| /* |
| * Copyright (c) 1995 |
| * Ted Lemon (hereinafter referred to as the author) |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| /* elf2ecoff.c |
| |
| This program converts an elf executable to an ECOFF executable. |
| No symbol table is retained. This is useful primarily in building |
| net-bootable kernels for machines (e.g., DECstation and Alpha) which |
| only support the ECOFF object file format. */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <errno.h> |
| #include <sys/types.h> |
| #include <fcntl.h> |
| #include <unistd.h> |
| #include <elf.h> |
| #include <limits.h> |
| #include <netinet/in.h> |
| #include <stdlib.h> |
| |
| #include "ecoff.h" |
| |
| /* |
| * Some extra ELF definitions |
| */ |
| #define PT_MIPS_REGINFO 0x70000000 /* Register usage information */ |
| #define PT_MIPS_ABIFLAGS 0x70000003 /* Records ABI related flags */ |
| |
| /* -------------------------------------------------------------------- */ |
| |
| struct sect { |
| unsigned long vaddr; |
| unsigned long len; |
| }; |
| |
| int *symTypeTable; |
| int must_convert_endian; |
| int format_bigendian; |
| |
| static void copy(int out, int in, off_t offset, off_t size) |
| { |
| char ibuf[4096]; |
| int remaining, cur, count; |
| |
| /* Go to the start of the ELF symbol table... */ |
| if (lseek(in, offset, SEEK_SET) < 0) { |
| perror("copy: lseek"); |
| exit(1); |
| } |
| |
| remaining = size; |
| while (remaining) { |
| cur = remaining; |
| if (cur > sizeof ibuf) |
| cur = sizeof ibuf; |
| remaining -= cur; |
| if ((count = read(in, ibuf, cur)) != cur) { |
| fprintf(stderr, "copy: read: %s\n", |
| count ? strerror(errno) : |
| "premature end of file"); |
| exit(1); |
| } |
| if ((count = write(out, ibuf, cur)) != cur) { |
| perror("copy: write"); |
| exit(1); |
| } |
| } |
| } |
| |
| /* |
| * Combine two segments, which must be contiguous. If pad is true, it's |
| * okay for there to be padding between. |
| */ |
| static void combine(struct sect *base, struct sect *new, int pad) |
| { |
| if (!base->len) |
| *base = *new; |
| else if (new->len) { |
| if (base->vaddr + base->len != new->vaddr) { |
| if (pad) |
| base->len = new->vaddr - base->vaddr; |
| else { |
| fprintf(stderr, |
| "Non-contiguous data can't be converted.\n"); |
| exit(1); |
| } |
| } |
| base->len += new->len; |
| } |
| } |
| |
| static int phcmp(const void *v1, const void *v2) |
| { |
| const Elf32_Phdr *h1 = v1; |
| const Elf32_Phdr *h2 = v2; |
| |
| if (h1->p_vaddr > h2->p_vaddr) |
| return 1; |
| else if (h1->p_vaddr < h2->p_vaddr) |
| return -1; |
| else |
| return 0; |
| } |
| |
| static char *saveRead(int file, off_t offset, off_t len, char *name) |
| { |
| char *tmp; |
| int count; |
| off_t off; |
| if ((off = lseek(file, offset, SEEK_SET)) < 0) { |
| fprintf(stderr, "%s: fseek: %s\n", name, strerror(errno)); |
| exit(1); |
| } |
| if (!(tmp = (char *) malloc(len))) { |
| fprintf(stderr, "%s: Can't allocate %ld bytes.\n", name, |
| len); |
| exit(1); |
| } |
| count = read(file, tmp, len); |
| if (count != len) { |
| fprintf(stderr, "%s: read: %s.\n", |
| name, |
| count ? strerror(errno) : "End of file reached"); |
| exit(1); |
| } |
| return tmp; |
| } |
| |
| #define swab16(x) \ |
| ((unsigned short)( \ |
| (((unsigned short)(x) & (unsigned short)0x00ffU) << 8) | \ |
| (((unsigned short)(x) & (unsigned short)0xff00U) >> 8) )) |
| |
| #define swab32(x) \ |
| ((unsigned int)( \ |
| (((unsigned int)(x) & (unsigned int)0x000000ffUL) << 24) | \ |
| (((unsigned int)(x) & (unsigned int)0x0000ff00UL) << 8) | \ |
| (((unsigned int)(x) & (unsigned int)0x00ff0000UL) >> 8) | \ |
| (((unsigned int)(x) & (unsigned int)0xff000000UL) >> 24) )) |
| |
| static void convert_elf_hdr(Elf32_Ehdr * e) |
| { |
| e->e_type = swab16(e->e_type); |
| e->e_machine = swab16(e->e_machine); |
| e->e_version = swab32(e->e_version); |
| e->e_entry = swab32(e->e_entry); |
| e->e_phoff = swab32(e->e_phoff); |
| e->e_shoff = swab32(e->e_shoff); |
| e->e_flags = swab32(e->e_flags); |
| e->e_ehsize = swab16(e->e_ehsize); |
| e->e_phentsize = swab16(e->e_phentsize); |
| e->e_phnum = swab16(e->e_phnum); |
| e->e_shentsize = swab16(e->e_shentsize); |
| e->e_shnum = swab16(e->e_shnum); |
| e->e_shstrndx = swab16(e->e_shstrndx); |
| } |
| |
| static void convert_elf_phdrs(Elf32_Phdr * p, int num) |
| { |
| int i; |
| |
| for (i = 0; i < num; i++, p++) { |
| p->p_type = swab32(p->p_type); |
| p->p_offset = swab32(p->p_offset); |
| p->p_vaddr = swab32(p->p_vaddr); |
| p->p_paddr = swab32(p->p_paddr); |
| p->p_filesz = swab32(p->p_filesz); |
| p->p_memsz = swab32(p->p_memsz); |
| p->p_flags = swab32(p->p_flags); |
| p->p_align = swab32(p->p_align); |
| } |
| |
| } |
| |
| static void convert_elf_shdrs(Elf32_Shdr * s, int num) |
| { |
| int i; |
| |
| for (i = 0; i < num; i++, s++) { |
| s->sh_name = swab32(s->sh_name); |
| s->sh_type = swab32(s->sh_type); |
| s->sh_flags = swab32(s->sh_flags); |
| s->sh_addr = swab32(s->sh_addr); |
| s->sh_offset = swab32(s->sh_offset); |
| s->sh_size = swab32(s->sh_size); |
| s->sh_link = swab32(s->sh_link); |
| s->sh_info = swab32(s->sh_info); |
| s->sh_addralign = swab32(s->sh_addralign); |
| s->sh_entsize = swab32(s->sh_entsize); |
| } |
| } |
| |
| static void convert_ecoff_filehdr(struct filehdr *f) |
| { |
| f->f_magic = swab16(f->f_magic); |
| f->f_nscns = swab16(f->f_nscns); |
| f->f_timdat = swab32(f->f_timdat); |
| f->f_symptr = swab32(f->f_symptr); |
| f->f_nsyms = swab32(f->f_nsyms); |
| f->f_opthdr = swab16(f->f_opthdr); |
| f->f_flags = swab16(f->f_flags); |
| } |
| |
| static void convert_ecoff_aouthdr(struct aouthdr *a) |
| { |
| a->magic = swab16(a->magic); |
| a->vstamp = swab16(a->vstamp); |
| a->tsize = swab32(a->tsize); |
| a->dsize = swab32(a->dsize); |
| a->bsize = swab32(a->bsize); |
| a->entry = swab32(a->entry); |
| a->text_start = swab32(a->text_start); |
| a->data_start = swab32(a->data_start); |
| a->bss_start = swab32(a->bss_start); |
| a->gprmask = swab32(a->gprmask); |
| a->cprmask[0] = swab32(a->cprmask[0]); |
| a->cprmask[1] = swab32(a->cprmask[1]); |
| a->cprmask[2] = swab32(a->cprmask[2]); |
| a->cprmask[3] = swab32(a->cprmask[3]); |
| a->gp_value = swab32(a->gp_value); |
| } |
| |
| static void convert_ecoff_esecs(struct scnhdr *s, int num) |
| { |
| int i; |
| |
| for (i = 0; i < num; i++, s++) { |
| s->s_paddr = swab32(s->s_paddr); |
| s->s_vaddr = swab32(s->s_vaddr); |
| s->s_size = swab32(s->s_size); |
| s->s_scnptr = swab32(s->s_scnptr); |
| s->s_relptr = swab32(s->s_relptr); |
| s->s_lnnoptr = swab32(s->s_lnnoptr); |
| s->s_nreloc = swab16(s->s_nreloc); |
| s->s_nlnno = swab16(s->s_nlnno); |
| s->s_flags = swab32(s->s_flags); |
| } |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| Elf32_Ehdr ex; |
| Elf32_Phdr *ph; |
| Elf32_Shdr *sh; |
| int i, pad; |
| struct sect text, data, bss; |
| struct filehdr efh; |
| struct aouthdr eah; |
| struct scnhdr esecs[6]; |
| int infile, outfile; |
| unsigned long cur_vma = ULONG_MAX; |
| int addflag = 0; |
| int nosecs; |
| |
| text.len = data.len = bss.len = 0; |
| text.vaddr = data.vaddr = bss.vaddr = 0; |
| |
| /* Check args... */ |
| if (argc < 3 || argc > 4) { |
| usage: |
| fprintf(stderr, |
| "usage: elf2ecoff <elf executable> <ecoff executable> [-a]\n"); |
| exit(1); |
| } |
| if (argc == 4) { |
| if (strcmp(argv[3], "-a")) |
| goto usage; |
| addflag = 1; |
| } |
| |
| /* Try the input file... */ |
| if ((infile = open(argv[1], O_RDONLY)) < 0) { |
| fprintf(stderr, "Can't open %s for read: %s\n", |
| argv[1], strerror(errno)); |
| exit(1); |
| } |
| |
| /* Read the header, which is at the beginning of the file... */ |
| i = read(infile, &ex, sizeof ex); |
| if (i != sizeof ex) { |
| fprintf(stderr, "ex: %s: %s.\n", |
| argv[1], |
| i ? strerror(errno) : "End of file reached"); |
| exit(1); |
| } |
| |
| if (ex.e_ident[EI_DATA] == ELFDATA2MSB) |
| format_bigendian = 1; |
| |
| if (ntohs(0xaa55) == 0xaa55) { |
| if (!format_bigendian) |
| must_convert_endian = 1; |
| } else { |
| if (format_bigendian) |
| must_convert_endian = 1; |
| } |
| if (must_convert_endian) |
| convert_elf_hdr(&ex); |
| |
| /* Read the program headers... */ |
| ph = (Elf32_Phdr *) saveRead(infile, ex.e_phoff, |
| ex.e_phnum * sizeof(Elf32_Phdr), |
| "ph"); |
| if (must_convert_endian) |
| convert_elf_phdrs(ph, ex.e_phnum); |
| /* Read the section headers... */ |
| sh = (Elf32_Shdr *) saveRead(infile, ex.e_shoff, |
| ex.e_shnum * sizeof(Elf32_Shdr), |
| "sh"); |
| if (must_convert_endian) |
| convert_elf_shdrs(sh, ex.e_shnum); |
| |
| /* Figure out if we can cram the program header into an ECOFF |
| header... Basically, we can't handle anything but loadable |
| segments, but we can ignore some kinds of segments. We can't |
| handle holes in the address space. Segments may be out of order, |
| so we sort them first. */ |
| |
| qsort(ph, ex.e_phnum, sizeof(Elf32_Phdr), phcmp); |
| |
| for (i = 0; i < ex.e_phnum; i++) { |
| /* Section types we can ignore... */ |
| switch (ph[i].p_type) { |
| case PT_NULL: |
| case PT_NOTE: |
| case PT_PHDR: |
| case PT_MIPS_REGINFO: |
| case PT_MIPS_ABIFLAGS: |
| continue; |
| |
| case PT_LOAD: |
| /* Writable (data) segment? */ |
| if (ph[i].p_flags & PF_W) { |
| struct sect ndata, nbss; |
| |
| ndata.vaddr = ph[i].p_vaddr; |
| ndata.len = ph[i].p_filesz; |
| nbss.vaddr = ph[i].p_vaddr + ph[i].p_filesz; |
| nbss.len = ph[i].p_memsz - ph[i].p_filesz; |
| |
| combine(&data, &ndata, 0); |
| combine(&bss, &nbss, 1); |
| } else { |
| struct sect ntxt; |
| |
| ntxt.vaddr = ph[i].p_vaddr; |
| ntxt.len = ph[i].p_filesz; |
| |
| combine(&text, &ntxt, 0); |
| } |
| /* Remember the lowest segment start address. */ |
| if (ph[i].p_vaddr < cur_vma) |
| cur_vma = ph[i].p_vaddr; |
| break; |
| |
| default: |
| /* Section types we can't handle... */ |
| fprintf(stderr, |
| "Program header %d type %d can't be converted.\n", |
| ex.e_phnum, ph[i].p_type); |
| exit(1); |
| } |
| } |
| |
| /* Sections must be in order to be converted... */ |
| if (text.vaddr > data.vaddr || data.vaddr > bss.vaddr || |
| text.vaddr + text.len > data.vaddr |
| || data.vaddr + data.len > bss.vaddr) { |
| fprintf(stderr, |
| "Sections ordering prevents a.out conversion.\n"); |
| exit(1); |
| } |
| |
| /* If there's a data section but no text section, then the loader |
| combined everything into one section. That needs to be the |
| text section, so just make the data section zero length following |
| text. */ |
| if (data.len && !text.len) { |
| text = data; |
| data.vaddr = text.vaddr + text.len; |
| data.len = 0; |
| } |
| |
| /* If there is a gap between text and data, we'll fill it when we copy |
| the data, so update the length of the text segment as represented in |
| a.out to reflect that, since a.out doesn't allow gaps in the program |
| address space. */ |
| if (text.vaddr + text.len < data.vaddr) |
| text.len = data.vaddr - text.vaddr; |
| |
| /* We now have enough information to cons up an a.out header... */ |
| eah.magic = OMAGIC; |
| eah.vstamp = 200; |
| eah.tsize = text.len; |
| eah.dsize = data.len; |
| eah.bsize = bss.len; |
| eah.entry = ex.e_entry; |
| eah.text_start = text.vaddr; |
| eah.data_start = data.vaddr; |
| eah.bss_start = bss.vaddr; |
| eah.gprmask = 0xf3fffffe; |
| memset(&eah.cprmask, '\0', sizeof eah.cprmask); |
| eah.gp_value = 0; /* unused. */ |
| |
| if (format_bigendian) |
| efh.f_magic = MIPSEBMAGIC; |
| else |
| efh.f_magic = MIPSELMAGIC; |
| if (addflag) |
| nosecs = 6; |
| else |
| nosecs = 3; |
| efh.f_nscns = nosecs; |
| efh.f_timdat = 0; /* bogus */ |
| efh.f_symptr = 0; |
| efh.f_nsyms = 0; |
| efh.f_opthdr = sizeof eah; |
| efh.f_flags = 0x100f; /* Stripped, not sharable. */ |
| |
| memset(esecs, 0, sizeof esecs); |
| strcpy(esecs[0].s_name, ".text"); |
| strcpy(esecs[1].s_name, ".data"); |
| strcpy(esecs[2].s_name, ".bss"); |
| if (addflag) { |
| strcpy(esecs[3].s_name, ".rdata"); |
| strcpy(esecs[4].s_name, ".sdata"); |
| strcpy(esecs[5].s_name, ".sbss"); |
| } |
| esecs[0].s_paddr = esecs[0].s_vaddr = eah.text_start; |
| esecs[1].s_paddr = esecs[1].s_vaddr = eah.data_start; |
| esecs[2].s_paddr = esecs[2].s_vaddr = eah.bss_start; |
| if (addflag) { |
| esecs[3].s_paddr = esecs[3].s_vaddr = 0; |
| esecs[4].s_paddr = esecs[4].s_vaddr = 0; |
| esecs[5].s_paddr = esecs[5].s_vaddr = 0; |
| } |
| esecs[0].s_size = eah.tsize; |
| esecs[1].s_size = eah.dsize; |
| esecs[2].s_size = eah.bsize; |
| if (addflag) { |
| esecs[3].s_size = 0; |
| esecs[4].s_size = 0; |
| esecs[5].s_size = 0; |
| } |
| esecs[0].s_scnptr = N_TXTOFF(efh, eah); |
| esecs[1].s_scnptr = N_DATOFF(efh, eah); |
| #define ECOFF_SEGMENT_ALIGNMENT(a) 0x10 |
| #define ECOFF_ROUND(s, a) (((s)+(a)-1)&~((a)-1)) |
| esecs[2].s_scnptr = esecs[1].s_scnptr + |
| ECOFF_ROUND(esecs[1].s_size, ECOFF_SEGMENT_ALIGNMENT(&eah)); |
| if (addflag) { |
| esecs[3].s_scnptr = 0; |
| esecs[4].s_scnptr = 0; |
| esecs[5].s_scnptr = 0; |
| } |
| esecs[0].s_relptr = esecs[1].s_relptr = esecs[2].s_relptr = 0; |
| esecs[0].s_lnnoptr = esecs[1].s_lnnoptr = esecs[2].s_lnnoptr = 0; |
| esecs[0].s_nreloc = esecs[1].s_nreloc = esecs[2].s_nreloc = 0; |
| esecs[0].s_nlnno = esecs[1].s_nlnno = esecs[2].s_nlnno = 0; |
| if (addflag) { |
| esecs[3].s_relptr = esecs[4].s_relptr |
| = esecs[5].s_relptr = 0; |
| esecs[3].s_lnnoptr = esecs[4].s_lnnoptr |
| = esecs[5].s_lnnoptr = 0; |
| esecs[3].s_nreloc = esecs[4].s_nreloc = esecs[5].s_nreloc = |
| 0; |
| esecs[3].s_nlnno = esecs[4].s_nlnno = esecs[5].s_nlnno = 0; |
| } |
| esecs[0].s_flags = 0x20; |
| esecs[1].s_flags = 0x40; |
| esecs[2].s_flags = 0x82; |
| if (addflag) { |
| esecs[3].s_flags = 0x100; |
| esecs[4].s_flags = 0x200; |
| esecs[5].s_flags = 0x400; |
| } |
| |
| /* Make the output file... */ |
| if ((outfile = open(argv[2], O_WRONLY | O_CREAT, 0777)) < 0) { |
| fprintf(stderr, "Unable to create %s: %s\n", argv[2], |
| strerror(errno)); |
| exit(1); |
| } |
| |
| if (must_convert_endian) |
| convert_ecoff_filehdr(&efh); |
| /* Write the headers... */ |
| i = write(outfile, &efh, sizeof efh); |
| if (i != sizeof efh) { |
| perror("efh: write"); |
| exit(1); |
| |
| for (i = 0; i < nosecs; i++) { |
| printf |
| ("Section %d: %s phys %lx size %lx file offset %lx\n", |
| i, esecs[i].s_name, esecs[i].s_paddr, |
| esecs[i].s_size, esecs[i].s_scnptr); |
| } |
| } |
| fprintf(stderr, "wrote %d byte file header.\n", i); |
| |
| if (must_convert_endian) |
| convert_ecoff_aouthdr(&eah); |
| i = write(outfile, &eah, sizeof eah); |
| if (i != sizeof eah) { |
| perror("eah: write"); |
| exit(1); |
| } |
| fprintf(stderr, "wrote %d byte a.out header.\n", i); |
| |
| if (must_convert_endian) |
| convert_ecoff_esecs(&esecs[0], nosecs); |
| i = write(outfile, &esecs, nosecs * sizeof(struct scnhdr)); |
| if (i != nosecs * sizeof(struct scnhdr)) { |
| perror("esecs: write"); |
| exit(1); |
| } |
| fprintf(stderr, "wrote %d bytes of section headers.\n", i); |
| |
| pad = (sizeof(efh) + sizeof(eah) + nosecs * sizeof(struct scnhdr)) & 15; |
| if (pad) { |
| pad = 16 - pad; |
| i = write(outfile, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0", pad); |
| if (i < 0) { |
| perror("ipad: write"); |
| exit(1); |
| } |
| fprintf(stderr, "wrote %d byte pad.\n", i); |
| } |
| |
| /* |
| * Copy the loadable sections. Zero-fill any gaps less than 64k; |
| * complain about any zero-filling, and die if we're asked to zero-fill |
| * more than 64k. |
| */ |
| for (i = 0; i < ex.e_phnum; i++) { |
| /* Unprocessable sections were handled above, so just verify that |
| the section can be loaded before copying. */ |
| if (ph[i].p_type == PT_LOAD && ph[i].p_filesz) { |
| if (cur_vma != ph[i].p_vaddr) { |
| unsigned long gap = |
| ph[i].p_vaddr - cur_vma; |
| char obuf[1024]; |
| if (gap > 65536) { |
| fprintf(stderr, |
| "Intersegment gap (%ld bytes) too large.\n", |
| gap); |
| exit(1); |
| } |
| fprintf(stderr, |
| "Warning: %ld byte intersegment gap.\n", |
| gap); |
| memset(obuf, 0, sizeof obuf); |
| while (gap) { |
| int count = |
| write(outfile, obuf, |
| (gap > |
| sizeof obuf ? sizeof |
| obuf : gap)); |
| if (count < 0) { |
| fprintf(stderr, |
| "Error writing gap: %s\n", |
| strerror(errno)); |
| exit(1); |
| } |
| gap -= count; |
| } |
| } |
| fprintf(stderr, "writing %d bytes...\n", |
| ph[i].p_filesz); |
| copy(outfile, infile, ph[i].p_offset, |
| ph[i].p_filesz); |
| cur_vma = ph[i].p_vaddr + ph[i].p_filesz; |
| } |
| } |
| |
| /* |
| * Write a page of padding for boot PROMS that read entire pages. |
| * Without this, they may attempt to read past the end of the |
| * data section, incur an error, and refuse to boot. |
| */ |
| { |
| char obuf[4096]; |
| memset(obuf, 0, sizeof obuf); |
| if (write(outfile, obuf, sizeof(obuf)) != sizeof(obuf)) { |
| fprintf(stderr, "Error writing PROM padding: %s\n", |
| strerror(errno)); |
| exit(1); |
| } |
| } |
| |
| /* Looks like we won... */ |
| exit(0); |
| } |