charging, migration, or LRU putback. | 
|  | */ | 
|  |  | 
|  | /* caller should have done css_get */ | 
|  | page->mem_cgroup = to; | 
|  | spin_unlock_irqrestore(&from->move_lock, flags); | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | local_irq_disable(); | 
|  | mem_cgroup_charge_statistics(to, page, compound, nr_pages); | 
|  | memcg_check_events(to, page); | 
|  | mem_cgroup_charge_statistics(from, page, compound, -nr_pages); | 
|  | memcg_check_events(from, page); | 
|  | local_irq_enable(); | 
|  | out_unlock: | 
|  | unlock_page(page); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t ptent, union mc_target *target) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | enum mc_target_type ret = MC_TARGET_NONE; | 
|  | swp_entry_t ent = { .val = 0 }; | 
|  |  | 
|  | if (pte_present(ptent)) | 
|  | page = mc_handle_present_pte(vma, addr, ptent); | 
|  | else if (is_swap_pte(ptent)) | 
|  | page = mc_handle_swap_pte(vma, addr, ptent, &ent); | 
|  | else if (pte_none(ptent)) | 
|  | page = mc_handle_file_pte(vma, addr, ptent, &ent); | 
|  |  | 
|  | if (!page && !ent.val) | 
|  | return ret; | 
|  | if (page) { | 
|  | /* | 
|  | * Do only loose check w/o serialization. | 
|  | * mem_cgroup_move_account() checks the page is valid or | 
|  | * not under LRU exclusion. | 
|  | */ | 
|  | if (page->mem_cgroup == mc.from) { | 
|  | ret = MC_TARGET_PAGE; | 
|  | if (target) | 
|  | target->page = page; | 
|  | } | 
|  | if (!ret || !target) | 
|  | put_page(page); | 
|  | } | 
|  | /* There is a swap entry and a page doesn't exist or isn't charged */ | 
|  | if (ent.val && !ret && | 
|  | mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { | 
|  | ret = MC_TARGET_SWAP; | 
|  | if (target) | 
|  | target->ent = ent; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | /* | 
|  | * We don't consider swapping or file mapped pages because THP does not | 
|  | * support them for now. | 
|  | * Caller should make sure that pmd_trans_huge(pmd) is true. | 
|  | */ | 
|  | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | 
|  | unsigned long addr, pmd_t pmd, union mc_target *target) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | enum mc_target_type ret = MC_TARGET_NONE; | 
|  |  | 
|  | page = pmd_page(pmd); | 
|  | VM_BUG_ON_PAGE(!page || !PageHead(page), page); | 
|  | if (!(mc.flags & MOVE_ANON)) | 
|  | return ret; | 
|  | if (page->mem_cgroup == mc.from) { | 
|  | ret = MC_TARGET_PAGE; | 
|  | if (target) { | 
|  | get_page(page); | 
|  | target->page = page; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | 
|  | unsigned long addr, pmd_t pmd, union mc_target *target) | 
|  | { | 
|  | return MC_TARGET_NONE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | ptl = pmd_trans_huge_lock(pmd, vma); | 
|  | if (ptl) { | 
|  | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) | 
|  | mc.precharge += HPAGE_PMD_NR; | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (pmd_trans_unstable(pmd)) | 
|  | return 0; | 
|  | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
|  | for (; addr != end; pte++, addr += PAGE_SIZE) | 
|  | if (get_mctgt_type(vma, addr, *pte, NULL)) | 
|  | mc.precharge++;	/* increment precharge temporarily */ | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | cond_resched(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long precharge; | 
|  |  | 
|  | struct mm_walk mem_cgroup_count_precharge_walk = { | 
|  | .pmd_entry = mem_cgroup_count_precharge_pte_range, | 
|  | .mm = mm, | 
|  | }; | 
|  | down_read(&mm->mmap_sem); | 
|  | walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | precharge = mc.precharge; | 
|  | mc.precharge = 0; | 
|  |  | 
|  | return precharge; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_precharge_mc(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long precharge = mem_cgroup_count_precharge(mm); | 
|  |  | 
|  | VM_BUG_ON(mc.moving_task); | 
|  | mc.moving_task = current; | 
|  | return mem_cgroup_do_precharge(precharge); | 
|  | } | 
|  |  | 
|  | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ | 
|  | static void __mem_cgroup_clear_mc(void) | 
|  | { | 
|  | struct mem_cgroup *from = mc.from; | 
|  | struct mem_cgroup *to = mc.to; | 
|  |  | 
|  | /* we must uncharge all the leftover precharges from mc.to */ | 
|  | if (mc.precharge) { | 
|  | cancel_charge(mc.to, mc.precharge); | 
|  | mc.precharge = 0; | 
|  | } | 
|  | /* | 
|  | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | 
|  | * we must uncharge here. | 
|  | */ | 
|  | if (mc.moved_charge) { | 
|  | cancel_charge(mc.from, mc.moved_charge); | 
|  | mc.moved_charge = 0; | 
|  | } | 
|  | /* we must fixup refcnts and charges */ | 
|  | if (mc.moved_swap) { | 
|  | /* uncharge swap account from the old cgroup */ | 
|  | if (!mem_cgroup_is_root(mc.from)) | 
|  | page_counter_uncharge(&mc.from->memsw, mc.moved_swap); | 
|  |  | 
|  | /* | 
|  | * we charged both to->memory and to->memsw, so we | 
|  | * should uncharge to->memory. | 
|  | */ | 
|  | if (!mem_cgroup_is_root(mc.to)) | 
|  | page_counter_uncharge(&mc.to->memory, mc.moved_swap); | 
|  |  | 
|  | css_put_many(&mc.from->css, mc.moved_swap); | 
|  |  | 
|  | /* we've already done css_get(mc.to) */ | 
|  | mc.moved_swap = 0; | 
|  | } | 
|  | memcg_oom_recover(from); | 
|  | memcg_oom_recover(to); | 
|  | wake_up_all(&mc.waitq); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_clear_mc(void) | 
|  | { | 
|  | /* | 
|  | * we must clear moving_task before waking up waiters at the end of | 
|  | * task migration. | 
|  | */ | 
|  | mc.moving_task = NULL; | 
|  | __mem_cgroup_clear_mc(); | 
|  | spin_lock(&mc.lock); | 
|  | mc.from = NULL; | 
|  | mc.to = NULL; | 
|  | spin_unlock(&mc.lock); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  | struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ | 
|  | struct mem_cgroup *from; | 
|  | struct task_struct *leader, *p; | 
|  | struct mm_struct *mm; | 
|  | unsigned long move_flags; | 
|  | int ret = 0; | 
|  |  | 
|  | /* charge immigration isn't supported on the default hierarchy */ | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Multi-process migrations only happen on the default hierarchy | 
|  | * where charge immigration is not used.  Perform charge | 
|  | * immigration if @tset contains a leader and whine if there are | 
|  | * multiple. | 
|  | */ | 
|  | p = NULL; | 
|  | cgroup_taskset_for_each_leader(leader, css, tset) { | 
|  | WARN_ON_ONCE(p); | 
|  | p = leader; | 
|  | memcg = mem_cgroup_from_css(css); | 
|  | } | 
|  | if (!p) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We are now commited to this value whatever it is. Changes in this | 
|  | * tunable will only affect upcoming migrations, not the current one. | 
|  | * So we need to save it, and keep it going. | 
|  | */ | 
|  | move_flags = READ_ONCE(memcg->move_charge_at_immigrate); | 
|  | if (!move_flags) | 
|  | return 0; | 
|  |  | 
|  | from = mem_cgroup_from_task(p); | 
|  |  | 
|  | VM_BUG_ON(from == memcg); | 
|  |  | 
|  | mm = get_task_mm(p); | 
|  | if (!mm) | 
|  | return 0; | 
|  | /* We move charges only when we move a owner of the mm */ | 
|  | if (mm->owner == p) { | 
|  | VM_BUG_ON(mc.from); | 
|  | VM_BUG_ON(mc.to); | 
|  | VM_BUG_ON(mc.precharge); | 
|  | VM_BUG_ON(mc.moved_charge); | 
|  | VM_BUG_ON(mc.moved_swap); | 
|  |  | 
|  | spin_lock(&mc.lock); | 
|  | mc.from = from; | 
|  | mc.to = memcg; | 
|  | mc.flags = move_flags; | 
|  | spin_unlock(&mc.lock); | 
|  | /* We set mc.moving_task later */ | 
|  |  | 
|  | ret = mem_cgroup_precharge_mc(mm); | 
|  | if (ret) | 
|  | mem_cgroup_clear_mc(); | 
|  | } | 
|  | mmput(mm); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | if (mc.to) | 
|  | mem_cgroup_clear_mc(); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | int ret = 0; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  | enum mc_target_type target_type; | 
|  | union mc_target target; | 
|  | struct page *page; | 
|  |  | 
|  | ptl = pmd_trans_huge_lock(pmd, vma); | 
|  | if (ptl) { | 
|  | if (mc.precharge < HPAGE_PMD_NR) { | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | 
|  | if (target_type == MC_TARGET_PAGE) { | 
|  | page = target.page; | 
|  | if (!isolate_lru_page(page)) { | 
|  | if (!mem_cgroup_move_account(page, true, | 
|  | mc.from, mc.to)) { | 
|  | mc.precharge -= HPAGE_PMD_NR; | 
|  | mc.moved_charge += HPAGE_PMD_NR; | 
|  | } | 
|  | putback_lru_page(page); | 
|  | } | 
|  | put_page(page); | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (pmd_trans_unstable(pmd)) | 
|  | return 0; | 
|  | retry: | 
|  | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
|  | for (; addr != end; addr += PAGE_SIZE) { | 
|  | pte_t ptent = *(pte++); | 
|  | swp_entry_t ent; | 
|  |  | 
|  | if (!mc.precharge) | 
|  | break; | 
|  |  | 
|  | switch (get_mctgt_type(vma, addr, ptent, &target)) { | 
|  | case MC_TARGET_PAGE: | 
|  | page = target.page; | 
|  | /* | 
|  | * We can have a part of the split pmd here. Moving it | 
|  | * can be done but it would be too convoluted so simply | 
|  | * ignore such a partial THP and keep it in original | 
|  | * memcg. There should be somebody mapping the head. | 
|  | */ | 
|  | if (PageTransCompound(page)) | 
|  | goto put; | 
|  | if (isolate_lru_page(page)) | 
|  | goto put; | 
|  | if (!mem_cgroup_move_account(page, false, | 
|  | mc.from, mc.to)) { | 
|  | mc.precharge--; | 
|  | /* we uncharge from mc.from later. */ | 
|  | mc.moved_charge++; | 
|  | } | 
|  | putback_lru_page(page); | 
|  | put:			/* get_mctgt_type() gets the page */ | 
|  | put_page(page); | 
|  | break; | 
|  | case MC_TARGET_SWAP: | 
|  | ent = target.ent; | 
|  | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { | 
|  | mc.precharge--; | 
|  | /* we fixup refcnts and charges later. */ | 
|  | mc.moved_swap++; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | cond_resched(); | 
|  |  | 
|  | if (addr != end) { | 
|  | /* | 
|  | * We have consumed all precharges we got in can_attach(). | 
|  | * We try charge one by one, but don't do any additional | 
|  | * charges to mc.to if we have failed in charge once in attach() | 
|  | * phase. | 
|  | */ | 
|  | ret = mem_cgroup_do_precharge(1); | 
|  | if (!ret) | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_move_charge(struct mm_struct *mm) | 
|  | { | 
|  | struct mm_walk mem_cgroup_move_charge_walk = { | 
|  | .pmd_entry = mem_cgroup_move_charge_pte_range, | 
|  | .mm = mm, | 
|  | }; | 
|  |  | 
|  | lru_add_drain_all(); | 
|  | /* | 
|  | * Signal lock_page_memcg() to take the memcg's move_lock | 
|  | * while we're moving its pages to another memcg. Then wait | 
|  | * for already started RCU-only updates to finish. | 
|  | */ | 
|  | atomic_inc(&mc.from->moving_account); | 
|  | synchronize_rcu(); | 
|  | retry: | 
|  | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | 
|  | /* | 
|  | * Someone who are holding the mmap_sem might be waiting in | 
|  | * waitq. So we cancel all extra charges, wake up all waiters, | 
|  | * and retry. Because we cancel precharges, we might not be able | 
|  | * to move enough charges, but moving charge is a best-effort | 
|  | * feature anyway, so it wouldn't be a big problem. | 
|  | */ | 
|  | __mem_cgroup_clear_mc(); | 
|  | cond_resched(); | 
|  | goto retry; | 
|  | } | 
|  | /* | 
|  | * When we have consumed all precharges and failed in doing | 
|  | * additional charge, the page walk just aborts. | 
|  | */ | 
|  | walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); | 
|  | up_read(&mm->mmap_sem); | 
|  | atomic_dec(&mc.from->moving_account); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_move_task(struct cgroup_taskset *tset) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  | struct task_struct *p = cgroup_taskset_first(tset, &css); | 
|  | struct mm_struct *mm = get_task_mm(p); | 
|  |  | 
|  | if (mm) { | 
|  | if (mc.to) | 
|  | mem_cgroup_move_charge(mm); | 
|  | mmput(mm); | 
|  | } | 
|  | if (mc.to) | 
|  | mem_cgroup_clear_mc(); | 
|  | } | 
|  | #else	/* !CONFIG_MMU */ | 
|  | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) | 
|  | { | 
|  | } | 
|  | static void mem_cgroup_move_task(struct cgroup_taskset *tset) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Cgroup retains root cgroups across [un]mount cycles making it necessary | 
|  | * to verify whether we're attached to the default hierarchy on each mount | 
|  | * attempt. | 
|  | */ | 
|  | static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) | 
|  | { | 
|  | /* | 
|  | * use_hierarchy is forced on the default hierarchy.  cgroup core | 
|  | * guarantees that @root doesn't have any children, so turning it | 
|  | * on for the root memcg is enough. | 
|  | */ | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | root_mem_cgroup->use_hierarchy = true; | 
|  | else | 
|  | root_mem_cgroup->use_hierarchy = false; | 
|  | } | 
|  |  | 
|  | static u64 memory_current_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | static int memory_low_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | unsigned long low = READ_ONCE(memcg->low); | 
|  |  | 
|  | if (low == PAGE_COUNTER_MAX) | 
|  | seq_puts(m, "max\n"); | 
|  | else | 
|  | seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t memory_low_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long low; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &low); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | memcg->low = low; | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int memory_high_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | unsigned long high = READ_ONCE(memcg->high); | 
|  |  | 
|  | if (high == PAGE_COUNTER_MAX) | 
|  | seq_puts(m, "max\n"); | 
|  | else | 
|  | seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t memory_high_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long nr_pages; | 
|  | unsigned long high; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &high); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | memcg->high = high; | 
|  |  | 
|  | nr_pages = page_counter_read(&memcg->memory); | 
|  | if (nr_pages > high) | 
|  | try_to_free_mem_cgroup_pages(memcg, nr_pages - high, | 
|  | GFP_KERNEL, true); | 
|  |  | 
|  | memcg_wb_domain_size_changed(memcg); | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int memory_max_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | unsigned long max = READ_ONCE(memcg->memory.limit); | 
|  |  | 
|  | if (max == PAGE_COUNTER_MAX) | 
|  | seq_puts(m, "max\n"); | 
|  | else | 
|  | seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t memory_max_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | bool drained = false; | 
|  | unsigned long max; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &max); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | xchg(&memcg->memory.limit, max); | 
|  |  | 
|  | for (;;) { | 
|  | unsigned long nr_pages = page_counter_read(&memcg->memory); | 
|  |  | 
|  | if (nr_pages <= max) | 
|  | break; | 
|  |  | 
|  | if (signal_pending(current)) { | 
|  | err = -EINTR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!drained) { | 
|  | drain_all_stock(memcg); | 
|  | drained = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (nr_reclaims) { | 
|  | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, | 
|  | GFP_KERNEL, true)) | 
|  | nr_reclaims--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | mem_cgroup_events(memcg, MEMCG_OOM, 1); | 
|  | if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | memcg_wb_domain_size_changed(memcg); | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int memory_events_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  |  | 
|  | seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); | 
|  | seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); | 
|  | seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); | 
|  | seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int memory_stat_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | unsigned long stat[MEMCG_NR_STAT]; | 
|  | unsigned long events[MEMCG_NR_EVENTS]; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Provide statistics on the state of the memory subsystem as | 
|  | * well as cumulative event counters that show past behavior. | 
|  | * | 
|  | * This list is ordered following a combination of these gradients: | 
|  | * 1) generic big picture -> specifics and details | 
|  | * 2) reflecting userspace activity -> reflecting kernel heuristics | 
|  | * | 
|  | * Current memory state: | 
|  | */ | 
|  |  | 
|  | tree_stat(memcg, stat); | 
|  | tree_events(memcg, events); | 
|  |  | 
|  | seq_printf(m, "anon %llu\n", | 
|  | (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); | 
|  | seq_printf(m, "file %llu\n", | 
|  | (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); | 
|  | seq_printf(m, "kernel_stack %llu\n", | 
|  | (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE); | 
|  | seq_printf(m, "slab %llu\n", | 
|  | (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + | 
|  | stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); | 
|  | seq_printf(m, "sock %llu\n", | 
|  | (u64)stat[MEMCG_SOCK] * PAGE_SIZE); | 
|  |  | 
|  | seq_printf(m, "file_mapped %llu\n", | 
|  | (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); | 
|  | seq_printf(m, "file_dirty %llu\n", | 
|  | (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); | 
|  | seq_printf(m, "file_writeback %llu\n", | 
|  | (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); | 
|  |  | 
|  | for (i = 0; i < NR_LRU_LISTS; i++) { | 
|  | struct mem_cgroup *mi; | 
|  | unsigned long val = 0; | 
|  |  | 
|  | for_each_mem_cgroup_tree(mi, memcg) | 
|  | val += mem_cgroup_nr_lru_pages(mi, BIT(i)); | 
|  | seq_printf(m, "%s %llu\n", | 
|  | mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | seq_printf(m, "slab_reclaimable %llu\n", | 
|  | (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); | 
|  | seq_printf(m, "slab_unreclaimable %llu\n", | 
|  | (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); | 
|  |  | 
|  | /* Accumulated memory events */ | 
|  |  | 
|  | seq_printf(m, "pgfault %lu\n", | 
|  | events[MEM_CGROUP_EVENTS_PGFAULT]); | 
|  | seq_printf(m, "pgmajfault %lu\n", | 
|  | events[MEM_CGROUP_EVENTS_PGMAJFAULT]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cftype memory_files[] = { | 
|  | { | 
|  | .name = "current", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .read_u64 = memory_current_read, | 
|  | }, | 
|  | { | 
|  | .name = "low", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_low_show, | 
|  | .write = memory_low_write, | 
|  | }, | 
|  | { | 
|  | .name = "high", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_high_show, | 
|  | .write = memory_high_write, | 
|  | }, | 
|  | { | 
|  | .name = "max", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_max_show, | 
|  | .write = memory_max_write, | 
|  | }, | 
|  | { | 
|  | .name = "events", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .file_offset = offsetof(struct mem_cgroup, events_file), | 
|  | .seq_show = memory_events_show, | 
|  | }, | 
|  | { | 
|  | .name = "stat", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = memory_stat_show, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | struct cgroup_subsys memory_cgrp_subsys = { | 
|  | .css_alloc = mem_cgroup_css_alloc, | 
|  | .css_online = mem_cgroup_css_online, | 
|  | .css_offline = mem_cgroup_css_offline, | 
|  | .css_released = mem_cgroup_css_released, | 
|  | .css_free = mem_cgroup_css_free, | 
|  | .css_reset = mem_cgroup_css_reset, | 
|  | .can_attach = mem_cgroup_can_attach, | 
|  | .cancel_attach = mem_cgroup_cancel_attach, | 
|  | .attach = mem_cgroup_move_task, | 
|  | .bind = mem_cgroup_bind, | 
|  | .dfl_cftypes = memory_files, | 
|  | .legacy_cftypes = mem_cgroup_legacy_files, | 
|  | .early_init = 0, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_low - check if memory consumption is below the normal range | 
|  | * @root: the highest ancestor to consider | 
|  | * @memcg: the memory cgroup to check | 
|  | * | 
|  | * Returns %true if memory consumption of @memcg, and that of all | 
|  | * configurable ancestors up to @root, is below the normal range. | 
|  | */ | 
|  | bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) | 
|  | { | 
|  | if (mem_cgroup_disabled()) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * The toplevel group doesn't have a configurable range, so | 
|  | * it's never low when looked at directly, and it is not | 
|  | * considered an ancestor when assessing the hierarchy. | 
|  | */ | 
|  |  | 
|  | if (memcg == root_mem_cgroup) | 
|  | return false; | 
|  |  | 
|  | if (page_counter_read(&memcg->memory) >= memcg->low) | 
|  | return false; | 
|  |  | 
|  | while (memcg != root) { | 
|  | memcg = parent_mem_cgroup(memcg); | 
|  |  | 
|  | if (memcg == root_mem_cgroup) | 
|  | break; | 
|  |  | 
|  | if (page_counter_read(&memcg->memory) >= memcg->low) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_try_charge - try charging a page | 
|  | * @page: page to charge | 
|  | * @mm: mm context of the victim | 
|  | * @gfp_mask: reclaim mode | 
|  | * @memcgp: charged memcg return | 
|  | * | 
|  | * Try to charge @page to the memcg that @mm belongs to, reclaiming | 
|  | * pages according to @gfp_mask if necessary. | 
|  | * | 
|  | * Returns 0 on success, with *@memcgp pointing to the charged memcg. | 
|  | * Otherwise, an error code is returned. | 
|  | * | 
|  | * After page->mapping has been set up, the caller must finalize the | 
|  | * charge with mem_cgroup_commit_charge().  Or abort the transaction | 
|  | * with mem_cgroup_cancel_charge() in case page instantiation fails. | 
|  | */ | 
|  | int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, | 
|  | gfp_t gfp_mask, struct mem_cgroup **memcgp, | 
|  | bool compound) | 
|  | { | 
|  | struct mem_cgroup *memcg = NULL; | 
|  | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
|  | int ret = 0; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | goto out; | 
|  |  | 
|  | if (PageSwapCache(page)) { | 
|  | /* | 
|  | * Every swap fault against a single page tries to charge the | 
|  | * page, bail as early as possible.  shmem_unuse() encounters | 
|  | * already charged pages, too.  The USED bit is protected by | 
|  | * the page lock, which serializes swap cache removal, which | 
|  | * in turn serializes uncharging. | 
|  | */ | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | if (page->mem_cgroup) | 
|  | goto out; | 
|  |  | 
|  | if (do_swap_account) { | 
|  | swp_entry_t ent = { .val = page_private(page), }; | 
|  | unsigned short id = lookup_swap_cgroup_id(ent); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_id(id); | 
|  | if (memcg && !css_tryget_online(&memcg->css)) | 
|  | memcg = NULL; | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!memcg) | 
|  | memcg = get_mem_cgroup_from_mm(mm); | 
|  |  | 
|  | ret = try_charge(memcg, gfp_mask, nr_pages); | 
|  |  | 
|  | css_put(&memcg->css); | 
|  | out: | 
|  | *memcgp = memcg; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_commit_charge - commit a page charge | 
|  | * @page: page to charge | 
|  | * @memcg: memcg to charge the page to | 
|  | * @lrucare: page might be on LRU already | 
|  | * | 
|  | * Finalize a charge transaction started by mem_cgroup_try_charge(), | 
|  | * after page->mapping has been set up.  This must happen atomically | 
|  | * as part of the page instantiation, i.e. under the page table lock | 
|  | * for anonymous pages, under the page lock for page and swap cache. | 
|  | * | 
|  | * In addition, the page must not be on the LRU during the commit, to | 
|  | * prevent racing with task migration.  If it might be, use @lrucare. | 
|  | * | 
|  | * Use mem_cgroup_cancel_charge() to cancel the transaction instead. | 
|  | */ | 
|  | void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, | 
|  | bool lrucare, bool compound) | 
|  | { | 
|  | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!page->mapping, page); | 
|  | VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  | /* | 
|  | * Swap faults will attempt to charge the same page multiple | 
|  | * times.  But reuse_swap_page() might have removed the page | 
|  | * from swapcache already, so we can't check PageSwapCache(). | 
|  | */ | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | commit_charge(page, memcg, lrucare); | 
|  |  | 
|  | local_irq_disable(); | 
|  | mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); | 
|  | memcg_check_events(memcg, page); | 
|  | local_irq_enable(); | 
|  |  | 
|  | if (do_memsw_account() && PageSwapCache(page)) { | 
|  | swp_entry_t entry = { .val = page_private(page) }; | 
|  | /* | 
|  | * The swap entry might not get freed for a long time, | 
|  | * let's not wait for it.  The page already received a | 
|  | * memory+swap charge, drop the swap entry duplicate. | 
|  | */ | 
|  | mem_cgroup_uncharge_swap(entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_cancel_charge - cancel a page charge | 
|  | * @page: page to charge | 
|  | * @memcg: memcg to charge the page to | 
|  | * | 
|  | * Cancel a charge transaction started by mem_cgroup_try_charge(). | 
|  | */ | 
|  | void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, | 
|  | bool compound) | 
|  | { | 
|  | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  | /* | 
|  | * Swap faults will attempt to charge the same page multiple | 
|  | * times.  But reuse_swap_page() might have removed the page | 
|  | * from swapcache already, so we can't check PageSwapCache(). | 
|  | */ | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | cancel_charge(memcg, nr_pages); | 
|  | } | 
|  |  | 
|  | static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, | 
|  | unsigned long nr_anon, unsigned long nr_file, | 
|  | unsigned long nr_huge, struct page *dummy_page) | 
|  | { | 
|  | unsigned long nr_pages = nr_anon + nr_file; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!mem_cgroup_is_root(memcg)) { | 
|  | page_counter_uncharge(&memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_uncharge(&memcg->memsw, nr_pages); | 
|  | memcg_oom_recover(memcg); | 
|  | } | 
|  |  | 
|  | local_irq_save(flags); | 
|  | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); | 
|  | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); | 
|  | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); | 
|  | __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); | 
|  | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); | 
|  | memcg_check_events(memcg, dummy_page); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | if (!mem_cgroup_is_root(memcg)) | 
|  | css_put_many(&memcg->css, nr_pages); | 
|  | } | 
|  |  | 
|  | static void uncharge_list(struct list_head *page_list) | 
|  | { | 
|  | struct mem_cgroup *memcg = NULL; | 
|  | unsigned long nr_anon = 0; | 
|  | unsigned long nr_file = 0; | 
|  | unsigned long nr_huge = 0; | 
|  | unsigned long pgpgout = 0; | 
|  | struct list_head *next; | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * Note that the list can be a single page->lru; hence the | 
|  | * do-while loop instead of a simple list_for_each_entry(). | 
|  | */ | 
|  | next = page_list->next; | 
|  | do { | 
|  | unsigned int nr_pages = 1; | 
|  |  | 
|  | page = list_entry(next, struct page, lru); | 
|  | next = page->lru.next; | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | VM_BUG_ON_PAGE(page_count(page), page); | 
|  |  | 
|  | if (!page->mem_cgroup) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Nobody should be changing or seriously looking at | 
|  | * page->mem_cgroup at this point, we have fully | 
|  | * exclusive access to the page. | 
|  | */ | 
|  |  | 
|  | if (memcg != page->mem_cgroup) { | 
|  | if (memcg) { | 
|  | uncharge_batch(memcg, pgpgout, nr_anon, nr_file, | 
|  | nr_huge, page); | 
|  | pgpgout = nr_anon = nr_file = nr_huge = 0; | 
|  | } | 
|  | memcg = page->mem_cgroup; | 
|  | } | 
|  |  | 
|  | if (PageTransHuge(page)) { | 
|  | nr_pages <<= compound_order(page); | 
|  | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | 
|  | nr_huge += nr_pages; | 
|  | } | 
|  |  | 
|  | if (PageAnon(page)) | 
|  | nr_anon += nr_pages; | 
|  | else | 
|  | nr_file += nr_pages; | 
|  |  | 
|  | page->mem_cgroup = NULL; | 
|  |  | 
|  | pgpgout++; | 
|  | } while (next != page_list); | 
|  |  | 
|  | if (memcg) | 
|  | uncharge_batch(memcg, pgpgout, nr_anon, nr_file, | 
|  | nr_huge, page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_uncharge - uncharge a page | 
|  | * @page: page to uncharge | 
|  | * | 
|  | * Uncharge a page previously charged with mem_cgroup_try_charge() and | 
|  | * mem_cgroup_commit_charge(). | 
|  | */ | 
|  | void mem_cgroup_uncharge(struct page *page) | 
|  | { | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | /* Don't touch page->lru of any random page, pre-check: */ | 
|  | if (!page->mem_cgroup) | 
|  | return; | 
|  |  | 
|  | INIT_LIST_HEAD(&page->lru); | 
|  | uncharge_list(&page->lru); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_uncharge_list - uncharge a list of page | 
|  | * @page_list: list of pages to uncharge | 
|  | * | 
|  | * Uncharge a list of pages previously charged with | 
|  | * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). | 
|  | */ | 
|  | void mem_cgroup_uncharge_list(struct list_head *page_list) | 
|  | { | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | if (!list_empty(page_list)) | 
|  | uncharge_list(page_list); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_migrate - charge a page's replacement | 
|  | * @oldpage: currently circulating page | 
|  | * @newpage: replacement page | 
|  | * | 
|  | * Charge @newpage as a replacement page for @oldpage. @oldpage will | 
|  | * be uncharged upon free. | 
|  | * | 
|  | * Both pages must be locked, @newpage->mapping must be set up. | 
|  | */ | 
|  | void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned int nr_pages; | 
|  | bool compound; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); | 
|  | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | 
|  | VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); | 
|  | VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), | 
|  | newpage); | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | /* Page cache replacement: new page already charged? */ | 
|  | if (newpage->mem_cgroup) | 
|  | return; | 
|  |  | 
|  | /* Swapcache readahead pages can get replaced before being charged */ | 
|  | memcg = oldpage->mem_cgroup; | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | /* Force-charge the new page. The old one will be freed soon */ | 
|  | compound = PageTransHuge(newpage); | 
|  | nr_pages = compound ? hpage_nr_pages(newpage) : 1; | 
|  |  | 
|  | page_counter_charge(&memcg->memory, nr_pages); | 
|  | if (do_memsw_account()) | 
|  | page_counter_charge(&memcg->memsw, nr_pages); | 
|  | css_get_many(&memcg->css, nr_pages); | 
|  |  | 
|  | commit_charge(newpage, memcg, false); | 
|  |  | 
|  | local_irq_disable(); | 
|  | mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); | 
|  | memcg_check_events(memcg, newpage); | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); | 
|  | EXPORT_SYMBOL(memcg_sockets_enabled_key); | 
|  |  | 
|  | void sock_update_memcg(struct sock *sk) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | /* Socket cloning can throw us here with sk_cgrp already | 
|  | * filled. It won't however, necessarily happen from | 
|  | * process context. So the test for root memcg given | 
|  | * the current task's memcg won't help us in this case. | 
|  | * | 
|  | * Respecting the original socket's memcg is a better | 
|  | * decision in this case. | 
|  | */ | 
|  | if (sk->sk_memcg) { | 
|  | BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); | 
|  | css_get(&sk->sk_memcg->css); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_task(current); | 
|  | if (memcg == root_mem_cgroup) | 
|  | goto out; | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) | 
|  | goto out; | 
|  | if (css_tryget_online(&memcg->css)) | 
|  | sk->sk_memcg = memcg; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_update_memcg); | 
|  |  | 
|  | void sock_release_memcg(struct sock *sk) | 
|  | { | 
|  | WARN_ON(!sk->sk_memcg); | 
|  | css_put(&sk->sk_memcg->css); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_charge_skmem - charge socket memory | 
|  | * @memcg: memcg to charge | 
|  | * @nr_pages: number of pages to charge | 
|  | * | 
|  | * Charges @nr_pages to @memcg. Returns %true if the charge fit within | 
|  | * @memcg's configured limit, %false if the charge had to be forced. | 
|  | */ | 
|  | bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | gfp_t gfp_mask = GFP_KERNEL; | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | 
|  | struct page_counter *fail; | 
|  |  | 
|  | if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { | 
|  | memcg->tcpmem_pressure = 0; | 
|  | return true; | 
|  | } | 
|  | page_counter_charge(&memcg->tcpmem, nr_pages); | 
|  | memcg->tcpmem_pressure = 1; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Don't block in the packet receive path */ | 
|  | if (in_softirq()) | 
|  | gfp_mask = GFP_NOWAIT; | 
|  |  | 
|  | this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); | 
|  |  | 
|  | if (try_charge(memcg, gfp_mask, nr_pages) == 0) | 
|  | return true; | 
|  |  | 
|  | try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_uncharge_skmem - uncharge socket memory | 
|  | * @memcg - memcg to uncharge | 
|  | * @nr_pages - number of pages to uncharge | 
|  | */ | 
|  | void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | { | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | 
|  | page_counter_uncharge(&memcg->tcpmem, nr_pages); | 
|  | return; | 
|  | } | 
|  |  | 
|  | this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); | 
|  |  | 
|  | page_counter_uncharge(&memcg->memory, nr_pages); | 
|  | css_put_many(&memcg->css, nr_pages); | 
|  | } | 
|  |  | 
|  | static int __init cgroup_memory(char *s) | 
|  | { | 
|  | char *token; | 
|  |  | 
|  | while ((token = strsep(&s, ",")) != NULL) { | 
|  | if (!*token) | 
|  | continue; | 
|  | if (!strcmp(token, "nosocket")) | 
|  | cgroup_memory_nosocket = true; | 
|  | if (!strcmp(token, "nokmem")) | 
|  | cgroup_memory_nokmem = true; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | __setup("cgroup.memory=", cgroup_memory); | 
|  |  | 
|  | /* | 
|  | * subsys_initcall() for memory controller. | 
|  | * | 
|  | * Some parts like hotcpu_notifier() have to be initialized from this context | 
|  | * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically | 
|  | * everything that doesn't depend on a specific mem_cgroup structure should | 
|  | * be initialized from here. | 
|  | */ | 
|  | static int __init mem_cgroup_init(void) | 
|  | { | 
|  | int cpu, node; | 
|  |  | 
|  | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, | 
|  | drain_local_stock); | 
|  |  | 
|  | for_each_node(node) { | 
|  | struct mem_cgroup_tree_per_node *rtpn; | 
|  | int zone; | 
|  |  | 
|  | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, | 
|  | node_online(node) ? node : NUMA_NO_NODE); | 
|  |  | 
|  | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
|  | struct mem_cgroup_tree_per_zone *rtpz; | 
|  |  | 
|  | rtpz = &rtpn->rb_tree_per_zone[zone]; | 
|  | rtpz->rb_root = RB_ROOT; | 
|  | spin_lock_init(&rtpz->lock); | 
|  | } | 
|  | soft_limit_tree.rb_tree_per_node[node] = rtpn; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(mem_cgroup_init); | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_SWAP | 
|  | /** | 
|  | * mem_cgroup_swapout - transfer a memsw charge to swap | 
|  | * @page: page whose memsw charge to transfer | 
|  | * @entry: swap entry to move the charge to | 
|  | * | 
|  | * Transfer the memsw charge of @page to @entry. | 
|  | */ | 
|  | void mem_cgroup_swapout(struct page *page, swp_entry_t entry) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned short oldid; | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | VM_BUG_ON_PAGE(page_count(page), page); | 
|  |  | 
|  | if (!do_memsw_account()) | 
|  | return; | 
|  |  | 
|  | memcg = page->mem_cgroup; | 
|  |  | 
|  | /* Readahead page, never charged */ | 
|  | if (!memcg) | 
|  | return; | 
|  |  | 
|  | oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); | 
|  | VM_BUG_ON_PAGE(oldid, page); | 
|  | mem_cgroup_swap_statistics(memcg, true); | 
|  |  | 
|  | page->mem_cgroup = NULL; | 
|  |  | 
|  | if (!mem_cgroup_is_root(memcg)) | 
|  | page_counter_uncharge(&memcg->memory, 1); | 
|  |  | 
|  | /* | 
|  | * Interrupts should be disabled here because the caller holds the | 
|  | * mapping->tree_lock lock which is taken with interrupts-off. It is | 
|  | * important here to have the interrupts disabled because it is the | 
|  | * only synchronisation we have for udpating the per-CPU variables. | 
|  | */ | 
|  | VM_BUG_ON(!irqs_disabled()); | 
|  | mem_cgroup_charge_statistics(memcg, page, false, -1); | 
|  | memcg_check_events(memcg, page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mem_cgroup_try_charge_swap - try charging a swap entry | 
|  | * @page: page being added to swap | 
|  | * @entry: swap entry to charge | 
|  | * | 
|  | * Try to charge @entry to the memcg that @page belongs to. | 
|  | * | 
|  | * Returns 0 on success, -ENOMEM on failure. | 
|  | */ | 
|  | int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | struct page_counter *counter; | 
|  | unsigned short oldid; | 
|  |  | 
|  | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) | 
|  | return 0; | 
|  |  | 
|  | memcg = page->mem_cgroup; | 
|  |  | 
|  | /* Readahead page, never charged */ | 
|  | if (!memcg) | 
|  | return 0; | 
|  |  | 
|  | if (!mem_cgroup_is_root(memcg) && | 
|  | !page_counter_try_charge(&memcg->swap, 1, &counter)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); | 
|  | VM_BUG_ON_PAGE(oldid, page); | 
|  | mem_cgroup_swap_statistics(memcg, true); | 
|  |  | 
|  | css_get(&memcg->css); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_uncharge_swap - uncharge a swap entry | 
|  | * @entry: swap entry to uncharge | 
|  | * | 
|  | * Drop the swap charge associated with @entry. | 
|  | */ | 
|  | void mem_cgroup_uncharge_swap(swp_entry_t entry) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned short id; | 
|  |  | 
|  | if (!do_swap_account) | 
|  | return; | 
|  |  | 
|  | id = swap_cgroup_record(entry, 0); | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_from_id(id); | 
|  | if (memcg) { | 
|  | if (!mem_cgroup_is_root(memcg)) { | 
|  | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | page_counter_uncharge(&memcg->swap, 1); | 
|  | else | 
|  | page_counter_uncharge(&memcg->memsw, 1); | 
|  | } | 
|  | mem_cgroup_swap_statistics(memcg, false); | 
|  | css_put(&memcg->css); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) | 
|  | { | 
|  | long nr_swap_pages = get_nr_swap_pages(); | 
|  |  | 
|  | if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return nr_swap_pages; | 
|  | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | 
|  | nr_swap_pages = min_t(long, nr_swap_pages, | 
|  | READ_ONCE(memcg->swap.limit) - | 
|  | page_counter_read(&memcg->swap)); | 
|  | return nr_swap_pages; | 
|  | } | 
|  |  | 
|  | bool mem_cgroup_swap_full(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  |  | 
|  | if (vm_swap_full()) | 
|  | return true; | 
|  | if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | return false; | 
|  |  | 
|  | memcg = page->mem_cgroup; | 
|  | if (!memcg) | 
|  | return false; | 
|  |  | 
|  | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | 
|  | if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* for remember boot option*/ | 
|  | #ifdef CONFIG_MEMCG_SWAP_ENABLED | 
|  | static int really_do_swap_account __initdata = 1; | 
|  | #else | 
|  | static int really_do_swap_account __initdata; | 
|  | #endif | 
|  |  | 
|  | static int __init enable_swap_account(char *s) | 
|  | { | 
|  | if (!strcmp(s, "1")) | 
|  | really_do_swap_account = 1; | 
|  | else if (!strcmp(s, "0")) | 
|  | really_do_swap_account = 0; | 
|  | return 1; | 
|  | } | 
|  | __setup("swapaccount=", enable_swap_account); | 
|  |  | 
|  | static u64 swap_current_read(struct cgroup_subsys_state *css, | 
|  | struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  |  | 
|  | return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | static int swap_max_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | unsigned long max = READ_ONCE(memcg->swap.limit); | 
|  |  | 
|  | if (max == PAGE_COUNTER_MAX) | 
|  | seq_puts(m, "max\n"); | 
|  | else | 
|  | seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t swap_max_write(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | unsigned long max; | 
|  | int err; | 
|  |  | 
|  | buf = strstrip(buf); | 
|  | err = page_counter_memparse(buf, "max", &max); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | mutex_lock(&memcg_limit_mutex); | 
|  | err = page_counter_limit(&memcg->swap, max); | 
|  | mutex_unlock(&memcg_limit_mutex); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static struct cftype swap_files[] = { | 
|  | { | 
|  | .name = "swap.current", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .read_u64 = swap_current_read, | 
|  | }, | 
|  | { | 
|  | .name = "swap.max", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = swap_max_show, | 
|  | .write = swap_max_write, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | static struct cftype memsw_cgroup_files[] = { | 
|  | { | 
|  | .name = "memsw.usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "memsw.max_usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "memsw.limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | 
|  | .write = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { | 
|  | .name = "memsw.failcnt", | 
|  | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | 
|  | .write = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read_u64, | 
|  | }, | 
|  | { },	/* terminate */ | 
|  | }; | 
|  |  | 
|  | static int __init mem_cgroup_swap_init(void) | 
|  | { | 
|  | if (!mem_cgroup_disabled() && really_do_swap_account) { | 
|  | do_swap_account = 1; | 
|  | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, | 
|  | swap_files)); | 
|  | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, | 
|  | memsw_cgroup_files)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(mem_cgroup_swap_init); | 
|  |  | 
|  | #endif /* CONFIG_MEMCG_SWAP */ |