| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | 
 |  * policies) | 
 |  */ | 
 | #include "sched.h" | 
 |  | 
 | int sched_rr_timeslice = RR_TIMESLICE; | 
 | int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; | 
 |  | 
 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | 
 |  | 
 | struct rt_bandwidth def_rt_bandwidth; | 
 |  | 
 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | 
 | { | 
 | 	struct rt_bandwidth *rt_b = | 
 | 		container_of(timer, struct rt_bandwidth, rt_period_timer); | 
 | 	int idle = 0; | 
 | 	int overrun; | 
 |  | 
 | 	raw_spin_lock(&rt_b->rt_runtime_lock); | 
 | 	for (;;) { | 
 | 		overrun = hrtimer_forward_now(timer, rt_b->rt_period); | 
 | 		if (!overrun) | 
 | 			break; | 
 |  | 
 | 		raw_spin_unlock(&rt_b->rt_runtime_lock); | 
 | 		idle = do_sched_rt_period_timer(rt_b, overrun); | 
 | 		raw_spin_lock(&rt_b->rt_runtime_lock); | 
 | 	} | 
 | 	if (idle) | 
 | 		rt_b->rt_period_active = 0; | 
 | 	raw_spin_unlock(&rt_b->rt_runtime_lock); | 
 |  | 
 | 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | 
 | } | 
 |  | 
 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | 
 | { | 
 | 	rt_b->rt_period = ns_to_ktime(period); | 
 | 	rt_b->rt_runtime = runtime; | 
 |  | 
 | 	raw_spin_lock_init(&rt_b->rt_runtime_lock); | 
 |  | 
 | 	hrtimer_init(&rt_b->rt_period_timer, | 
 | 			CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	rt_b->rt_period_timer.function = sched_rt_period_timer; | 
 | } | 
 |  | 
 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | 
 | { | 
 | 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock(&rt_b->rt_runtime_lock); | 
 | 	if (!rt_b->rt_period_active) { | 
 | 		rt_b->rt_period_active = 1; | 
 | 		/* | 
 | 		 * SCHED_DEADLINE updates the bandwidth, as a run away | 
 | 		 * RT task with a DL task could hog a CPU. But DL does | 
 | 		 * not reset the period. If a deadline task was running | 
 | 		 * without an RT task running, it can cause RT tasks to | 
 | 		 * throttle when they start up. Kick the timer right away | 
 | 		 * to update the period. | 
 | 		 */ | 
 | 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); | 
 | 		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); | 
 | 	} | 
 | 	raw_spin_unlock(&rt_b->rt_runtime_lock); | 
 | } | 
 |  | 
 | void init_rt_rq(struct rt_rq *rt_rq) | 
 | { | 
 | 	struct rt_prio_array *array; | 
 | 	int i; | 
 |  | 
 | 	array = &rt_rq->active; | 
 | 	for (i = 0; i < MAX_RT_PRIO; i++) { | 
 | 		INIT_LIST_HEAD(array->queue + i); | 
 | 		__clear_bit(i, array->bitmap); | 
 | 	} | 
 | 	/* delimiter for bitsearch: */ | 
 | 	__set_bit(MAX_RT_PRIO, array->bitmap); | 
 |  | 
 | #if defined CONFIG_SMP | 
 | 	rt_rq->highest_prio.curr = MAX_RT_PRIO; | 
 | 	rt_rq->highest_prio.next = MAX_RT_PRIO; | 
 | 	rt_rq->rt_nr_migratory = 0; | 
 | 	rt_rq->overloaded = 0; | 
 | 	plist_head_init(&rt_rq->pushable_tasks); | 
 | #endif /* CONFIG_SMP */ | 
 | 	/* We start is dequeued state, because no RT tasks are queued */ | 
 | 	rt_rq->rt_queued = 0; | 
 |  | 
 | 	rt_rq->rt_time = 0; | 
 | 	rt_rq->rt_throttled = 0; | 
 | 	rt_rq->rt_runtime = 0; | 
 | 	raw_spin_lock_init(&rt_rq->rt_runtime_lock); | 
 | } | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | 
 | { | 
 | 	hrtimer_cancel(&rt_b->rt_period_timer); | 
 | } | 
 |  | 
 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | 
 |  | 
 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 
 | { | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | 
 | #endif | 
 | 	return container_of(rt_se, struct task_struct, rt); | 
 | } | 
 |  | 
 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 
 | { | 
 | 	return rt_rq->rq; | 
 | } | 
 |  | 
 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | 
 | { | 
 | 	return rt_se->rt_rq; | 
 | } | 
 |  | 
 | static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) | 
 | { | 
 | 	struct rt_rq *rt_rq = rt_se->rt_rq; | 
 |  | 
 | 	return rt_rq->rq; | 
 | } | 
 |  | 
 | void free_rt_sched_group(struct task_group *tg) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (tg->rt_se) | 
 | 		destroy_rt_bandwidth(&tg->rt_bandwidth); | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		if (tg->rt_rq) | 
 | 			kfree(tg->rt_rq[i]); | 
 | 		if (tg->rt_se) | 
 | 			kfree(tg->rt_se[i]); | 
 | 	} | 
 |  | 
 | 	kfree(tg->rt_rq); | 
 | 	kfree(tg->rt_se); | 
 | } | 
 |  | 
 | void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | 
 | 		struct sched_rt_entity *rt_se, int cpu, | 
 | 		struct sched_rt_entity *parent) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	rt_rq->highest_prio.curr = MAX_RT_PRIO; | 
 | 	rt_rq->rt_nr_boosted = 0; | 
 | 	rt_rq->rq = rq; | 
 | 	rt_rq->tg = tg; | 
 |  | 
 | 	tg->rt_rq[cpu] = rt_rq; | 
 | 	tg->rt_se[cpu] = rt_se; | 
 |  | 
 | 	if (!rt_se) | 
 | 		return; | 
 |  | 
 | 	if (!parent) | 
 | 		rt_se->rt_rq = &rq->rt; | 
 | 	else | 
 | 		rt_se->rt_rq = parent->my_q; | 
 |  | 
 | 	rt_se->my_q = rt_rq; | 
 | 	rt_se->parent = parent; | 
 | 	INIT_LIST_HEAD(&rt_se->run_list); | 
 | } | 
 |  | 
 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 
 | { | 
 | 	struct rt_rq *rt_rq; | 
 | 	struct sched_rt_entity *rt_se; | 
 | 	int i; | 
 |  | 
 | 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); | 
 | 	if (!tg->rt_rq) | 
 | 		goto err; | 
 | 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); | 
 | 	if (!tg->rt_se) | 
 | 		goto err; | 
 |  | 
 | 	init_rt_bandwidth(&tg->rt_bandwidth, | 
 | 			ktime_to_ns(def_rt_bandwidth.rt_period), 0); | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		rt_rq = kzalloc_node(sizeof(struct rt_rq), | 
 | 				     GFP_KERNEL, cpu_to_node(i)); | 
 | 		if (!rt_rq) | 
 | 			goto err; | 
 |  | 
 | 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | 
 | 				     GFP_KERNEL, cpu_to_node(i)); | 
 | 		if (!rt_se) | 
 | 			goto err_free_rq; | 
 |  | 
 | 		init_rt_rq(rt_rq); | 
 | 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | 
 | 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 |  | 
 | err_free_rq: | 
 | 	kfree(rt_rq); | 
 | err: | 
 | 	return 0; | 
 | } | 
 |  | 
 | #else /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | #define rt_entity_is_task(rt_se) (1) | 
 |  | 
 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 
 | { | 
 | 	return container_of(rt_se, struct task_struct, rt); | 
 | } | 
 |  | 
 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 
 | { | 
 | 	return container_of(rt_rq, struct rq, rt); | 
 | } | 
 |  | 
 | static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) | 
 | { | 
 | 	struct task_struct *p = rt_task_of(rt_se); | 
 |  | 
 | 	return task_rq(p); | 
 | } | 
 |  | 
 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | 
 | { | 
 | 	struct rq *rq = rq_of_rt_se(rt_se); | 
 |  | 
 | 	return &rq->rt; | 
 | } | 
 |  | 
 | void free_rt_sched_group(struct task_group *tg) { } | 
 |  | 
 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 
 | { | 
 | 	return 1; | 
 | } | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | static void pull_rt_task(struct rq *this_rq); | 
 |  | 
 | static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	/* Try to pull RT tasks here if we lower this rq's prio */ | 
 | 	return rq->rt.highest_prio.curr > prev->prio; | 
 | } | 
 |  | 
 | static inline int rt_overloaded(struct rq *rq) | 
 | { | 
 | 	return atomic_read(&rq->rd->rto_count); | 
 | } | 
 |  | 
 | static inline void rt_set_overload(struct rq *rq) | 
 | { | 
 | 	if (!rq->online) | 
 | 		return; | 
 |  | 
 | 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); | 
 | 	/* | 
 | 	 * Make sure the mask is visible before we set | 
 | 	 * the overload count. That is checked to determine | 
 | 	 * if we should look at the mask. It would be a shame | 
 | 	 * if we looked at the mask, but the mask was not | 
 | 	 * updated yet. | 
 | 	 * | 
 | 	 * Matched by the barrier in pull_rt_task(). | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	atomic_inc(&rq->rd->rto_count); | 
 | } | 
 |  | 
 | static inline void rt_clear_overload(struct rq *rq) | 
 | { | 
 | 	if (!rq->online) | 
 | 		return; | 
 |  | 
 | 	/* the order here really doesn't matter */ | 
 | 	atomic_dec(&rq->rd->rto_count); | 
 | 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); | 
 | } | 
 |  | 
 | static void update_rt_migration(struct rt_rq *rt_rq) | 
 | { | 
 | 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { | 
 | 		if (!rt_rq->overloaded) { | 
 | 			rt_set_overload(rq_of_rt_rq(rt_rq)); | 
 | 			rt_rq->overloaded = 1; | 
 | 		} | 
 | 	} else if (rt_rq->overloaded) { | 
 | 		rt_clear_overload(rq_of_rt_rq(rt_rq)); | 
 | 		rt_rq->overloaded = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
 | { | 
 | 	struct task_struct *p; | 
 |  | 
 | 	if (!rt_entity_is_task(rt_se)) | 
 | 		return; | 
 |  | 
 | 	p = rt_task_of(rt_se); | 
 | 	rt_rq = &rq_of_rt_rq(rt_rq)->rt; | 
 |  | 
 | 	rt_rq->rt_nr_total++; | 
 | 	if (p->nr_cpus_allowed > 1) | 
 | 		rt_rq->rt_nr_migratory++; | 
 |  | 
 | 	update_rt_migration(rt_rq); | 
 | } | 
 |  | 
 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
 | { | 
 | 	struct task_struct *p; | 
 |  | 
 | 	if (!rt_entity_is_task(rt_se)) | 
 | 		return; | 
 |  | 
 | 	p = rt_task_of(rt_se); | 
 | 	rt_rq = &rq_of_rt_rq(rt_rq)->rt; | 
 |  | 
 | 	rt_rq->rt_nr_total--; | 
 | 	if (p->nr_cpus_allowed > 1) | 
 | 		rt_rq->rt_nr_migratory--; | 
 |  | 
 | 	update_rt_migration(rt_rq); | 
 | } | 
 |  | 
 | static inline int has_pushable_tasks(struct rq *rq) | 
 | { | 
 | 	return !plist_head_empty(&rq->rt.pushable_tasks); | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(struct callback_head, rt_push_head); | 
 | static DEFINE_PER_CPU(struct callback_head, rt_pull_head); | 
 |  | 
 | static void push_rt_tasks(struct rq *); | 
 | static void pull_rt_task(struct rq *); | 
 |  | 
 | static inline void rt_queue_push_tasks(struct rq *rq) | 
 | { | 
 | 	if (!has_pushable_tasks(rq)) | 
 | 		return; | 
 |  | 
 | 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); | 
 | } | 
 |  | 
 | static inline void rt_queue_pull_task(struct rq *rq) | 
 | { | 
 | 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); | 
 | } | 
 |  | 
 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | 
 | 	plist_node_init(&p->pushable_tasks, p->prio); | 
 | 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | 
 |  | 
 | 	/* Update the highest prio pushable task */ | 
 | 	if (p->prio < rq->rt.highest_prio.next) | 
 | 		rq->rt.highest_prio.next = p->prio; | 
 | } | 
 |  | 
 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | 
 |  | 
 | 	/* Update the new highest prio pushable task */ | 
 | 	if (has_pushable_tasks(rq)) { | 
 | 		p = plist_first_entry(&rq->rt.pushable_tasks, | 
 | 				      struct task_struct, pushable_tasks); | 
 | 		rq->rt.highest_prio.next = p->prio; | 
 | 	} else | 
 | 		rq->rt.highest_prio.next = MAX_RT_PRIO; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | 
 | { | 
 | } | 
 |  | 
 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | 
 | { | 
 | } | 
 |  | 
 | static inline | 
 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
 | { | 
 | } | 
 |  | 
 | static inline | 
 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
 | { | 
 | } | 
 |  | 
 | static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline void pull_rt_task(struct rq *this_rq) | 
 | { | 
 | } | 
 |  | 
 | static inline void rt_queue_push_tasks(struct rq *rq) | 
 | { | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static void enqueue_top_rt_rq(struct rt_rq *rt_rq); | 
 | static void dequeue_top_rt_rq(struct rt_rq *rt_rq); | 
 |  | 
 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | 
 | { | 
 | 	return rt_se->on_rq; | 
 | } | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 |  | 
 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | 
 | { | 
 | 	if (!rt_rq->tg) | 
 | 		return RUNTIME_INF; | 
 |  | 
 | 	return rt_rq->rt_runtime; | 
 | } | 
 |  | 
 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | 
 | { | 
 | 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | 
 | } | 
 |  | 
 | typedef struct task_group *rt_rq_iter_t; | 
 |  | 
 | static inline struct task_group *next_task_group(struct task_group *tg) | 
 | { | 
 | 	do { | 
 | 		tg = list_entry_rcu(tg->list.next, | 
 | 			typeof(struct task_group), list); | 
 | 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg)); | 
 |  | 
 | 	if (&tg->list == &task_groups) | 
 | 		tg = NULL; | 
 |  | 
 | 	return tg; | 
 | } | 
 |  | 
 | #define for_each_rt_rq(rt_rq, iter, rq)					\ | 
 | 	for (iter = container_of(&task_groups, typeof(*iter), list);	\ | 
 | 		(iter = next_task_group(iter)) &&			\ | 
 | 		(rt_rq = iter->rt_rq[cpu_of(rq)]);) | 
 |  | 
 | #define for_each_sched_rt_entity(rt_se) \ | 
 | 	for (; rt_se; rt_se = rt_se->parent) | 
 |  | 
 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | 
 | { | 
 | 	return rt_se->my_q; | 
 | } | 
 |  | 
 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); | 
 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); | 
 |  | 
 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 
 | { | 
 | 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; | 
 | 	struct rq *rq = rq_of_rt_rq(rt_rq); | 
 | 	struct sched_rt_entity *rt_se; | 
 |  | 
 | 	int cpu = cpu_of(rq); | 
 |  | 
 | 	rt_se = rt_rq->tg->rt_se[cpu]; | 
 |  | 
 | 	if (rt_rq->rt_nr_running) { | 
 | 		if (!rt_se) | 
 | 			enqueue_top_rt_rq(rt_rq); | 
 | 		else if (!on_rt_rq(rt_se)) | 
 | 			enqueue_rt_entity(rt_se, 0); | 
 |  | 
 | 		if (rt_rq->highest_prio.curr < curr->prio) | 
 | 			resched_curr(rq); | 
 | 	} | 
 | } | 
 |  | 
 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 
 | { | 
 | 	struct sched_rt_entity *rt_se; | 
 | 	int cpu = cpu_of(rq_of_rt_rq(rt_rq)); | 
 |  | 
 | 	rt_se = rt_rq->tg->rt_se[cpu]; | 
 |  | 
 | 	if (!rt_se) | 
 | 		dequeue_top_rt_rq(rt_rq); | 
 | 	else if (on_rt_rq(rt_se)) | 
 | 		dequeue_rt_entity(rt_se, 0); | 
 | } | 
 |  | 
 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | 
 | { | 
 | 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | 
 | } | 
 |  | 
 | static int rt_se_boosted(struct sched_rt_entity *rt_se) | 
 | { | 
 | 	struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
 | 	struct task_struct *p; | 
 |  | 
 | 	if (rt_rq) | 
 | 		return !!rt_rq->rt_nr_boosted; | 
 |  | 
 | 	p = rt_task_of(rt_se); | 
 | 	return p->prio != p->normal_prio; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static inline const struct cpumask *sched_rt_period_mask(void) | 
 | { | 
 | 	return this_rq()->rd->span; | 
 | } | 
 | #else | 
 | static inline const struct cpumask *sched_rt_period_mask(void) | 
 | { | 
 | 	return cpu_online_mask; | 
 | } | 
 | #endif | 
 |  | 
 | static inline | 
 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | 
 | { | 
 | 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; | 
 | } | 
 |  | 
 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | 
 | { | 
 | 	return &rt_rq->tg->rt_bandwidth; | 
 | } | 
 |  | 
 | #else /* !CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | 
 | { | 
 | 	return rt_rq->rt_runtime; | 
 | } | 
 |  | 
 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | 
 | { | 
 | 	return ktime_to_ns(def_rt_bandwidth.rt_period); | 
 | } | 
 |  | 
 | typedef struct rt_rq *rt_rq_iter_t; | 
 |  | 
 | #define for_each_rt_rq(rt_rq, iter, rq) \ | 
 | 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | 
 |  | 
 | #define for_each_sched_rt_entity(rt_se) \ | 
 | 	for (; rt_se; rt_se = NULL) | 
 |  | 
 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 
 | { | 
 | 	struct rq *rq = rq_of_rt_rq(rt_rq); | 
 |  | 
 | 	if (!rt_rq->rt_nr_running) | 
 | 		return; | 
 |  | 
 | 	enqueue_top_rt_rq(rt_rq); | 
 | 	resched_curr(rq); | 
 | } | 
 |  | 
 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 
 | { | 
 | 	dequeue_top_rt_rq(rt_rq); | 
 | } | 
 |  | 
 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | 
 | { | 
 | 	return rt_rq->rt_throttled; | 
 | } | 
 |  | 
 | static inline const struct cpumask *sched_rt_period_mask(void) | 
 | { | 
 | 	return cpu_online_mask; | 
 | } | 
 |  | 
 | static inline | 
 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | 
 | { | 
 | 	return &cpu_rq(cpu)->rt; | 
 | } | 
 |  | 
 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | 
 | { | 
 | 	return &def_rt_bandwidth; | 
 | } | 
 |  | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) | 
 | { | 
 | 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
 |  | 
 | 	return (hrtimer_active(&rt_b->rt_period_timer) || | 
 | 		rt_rq->rt_time < rt_b->rt_runtime); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * We ran out of runtime, see if we can borrow some from our neighbours. | 
 |  */ | 
 | static void do_balance_runtime(struct rt_rq *rt_rq) | 
 | { | 
 | 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
 | 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; | 
 | 	int i, weight; | 
 | 	u64 rt_period; | 
 |  | 
 | 	weight = cpumask_weight(rd->span); | 
 |  | 
 | 	raw_spin_lock(&rt_b->rt_runtime_lock); | 
 | 	rt_period = ktime_to_ns(rt_b->rt_period); | 
 | 	for_each_cpu(i, rd->span) { | 
 | 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | 
 | 		s64 diff; | 
 |  | 
 | 		if (iter == rt_rq) | 
 | 			continue; | 
 |  | 
 | 		raw_spin_lock(&iter->rt_runtime_lock); | 
 | 		/* | 
 | 		 * Either all rqs have inf runtime and there's nothing to steal | 
 | 		 * or __disable_runtime() below sets a specific rq to inf to | 
 | 		 * indicate its been disabled and disalow stealing. | 
 | 		 */ | 
 | 		if (iter->rt_runtime == RUNTIME_INF) | 
 | 			goto next; | 
 |  | 
 | 		/* | 
 | 		 * From runqueues with spare time, take 1/n part of their | 
 | 		 * spare time, but no more than our period. | 
 | 		 */ | 
 | 		diff = iter->rt_runtime - iter->rt_time; | 
 | 		if (diff > 0) { | 
 | 			diff = div_u64((u64)diff, weight); | 
 | 			if (rt_rq->rt_runtime + diff > rt_period) | 
 | 				diff = rt_period - rt_rq->rt_runtime; | 
 | 			iter->rt_runtime -= diff; | 
 | 			rt_rq->rt_runtime += diff; | 
 | 			if (rt_rq->rt_runtime == rt_period) { | 
 | 				raw_spin_unlock(&iter->rt_runtime_lock); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | next: | 
 | 		raw_spin_unlock(&iter->rt_runtime_lock); | 
 | 	} | 
 | 	raw_spin_unlock(&rt_b->rt_runtime_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Ensure this RQ takes back all the runtime it lend to its neighbours. | 
 |  */ | 
 | static void __disable_runtime(struct rq *rq) | 
 | { | 
 | 	struct root_domain *rd = rq->rd; | 
 | 	rt_rq_iter_t iter; | 
 | 	struct rt_rq *rt_rq; | 
 |  | 
 | 	if (unlikely(!scheduler_running)) | 
 | 		return; | 
 |  | 
 | 	for_each_rt_rq(rt_rq, iter, rq) { | 
 | 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
 | 		s64 want; | 
 | 		int i; | 
 |  | 
 | 		raw_spin_lock(&rt_b->rt_runtime_lock); | 
 | 		raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 		/* | 
 | 		 * Either we're all inf and nobody needs to borrow, or we're | 
 | 		 * already disabled and thus have nothing to do, or we have | 
 | 		 * exactly the right amount of runtime to take out. | 
 | 		 */ | 
 | 		if (rt_rq->rt_runtime == RUNTIME_INF || | 
 | 				rt_rq->rt_runtime == rt_b->rt_runtime) | 
 | 			goto balanced; | 
 | 		raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 |  | 
 | 		/* | 
 | 		 * Calculate the difference between what we started out with | 
 | 		 * and what we current have, that's the amount of runtime | 
 | 		 * we lend and now have to reclaim. | 
 | 		 */ | 
 | 		want = rt_b->rt_runtime - rt_rq->rt_runtime; | 
 |  | 
 | 		/* | 
 | 		 * Greedy reclaim, take back as much as we can. | 
 | 		 */ | 
 | 		for_each_cpu(i, rd->span) { | 
 | 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | 
 | 			s64 diff; | 
 |  | 
 | 			/* | 
 | 			 * Can't reclaim from ourselves or disabled runqueues. | 
 | 			 */ | 
 | 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) | 
 | 				continue; | 
 |  | 
 | 			raw_spin_lock(&iter->rt_runtime_lock); | 
 | 			if (want > 0) { | 
 | 				diff = min_t(s64, iter->rt_runtime, want); | 
 | 				iter->rt_runtime -= diff; | 
 | 				want -= diff; | 
 | 			} else { | 
 | 				iter->rt_runtime -= want; | 
 | 				want -= want; | 
 | 			} | 
 | 			raw_spin_unlock(&iter->rt_runtime_lock); | 
 |  | 
 | 			if (!want) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 		/* | 
 | 		 * We cannot be left wanting - that would mean some runtime | 
 | 		 * leaked out of the system. | 
 | 		 */ | 
 | 		BUG_ON(want); | 
 | balanced: | 
 | 		/* | 
 | 		 * Disable all the borrow logic by pretending we have inf | 
 | 		 * runtime - in which case borrowing doesn't make sense. | 
 | 		 */ | 
 | 		rt_rq->rt_runtime = RUNTIME_INF; | 
 | 		rt_rq->rt_throttled = 0; | 
 | 		raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 		raw_spin_unlock(&rt_b->rt_runtime_lock); | 
 |  | 
 | 		/* Make rt_rq available for pick_next_task() */ | 
 | 		sched_rt_rq_enqueue(rt_rq); | 
 | 	} | 
 | } | 
 |  | 
 | static void __enable_runtime(struct rq *rq) | 
 | { | 
 | 	rt_rq_iter_t iter; | 
 | 	struct rt_rq *rt_rq; | 
 |  | 
 | 	if (unlikely(!scheduler_running)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Reset each runqueue's bandwidth settings | 
 | 	 */ | 
 | 	for_each_rt_rq(rt_rq, iter, rq) { | 
 | 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
 |  | 
 | 		raw_spin_lock(&rt_b->rt_runtime_lock); | 
 | 		raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 		rt_rq->rt_runtime = rt_b->rt_runtime; | 
 | 		rt_rq->rt_time = 0; | 
 | 		rt_rq->rt_throttled = 0; | 
 | 		raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 		raw_spin_unlock(&rt_b->rt_runtime_lock); | 
 | 	} | 
 | } | 
 |  | 
 | static void balance_runtime(struct rt_rq *rt_rq) | 
 | { | 
 | 	if (!sched_feat(RT_RUNTIME_SHARE)) | 
 | 		return; | 
 |  | 
 | 	if (rt_rq->rt_time > rt_rq->rt_runtime) { | 
 | 		raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 		do_balance_runtime(rt_rq); | 
 | 		raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 	} | 
 | } | 
 | #else /* !CONFIG_SMP */ | 
 | static inline void balance_runtime(struct rt_rq *rt_rq) {} | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) | 
 | { | 
 | 	int i, idle = 1, throttled = 0; | 
 | 	const struct cpumask *span; | 
 |  | 
 | 	span = sched_rt_period_mask(); | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	/* | 
 | 	 * FIXME: isolated CPUs should really leave the root task group, | 
 | 	 * whether they are isolcpus or were isolated via cpusets, lest | 
 | 	 * the timer run on a CPU which does not service all runqueues, | 
 | 	 * potentially leaving other CPUs indefinitely throttled.  If | 
 | 	 * isolation is really required, the user will turn the throttle | 
 | 	 * off to kill the perturbations it causes anyway.  Meanwhile, | 
 | 	 * this maintains functionality for boot and/or troubleshooting. | 
 | 	 */ | 
 | 	if (rt_b == &root_task_group.rt_bandwidth) | 
 | 		span = cpu_online_mask; | 
 | #endif | 
 | 	for_each_cpu(i, span) { | 
 | 		int enqueue = 0; | 
 | 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | 
 | 		struct rq *rq = rq_of_rt_rq(rt_rq); | 
 | 		int skip; | 
 |  | 
 | 		/* | 
 | 		 * When span == cpu_online_mask, taking each rq->lock | 
 | 		 * can be time-consuming. Try to avoid it when possible. | 
 | 		 */ | 
 | 		raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; | 
 | 		raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 		if (skip) | 
 | 			continue; | 
 |  | 
 | 		raw_spin_lock(&rq->lock); | 
 | 		update_rq_clock(rq); | 
 |  | 
 | 		if (rt_rq->rt_time) { | 
 | 			u64 runtime; | 
 |  | 
 | 			raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 			if (rt_rq->rt_throttled) | 
 | 				balance_runtime(rt_rq); | 
 | 			runtime = rt_rq->rt_runtime; | 
 | 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | 
 | 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | 
 | 				rt_rq->rt_throttled = 0; | 
 | 				enqueue = 1; | 
 |  | 
 | 				/* | 
 | 				 * When we're idle and a woken (rt) task is | 
 | 				 * throttled check_preempt_curr() will set | 
 | 				 * skip_update and the time between the wakeup | 
 | 				 * and this unthrottle will get accounted as | 
 | 				 * 'runtime'. | 
 | 				 */ | 
 | 				if (rt_rq->rt_nr_running && rq->curr == rq->idle) | 
 | 					rq_clock_cancel_skipupdate(rq); | 
 | 			} | 
 | 			if (rt_rq->rt_time || rt_rq->rt_nr_running) | 
 | 				idle = 0; | 
 | 			raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 		} else if (rt_rq->rt_nr_running) { | 
 | 			idle = 0; | 
 | 			if (!rt_rq_throttled(rt_rq)) | 
 | 				enqueue = 1; | 
 | 		} | 
 | 		if (rt_rq->rt_throttled) | 
 | 			throttled = 1; | 
 |  | 
 | 		if (enqueue) | 
 | 			sched_rt_rq_enqueue(rt_rq); | 
 | 		raw_spin_unlock(&rq->lock); | 
 | 	} | 
 |  | 
 | 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) | 
 | 		return 1; | 
 |  | 
 | 	return idle; | 
 | } | 
 |  | 
 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) | 
 | { | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
 |  | 
 | 	if (rt_rq) | 
 | 		return rt_rq->highest_prio.curr; | 
 | #endif | 
 |  | 
 | 	return rt_task_of(rt_se)->prio; | 
 | } | 
 |  | 
 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) | 
 | { | 
 | 	u64 runtime = sched_rt_runtime(rt_rq); | 
 |  | 
 | 	if (rt_rq->rt_throttled) | 
 | 		return rt_rq_throttled(rt_rq); | 
 |  | 
 | 	if (runtime >= sched_rt_period(rt_rq)) | 
 | 		return 0; | 
 |  | 
 | 	balance_runtime(rt_rq); | 
 | 	runtime = sched_rt_runtime(rt_rq); | 
 | 	if (runtime == RUNTIME_INF) | 
 | 		return 0; | 
 |  | 
 | 	if (rt_rq->rt_time > runtime) { | 
 | 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
 |  | 
 | 		/* | 
 | 		 * Don't actually throttle groups that have no runtime assigned | 
 | 		 * but accrue some time due to boosting. | 
 | 		 */ | 
 | 		if (likely(rt_b->rt_runtime)) { | 
 | 			rt_rq->rt_throttled = 1; | 
 | 			printk_deferred_once("sched: RT throttling activated\n"); | 
 | 		} else { | 
 | 			/* | 
 | 			 * In case we did anyway, make it go away, | 
 | 			 * replenishment is a joke, since it will replenish us | 
 | 			 * with exactly 0 ns. | 
 | 			 */ | 
 | 			rt_rq->rt_time = 0; | 
 | 		} | 
 |  | 
 | 		if (rt_rq_throttled(rt_rq)) { | 
 | 			sched_rt_rq_dequeue(rt_rq); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Update the current task's runtime statistics. Skip current tasks that | 
 |  * are not in our scheduling class. | 
 |  */ | 
 | static void update_curr_rt(struct rq *rq) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 | 	struct sched_rt_entity *rt_se = &curr->rt; | 
 | 	u64 delta_exec; | 
 | 	u64 now; | 
 |  | 
 | 	if (curr->sched_class != &rt_sched_class) | 
 | 		return; | 
 |  | 
 | 	now = rq_clock_task(rq); | 
 | 	delta_exec = now - curr->se.exec_start; | 
 | 	if (unlikely((s64)delta_exec <= 0)) | 
 | 		return; | 
 |  | 
 | 	schedstat_set(curr->se.statistics.exec_max, | 
 | 		      max(curr->se.statistics.exec_max, delta_exec)); | 
 |  | 
 | 	curr->se.sum_exec_runtime += delta_exec; | 
 | 	account_group_exec_runtime(curr, delta_exec); | 
 |  | 
 | 	curr->se.exec_start = now; | 
 | 	cgroup_account_cputime(curr, delta_exec); | 
 |  | 
 | 	sched_rt_avg_update(rq, delta_exec); | 
 |  | 
 | 	if (!rt_bandwidth_enabled()) | 
 | 		return; | 
 |  | 
 | 	for_each_sched_rt_entity(rt_se) { | 
 | 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
 |  | 
 | 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { | 
 | 			raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 			rt_rq->rt_time += delta_exec; | 
 | 			if (sched_rt_runtime_exceeded(rt_rq)) | 
 | 				resched_curr(rq); | 
 | 			raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | dequeue_top_rt_rq(struct rt_rq *rt_rq) | 
 | { | 
 | 	struct rq *rq = rq_of_rt_rq(rt_rq); | 
 |  | 
 | 	BUG_ON(&rq->rt != rt_rq); | 
 |  | 
 | 	if (!rt_rq->rt_queued) | 
 | 		return; | 
 |  | 
 | 	BUG_ON(!rq->nr_running); | 
 |  | 
 | 	sub_nr_running(rq, rt_rq->rt_nr_running); | 
 | 	rt_rq->rt_queued = 0; | 
 |  | 
 | 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */ | 
 | 	cpufreq_update_util(rq, 0); | 
 | } | 
 |  | 
 | static void | 
 | enqueue_top_rt_rq(struct rt_rq *rt_rq) | 
 | { | 
 | 	struct rq *rq = rq_of_rt_rq(rt_rq); | 
 |  | 
 | 	BUG_ON(&rq->rt != rt_rq); | 
 |  | 
 | 	if (rt_rq->rt_queued) | 
 | 		return; | 
 | 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) | 
 | 		return; | 
 |  | 
 | 	add_nr_running(rq, rt_rq->rt_nr_running); | 
 | 	rt_rq->rt_queued = 1; | 
 |  | 
 | 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */ | 
 | 	cpufreq_update_util(rq, 0); | 
 | } | 
 |  | 
 | #if defined CONFIG_SMP | 
 |  | 
 | static void | 
 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | 
 | { | 
 | 	struct rq *rq = rq_of_rt_rq(rt_rq); | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	/* | 
 | 	 * Change rq's cpupri only if rt_rq is the top queue. | 
 | 	 */ | 
 | 	if (&rq->rt != rt_rq) | 
 | 		return; | 
 | #endif | 
 | 	if (rq->online && prio < prev_prio) | 
 | 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio); | 
 | } | 
 |  | 
 | static void | 
 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | 
 | { | 
 | 	struct rq *rq = rq_of_rt_rq(rt_rq); | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	/* | 
 | 	 * Change rq's cpupri only if rt_rq is the top queue. | 
 | 	 */ | 
 | 	if (&rq->rt != rt_rq) | 
 | 		return; | 
 | #endif | 
 | 	if (rq->online && rt_rq->highest_prio.curr != prev_prio) | 
 | 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); | 
 | } | 
 |  | 
 | #else /* CONFIG_SMP */ | 
 |  | 
 | static inline | 
 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | 
 | static inline | 
 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
 | static void | 
 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | 
 | { | 
 | 	int prev_prio = rt_rq->highest_prio.curr; | 
 |  | 
 | 	if (prio < prev_prio) | 
 | 		rt_rq->highest_prio.curr = prio; | 
 |  | 
 | 	inc_rt_prio_smp(rt_rq, prio, prev_prio); | 
 | } | 
 |  | 
 | static void | 
 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | 
 | { | 
 | 	int prev_prio = rt_rq->highest_prio.curr; | 
 |  | 
 | 	if (rt_rq->rt_nr_running) { | 
 |  | 
 | 		WARN_ON(prio < prev_prio); | 
 |  | 
 | 		/* | 
 | 		 * This may have been our highest task, and therefore | 
 | 		 * we may have some recomputation to do | 
 | 		 */ | 
 | 		if (prio == prev_prio) { | 
 | 			struct rt_prio_array *array = &rt_rq->active; | 
 |  | 
 | 			rt_rq->highest_prio.curr = | 
 | 				sched_find_first_bit(array->bitmap); | 
 | 		} | 
 |  | 
 | 	} else | 
 | 		rt_rq->highest_prio.curr = MAX_RT_PRIO; | 
 |  | 
 | 	dec_rt_prio_smp(rt_rq, prio, prev_prio); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} | 
 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} | 
 |  | 
 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 |  | 
 | static void | 
 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
 | { | 
 | 	if (rt_se_boosted(rt_se)) | 
 | 		rt_rq->rt_nr_boosted++; | 
 |  | 
 | 	if (rt_rq->tg) | 
 | 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | 
 | } | 
 |  | 
 | static void | 
 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
 | { | 
 | 	if (rt_se_boosted(rt_se)) | 
 | 		rt_rq->rt_nr_boosted--; | 
 |  | 
 | 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | 
 | } | 
 |  | 
 | #else /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | static void | 
 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
 | { | 
 | 	start_rt_bandwidth(&def_rt_bandwidth); | 
 | } | 
 |  | 
 | static inline | 
 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | 
 |  | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | static inline | 
 | unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) | 
 | { | 
 | 	struct rt_rq *group_rq = group_rt_rq(rt_se); | 
 |  | 
 | 	if (group_rq) | 
 | 		return group_rq->rt_nr_running; | 
 | 	else | 
 | 		return 1; | 
 | } | 
 |  | 
 | static inline | 
 | unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) | 
 | { | 
 | 	struct rt_rq *group_rq = group_rt_rq(rt_se); | 
 | 	struct task_struct *tsk; | 
 |  | 
 | 	if (group_rq) | 
 | 		return group_rq->rr_nr_running; | 
 |  | 
 | 	tsk = rt_task_of(rt_se); | 
 |  | 
 | 	return (tsk->policy == SCHED_RR) ? 1 : 0; | 
 | } | 
 |  | 
 | static inline | 
 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
 | { | 
 | 	int prio = rt_se_prio(rt_se); | 
 |  | 
 | 	WARN_ON(!rt_prio(prio)); | 
 | 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se); | 
 | 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); | 
 |  | 
 | 	inc_rt_prio(rt_rq, prio); | 
 | 	inc_rt_migration(rt_se, rt_rq); | 
 | 	inc_rt_group(rt_se, rt_rq); | 
 | } | 
 |  | 
 | static inline | 
 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
 | { | 
 | 	WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 
 | 	WARN_ON(!rt_rq->rt_nr_running); | 
 | 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); | 
 | 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); | 
 |  | 
 | 	dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | 
 | 	dec_rt_migration(rt_se, rt_rq); | 
 | 	dec_rt_group(rt_se, rt_rq); | 
 | } | 
 |  | 
 | /* | 
 |  * Change rt_se->run_list location unless SAVE && !MOVE | 
 |  * | 
 |  * assumes ENQUEUE/DEQUEUE flags match | 
 |  */ | 
 | static inline bool move_entity(unsigned int flags) | 
 | { | 
 | 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) | 
 | { | 
 | 	list_del_init(&rt_se->run_list); | 
 |  | 
 | 	if (list_empty(array->queue + rt_se_prio(rt_se))) | 
 | 		__clear_bit(rt_se_prio(rt_se), array->bitmap); | 
 |  | 
 | 	rt_se->on_list = 0; | 
 | } | 
 |  | 
 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) | 
 | { | 
 | 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
 | 	struct rt_prio_array *array = &rt_rq->active; | 
 | 	struct rt_rq *group_rq = group_rt_rq(rt_se); | 
 | 	struct list_head *queue = array->queue + rt_se_prio(rt_se); | 
 |  | 
 | 	/* | 
 | 	 * Don't enqueue the group if its throttled, or when empty. | 
 | 	 * The latter is a consequence of the former when a child group | 
 | 	 * get throttled and the current group doesn't have any other | 
 | 	 * active members. | 
 | 	 */ | 
 | 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { | 
 | 		if (rt_se->on_list) | 
 | 			__delist_rt_entity(rt_se, array); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (move_entity(flags)) { | 
 | 		WARN_ON_ONCE(rt_se->on_list); | 
 | 		if (flags & ENQUEUE_HEAD) | 
 | 			list_add(&rt_se->run_list, queue); | 
 | 		else | 
 | 			list_add_tail(&rt_se->run_list, queue); | 
 |  | 
 | 		__set_bit(rt_se_prio(rt_se), array->bitmap); | 
 | 		rt_se->on_list = 1; | 
 | 	} | 
 | 	rt_se->on_rq = 1; | 
 |  | 
 | 	inc_rt_tasks(rt_se, rt_rq); | 
 | } | 
 |  | 
 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) | 
 | { | 
 | 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
 | 	struct rt_prio_array *array = &rt_rq->active; | 
 |  | 
 | 	if (move_entity(flags)) { | 
 | 		WARN_ON_ONCE(!rt_se->on_list); | 
 | 		__delist_rt_entity(rt_se, array); | 
 | 	} | 
 | 	rt_se->on_rq = 0; | 
 |  | 
 | 	dec_rt_tasks(rt_se, rt_rq); | 
 | } | 
 |  | 
 | /* | 
 |  * Because the prio of an upper entry depends on the lower | 
 |  * entries, we must remove entries top - down. | 
 |  */ | 
 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) | 
 | { | 
 | 	struct sched_rt_entity *back = NULL; | 
 |  | 
 | 	for_each_sched_rt_entity(rt_se) { | 
 | 		rt_se->back = back; | 
 | 		back = rt_se; | 
 | 	} | 
 |  | 
 | 	dequeue_top_rt_rq(rt_rq_of_se(back)); | 
 |  | 
 | 	for (rt_se = back; rt_se; rt_se = rt_se->back) { | 
 | 		if (on_rt_rq(rt_se)) | 
 | 			__dequeue_rt_entity(rt_se, flags); | 
 | 	} | 
 | } | 
 |  | 
 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) | 
 | { | 
 | 	struct rq *rq = rq_of_rt_se(rt_se); | 
 |  | 
 | 	dequeue_rt_stack(rt_se, flags); | 
 | 	for_each_sched_rt_entity(rt_se) | 
 | 		__enqueue_rt_entity(rt_se, flags); | 
 | 	enqueue_top_rt_rq(&rq->rt); | 
 | } | 
 |  | 
 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) | 
 | { | 
 | 	struct rq *rq = rq_of_rt_se(rt_se); | 
 |  | 
 | 	dequeue_rt_stack(rt_se, flags); | 
 |  | 
 | 	for_each_sched_rt_entity(rt_se) { | 
 | 		struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
 |  | 
 | 		if (rt_rq && rt_rq->rt_nr_running) | 
 | 			__enqueue_rt_entity(rt_se, flags); | 
 | 	} | 
 | 	enqueue_top_rt_rq(&rq->rt); | 
 | } | 
 |  | 
 | /* | 
 |  * Adding/removing a task to/from a priority array: | 
 |  */ | 
 | static void | 
 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	struct sched_rt_entity *rt_se = &p->rt; | 
 |  | 
 | 	if (flags & ENQUEUE_WAKEUP) | 
 | 		rt_se->timeout = 0; | 
 |  | 
 | 	enqueue_rt_entity(rt_se, flags); | 
 |  | 
 | 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1) | 
 | 		enqueue_pushable_task(rq, p); | 
 | } | 
 |  | 
 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	struct sched_rt_entity *rt_se = &p->rt; | 
 |  | 
 | 	update_curr_rt(rq); | 
 | 	dequeue_rt_entity(rt_se, flags); | 
 |  | 
 | 	dequeue_pushable_task(rq, p); | 
 | } | 
 |  | 
 | /* | 
 |  * Put task to the head or the end of the run list without the overhead of | 
 |  * dequeue followed by enqueue. | 
 |  */ | 
 | static void | 
 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | 
 | { | 
 | 	if (on_rt_rq(rt_se)) { | 
 | 		struct rt_prio_array *array = &rt_rq->active; | 
 | 		struct list_head *queue = array->queue + rt_se_prio(rt_se); | 
 |  | 
 | 		if (head) | 
 | 			list_move(&rt_se->run_list, queue); | 
 | 		else | 
 | 			list_move_tail(&rt_se->run_list, queue); | 
 | 	} | 
 | } | 
 |  | 
 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) | 
 | { | 
 | 	struct sched_rt_entity *rt_se = &p->rt; | 
 | 	struct rt_rq *rt_rq; | 
 |  | 
 | 	for_each_sched_rt_entity(rt_se) { | 
 | 		rt_rq = rt_rq_of_se(rt_se); | 
 | 		requeue_rt_entity(rt_rq, rt_se, head); | 
 | 	} | 
 | } | 
 |  | 
 | static void yield_task_rt(struct rq *rq) | 
 | { | 
 | 	requeue_task_rt(rq, rq->curr, 0); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static int find_lowest_rq(struct task_struct *task); | 
 |  | 
 | static int | 
 | select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) | 
 | { | 
 | 	struct task_struct *curr; | 
 | 	struct rq *rq; | 
 |  | 
 | 	/* For anything but wake ups, just return the task_cpu */ | 
 | 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) | 
 | 		goto out; | 
 |  | 
 | 	rq = cpu_rq(cpu); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	curr = READ_ONCE(rq->curr); /* unlocked access */ | 
 |  | 
 | 	/* | 
 | 	 * If the current task on @p's runqueue is an RT task, then | 
 | 	 * try to see if we can wake this RT task up on another | 
 | 	 * runqueue. Otherwise simply start this RT task | 
 | 	 * on its current runqueue. | 
 | 	 * | 
 | 	 * We want to avoid overloading runqueues. If the woken | 
 | 	 * task is a higher priority, then it will stay on this CPU | 
 | 	 * and the lower prio task should be moved to another CPU. | 
 | 	 * Even though this will probably make the lower prio task | 
 | 	 * lose its cache, we do not want to bounce a higher task | 
 | 	 * around just because it gave up its CPU, perhaps for a | 
 | 	 * lock? | 
 | 	 * | 
 | 	 * For equal prio tasks, we just let the scheduler sort it out. | 
 | 	 * | 
 | 	 * Otherwise, just let it ride on the affined RQ and the | 
 | 	 * post-schedule router will push the preempted task away | 
 | 	 * | 
 | 	 * This test is optimistic, if we get it wrong the load-balancer | 
 | 	 * will have to sort it out. | 
 | 	 */ | 
 | 	if (curr && unlikely(rt_task(curr)) && | 
 | 	    (curr->nr_cpus_allowed < 2 || | 
 | 	     curr->prio <= p->prio)) { | 
 | 		int target = find_lowest_rq(p); | 
 |  | 
 | 		/* | 
 | 		 * Don't bother moving it if the destination CPU is | 
 | 		 * not running a lower priority task. | 
 | 		 */ | 
 | 		if (target != -1 && | 
 | 		    p->prio < cpu_rq(target)->rt.highest_prio.curr) | 
 | 			cpu = target; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | out: | 
 | 	return cpu; | 
 | } | 
 |  | 
 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * Current can't be migrated, useless to reschedule, | 
 | 	 * let's hope p can move out. | 
 | 	 */ | 
 | 	if (rq->curr->nr_cpus_allowed == 1 || | 
 | 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * p is migratable, so let's not schedule it and | 
 | 	 * see if it is pushed or pulled somewhere else. | 
 | 	 */ | 
 | 	if (p->nr_cpus_allowed != 1 | 
 | 	    && cpupri_find(&rq->rd->cpupri, p, NULL)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * There appear to be other CPUs that can accept | 
 | 	 * the current task but none can run 'p', so lets reschedule | 
 | 	 * to try and push the current task away: | 
 | 	 */ | 
 | 	requeue_task_rt(rq, p, 1); | 
 | 	resched_curr(rq); | 
 | } | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * Preempt the current task with a newly woken task if needed: | 
 |  */ | 
 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	if (p->prio < rq->curr->prio) { | 
 | 		resched_curr(rq); | 
 | 		return; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * If: | 
 | 	 * | 
 | 	 * - the newly woken task is of equal priority to the current task | 
 | 	 * - the newly woken task is non-migratable while current is migratable | 
 | 	 * - current will be preempted on the next reschedule | 
 | 	 * | 
 | 	 * we should check to see if current can readily move to a different | 
 | 	 * cpu.  If so, we will reschedule to allow the push logic to try | 
 | 	 * to move current somewhere else, making room for our non-migratable | 
 | 	 * task. | 
 | 	 */ | 
 | 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) | 
 | 		check_preempt_equal_prio(rq, p); | 
 | #endif | 
 | } | 
 |  | 
 | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | 
 | 						   struct rt_rq *rt_rq) | 
 | { | 
 | 	struct rt_prio_array *array = &rt_rq->active; | 
 | 	struct sched_rt_entity *next = NULL; | 
 | 	struct list_head *queue; | 
 | 	int idx; | 
 |  | 
 | 	idx = sched_find_first_bit(array->bitmap); | 
 | 	BUG_ON(idx >= MAX_RT_PRIO); | 
 |  | 
 | 	queue = array->queue + idx; | 
 | 	next = list_entry(queue->next, struct sched_rt_entity, run_list); | 
 |  | 
 | 	return next; | 
 | } | 
 |  | 
 | static struct task_struct *_pick_next_task_rt(struct rq *rq) | 
 | { | 
 | 	struct sched_rt_entity *rt_se; | 
 | 	struct task_struct *p; | 
 | 	struct rt_rq *rt_rq  = &rq->rt; | 
 |  | 
 | 	do { | 
 | 		rt_se = pick_next_rt_entity(rq, rt_rq); | 
 | 		BUG_ON(!rt_se); | 
 | 		rt_rq = group_rt_rq(rt_se); | 
 | 	} while (rt_rq); | 
 |  | 
 | 	p = rt_task_of(rt_se); | 
 | 	p->se.exec_start = rq_clock_task(rq); | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | static struct task_struct * | 
 | pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	struct rt_rq *rt_rq = &rq->rt; | 
 |  | 
 | 	if (need_pull_rt_task(rq, prev)) { | 
 | 		/* | 
 | 		 * This is OK, because current is on_cpu, which avoids it being | 
 | 		 * picked for load-balance and preemption/IRQs are still | 
 | 		 * disabled avoiding further scheduler activity on it and we're | 
 | 		 * being very careful to re-start the picking loop. | 
 | 		 */ | 
 | 		rq_unpin_lock(rq, rf); | 
 | 		pull_rt_task(rq); | 
 | 		rq_repin_lock(rq, rf); | 
 | 		/* | 
 | 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this | 
 | 		 * means a dl or stop task can slip in, in which case we need | 
 | 		 * to re-start task selection. | 
 | 		 */ | 
 | 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || | 
 | 			     rq->dl.dl_nr_running)) | 
 | 			return RETRY_TASK; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We may dequeue prev's rt_rq in put_prev_task(). | 
 | 	 * So, we update time before rt_nr_running check. | 
 | 	 */ | 
 | 	if (prev->sched_class == &rt_sched_class) | 
 | 		update_curr_rt(rq); | 
 |  | 
 | 	if (!rt_rq->rt_queued) | 
 | 		return NULL; | 
 |  | 
 | 	put_prev_task(rq, prev); | 
 |  | 
 | 	p = _pick_next_task_rt(rq); | 
 |  | 
 | 	/* The running task is never eligible for pushing */ | 
 | 	dequeue_pushable_task(rq, p); | 
 |  | 
 | 	rt_queue_push_tasks(rq); | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	update_curr_rt(rq); | 
 |  | 
 | 	/* | 
 | 	 * The previous task needs to be made eligible for pushing | 
 | 	 * if it is still active | 
 | 	 */ | 
 | 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) | 
 | 		enqueue_pushable_task(rq, p); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | /* Only try algorithms three times */ | 
 | #define RT_MAX_TRIES 3 | 
 |  | 
 | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | 
 | { | 
 | 	if (!task_running(rq, p) && | 
 | 	    cpumask_test_cpu(cpu, &p->cpus_allowed)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the highest pushable rq's task, which is suitable to be executed | 
 |  * on the CPU, NULL otherwise | 
 |  */ | 
 | static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) | 
 | { | 
 | 	struct plist_head *head = &rq->rt.pushable_tasks; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	if (!has_pushable_tasks(rq)) | 
 | 		return NULL; | 
 |  | 
 | 	plist_for_each_entry(p, head, pushable_tasks) { | 
 | 		if (pick_rt_task(rq, p, cpu)) | 
 | 			return p; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); | 
 |  | 
 | static int find_lowest_rq(struct task_struct *task) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); | 
 | 	int this_cpu = smp_processor_id(); | 
 | 	int cpu      = task_cpu(task); | 
 |  | 
 | 	/* Make sure the mask is initialized first */ | 
 | 	if (unlikely(!lowest_mask)) | 
 | 		return -1; | 
 |  | 
 | 	if (task->nr_cpus_allowed == 1) | 
 | 		return -1; /* No other targets possible */ | 
 |  | 
 | 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) | 
 | 		return -1; /* No targets found */ | 
 |  | 
 | 	/* | 
 | 	 * At this point we have built a mask of CPUs representing the | 
 | 	 * lowest priority tasks in the system.  Now we want to elect | 
 | 	 * the best one based on our affinity and topology. | 
 | 	 * | 
 | 	 * We prioritize the last CPU that the task executed on since | 
 | 	 * it is most likely cache-hot in that location. | 
 | 	 */ | 
 | 	if (cpumask_test_cpu(cpu, lowest_mask)) | 
 | 		return cpu; | 
 |  | 
 | 	/* | 
 | 	 * Otherwise, we consult the sched_domains span maps to figure | 
 | 	 * out which CPU is logically closest to our hot cache data. | 
 | 	 */ | 
 | 	if (!cpumask_test_cpu(this_cpu, lowest_mask)) | 
 | 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */ | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(cpu, sd) { | 
 | 		if (sd->flags & SD_WAKE_AFFINE) { | 
 | 			int best_cpu; | 
 |  | 
 | 			/* | 
 | 			 * "this_cpu" is cheaper to preempt than a | 
 | 			 * remote processor. | 
 | 			 */ | 
 | 			if (this_cpu != -1 && | 
 | 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { | 
 | 				rcu_read_unlock(); | 
 | 				return this_cpu; | 
 | 			} | 
 |  | 
 | 			best_cpu = cpumask_first_and(lowest_mask, | 
 | 						     sched_domain_span(sd)); | 
 | 			if (best_cpu < nr_cpu_ids) { | 
 | 				rcu_read_unlock(); | 
 | 				return best_cpu; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * And finally, if there were no matches within the domains | 
 | 	 * just give the caller *something* to work with from the compatible | 
 | 	 * locations. | 
 | 	 */ | 
 | 	if (this_cpu != -1) | 
 | 		return this_cpu; | 
 |  | 
 | 	cpu = cpumask_any(lowest_mask); | 
 | 	if (cpu < nr_cpu_ids) | 
 | 		return cpu; | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Will lock the rq it finds */ | 
 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | 
 | { | 
 | 	struct rq *lowest_rq = NULL; | 
 | 	int tries; | 
 | 	int cpu; | 
 |  | 
 | 	for (tries = 0; tries < RT_MAX_TRIES; tries++) { | 
 | 		cpu = find_lowest_rq(task); | 
 |  | 
 | 		if ((cpu == -1) || (cpu == rq->cpu)) | 
 | 			break; | 
 |  | 
 | 		lowest_rq = cpu_rq(cpu); | 
 |  | 
 | 		if (lowest_rq->rt.highest_prio.curr <= task->prio) { | 
 | 			/* | 
 | 			 * Target rq has tasks of equal or higher priority, | 
 | 			 * retrying does not release any lock and is unlikely | 
 | 			 * to yield a different result. | 
 | 			 */ | 
 | 			lowest_rq = NULL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* if the prio of this runqueue changed, try again */ | 
 | 		if (double_lock_balance(rq, lowest_rq)) { | 
 | 			/* | 
 | 			 * We had to unlock the run queue. In | 
 | 			 * the mean time, task could have | 
 | 			 * migrated already or had its affinity changed. | 
 | 			 * Also make sure that it wasn't scheduled on its rq. | 
 | 			 */ | 
 | 			if (unlikely(task_rq(task) != rq || | 
 | 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) || | 
 | 				     task_running(rq, task) || | 
 | 				     !rt_task(task) || | 
 | 				     !task_on_rq_queued(task))) { | 
 |  | 
 | 				double_unlock_balance(rq, lowest_rq); | 
 | 				lowest_rq = NULL; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* If this rq is still suitable use it. */ | 
 | 		if (lowest_rq->rt.highest_prio.curr > task->prio) | 
 | 			break; | 
 |  | 
 | 		/* try again */ | 
 | 		double_unlock_balance(rq, lowest_rq); | 
 | 		lowest_rq = NULL; | 
 | 	} | 
 |  | 
 | 	return lowest_rq; | 
 | } | 
 |  | 
 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | 
 | { | 
 | 	struct task_struct *p; | 
 |  | 
 | 	if (!has_pushable_tasks(rq)) | 
 | 		return NULL; | 
 |  | 
 | 	p = plist_first_entry(&rq->rt.pushable_tasks, | 
 | 			      struct task_struct, pushable_tasks); | 
 |  | 
 | 	BUG_ON(rq->cpu != task_cpu(p)); | 
 | 	BUG_ON(task_current(rq, p)); | 
 | 	BUG_ON(p->nr_cpus_allowed <= 1); | 
 |  | 
 | 	BUG_ON(!task_on_rq_queued(p)); | 
 | 	BUG_ON(!rt_task(p)); | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | /* | 
 |  * If the current CPU has more than one RT task, see if the non | 
 |  * running task can migrate over to a CPU that is running a task | 
 |  * of lesser priority. | 
 |  */ | 
 | static int push_rt_task(struct rq *rq) | 
 | { | 
 | 	struct task_struct *next_task; | 
 | 	struct rq *lowest_rq; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!rq->rt.overloaded) | 
 | 		return 0; | 
 |  | 
 | 	next_task = pick_next_pushable_task(rq); | 
 | 	if (!next_task) | 
 | 		return 0; | 
 |  | 
 | retry: | 
 | 	if (unlikely(next_task == rq->curr)) { | 
 | 		WARN_ON(1); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It's possible that the next_task slipped in of | 
 | 	 * higher priority than current. If that's the case | 
 | 	 * just reschedule current. | 
 | 	 */ | 
 | 	if (unlikely(next_task->prio < rq->curr->prio)) { | 
 | 		resched_curr(rq); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* We might release rq lock */ | 
 | 	get_task_struct(next_task); | 
 |  | 
 | 	/* find_lock_lowest_rq locks the rq if found */ | 
 | 	lowest_rq = find_lock_lowest_rq(next_task, rq); | 
 | 	if (!lowest_rq) { | 
 | 		struct task_struct *task; | 
 | 		/* | 
 | 		 * find_lock_lowest_rq releases rq->lock | 
 | 		 * so it is possible that next_task has migrated. | 
 | 		 * | 
 | 		 * We need to make sure that the task is still on the same | 
 | 		 * run-queue and is also still the next task eligible for | 
 | 		 * pushing. | 
 | 		 */ | 
 | 		task = pick_next_pushable_task(rq); | 
 | 		if (task == next_task) { | 
 | 			/* | 
 | 			 * The task hasn't migrated, and is still the next | 
 | 			 * eligible task, but we failed to find a run-queue | 
 | 			 * to push it to.  Do not retry in this case, since | 
 | 			 * other CPUs will pull from us when ready. | 
 | 			 */ | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (!task) | 
 | 			/* No more tasks, just exit */ | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * Something has shifted, try again. | 
 | 		 */ | 
 | 		put_task_struct(next_task); | 
 | 		next_task = task; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	deactivate_task(rq, next_task, 0); | 
 | 	set_task_cpu(next_task, lowest_rq->cpu); | 
 | 	activate_task(lowest_rq, next_task, 0); | 
 | 	ret = 1; | 
 |  | 
 | 	resched_curr(lowest_rq); | 
 |  | 
 | 	double_unlock_balance(rq, lowest_rq); | 
 |  | 
 | out: | 
 | 	put_task_struct(next_task); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void push_rt_tasks(struct rq *rq) | 
 | { | 
 | 	/* push_rt_task will return true if it moved an RT */ | 
 | 	while (push_rt_task(rq)) | 
 | 		; | 
 | } | 
 |  | 
 | #ifdef HAVE_RT_PUSH_IPI | 
 |  | 
 | /* | 
 |  * When a high priority task schedules out from a CPU and a lower priority | 
 |  * task is scheduled in, a check is made to see if there's any RT tasks | 
 |  * on other CPUs that are waiting to run because a higher priority RT task | 
 |  * is currently running on its CPU. In this case, the CPU with multiple RT | 
 |  * tasks queued on it (overloaded) needs to be notified that a CPU has opened | 
 |  * up that may be able to run one of its non-running queued RT tasks. | 
 |  * | 
 |  * All CPUs with overloaded RT tasks need to be notified as there is currently | 
 |  * no way to know which of these CPUs have the highest priority task waiting | 
 |  * to run. Instead of trying to take a spinlock on each of these CPUs, | 
 |  * which has shown to cause large latency when done on machines with many | 
 |  * CPUs, sending an IPI to the CPUs to have them push off the overloaded | 
 |  * RT tasks waiting to run. | 
 |  * | 
 |  * Just sending an IPI to each of the CPUs is also an issue, as on large | 
 |  * count CPU machines, this can cause an IPI storm on a CPU, especially | 
 |  * if its the only CPU with multiple RT tasks queued, and a large number | 
 |  * of CPUs scheduling a lower priority task at the same time. | 
 |  * | 
 |  * Each root domain has its own irq work function that can iterate over | 
 |  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT | 
 |  * tassk must be checked if there's one or many CPUs that are lowering | 
 |  * their priority, there's a single irq work iterator that will try to | 
 |  * push off RT tasks that are waiting to run. | 
 |  * | 
 |  * When a CPU schedules a lower priority task, it will kick off the | 
 |  * irq work iterator that will jump to each CPU with overloaded RT tasks. | 
 |  * As it only takes the first CPU that schedules a lower priority task | 
 |  * to start the process, the rto_start variable is incremented and if | 
 |  * the atomic result is one, then that CPU will try to take the rto_lock. | 
 |  * This prevents high contention on the lock as the process handles all | 
 |  * CPUs scheduling lower priority tasks. | 
 |  * | 
 |  * All CPUs that are scheduling a lower priority task will increment the | 
 |  * rt_loop_next variable. This will make sure that the irq work iterator | 
 |  * checks all RT overloaded CPUs whenever a CPU schedules a new lower | 
 |  * priority task, even if the iterator is in the middle of a scan. Incrementing | 
 |  * the rt_loop_next will cause the iterator to perform another scan. | 
 |  * | 
 |  */ | 
 | static int rto_next_cpu(struct root_domain *rd) | 
 | { | 
 | 	int next; | 
 | 	int cpu; | 
 |  | 
 | 	/* | 
 | 	 * When starting the IPI RT pushing, the rto_cpu is set to -1, | 
 | 	 * rt_next_cpu() will simply return the first CPU found in | 
 | 	 * the rto_mask. | 
 | 	 * | 
 | 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it | 
 | 	 * will return the next CPU found in the rto_mask. | 
 | 	 * | 
 | 	 * If there are no more CPUs left in the rto_mask, then a check is made | 
 | 	 * against rto_loop and rto_loop_next. rto_loop is only updated with | 
 | 	 * the rto_lock held, but any CPU may increment the rto_loop_next | 
 | 	 * without any locking. | 
 | 	 */ | 
 | 	for (;;) { | 
 |  | 
 | 		/* When rto_cpu is -1 this acts like cpumask_first() */ | 
 | 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); | 
 |  | 
 | 		rd->rto_cpu = cpu; | 
 |  | 
 | 		if (cpu < nr_cpu_ids) | 
 | 			return cpu; | 
 |  | 
 | 		rd->rto_cpu = -1; | 
 |  | 
 | 		/* | 
 | 		 * ACQUIRE ensures we see the @rto_mask changes | 
 | 		 * made prior to the @next value observed. | 
 | 		 * | 
 | 		 * Matches WMB in rt_set_overload(). | 
 | 		 */ | 
 | 		next = atomic_read_acquire(&rd->rto_loop_next); | 
 |  | 
 | 		if (rd->rto_loop == next) | 
 | 			break; | 
 |  | 
 | 		rd->rto_loop = next; | 
 | 	} | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | static inline bool rto_start_trylock(atomic_t *v) | 
 | { | 
 | 	return !atomic_cmpxchg_acquire(v, 0, 1); | 
 | } | 
 |  | 
 | static inline void rto_start_unlock(atomic_t *v) | 
 | { | 
 | 	atomic_set_release(v, 0); | 
 | } | 
 |  | 
 | static void tell_cpu_to_push(struct rq *rq) | 
 | { | 
 | 	int cpu = -1; | 
 |  | 
 | 	/* Keep the loop going if the IPI is currently active */ | 
 | 	atomic_inc(&rq->rd->rto_loop_next); | 
 |  | 
 | 	/* Only one CPU can initiate a loop at a time */ | 
 | 	if (!rto_start_trylock(&rq->rd->rto_loop_start)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock(&rq->rd->rto_lock); | 
 |  | 
 | 	/* | 
 | 	 * The rto_cpu is updated under the lock, if it has a valid CPU | 
 | 	 * then the IPI is still running and will continue due to the | 
 | 	 * update to loop_next, and nothing needs to be done here. | 
 | 	 * Otherwise it is finishing up and an ipi needs to be sent. | 
 | 	 */ | 
 | 	if (rq->rd->rto_cpu < 0) | 
 | 		cpu = rto_next_cpu(rq->rd); | 
 |  | 
 | 	raw_spin_unlock(&rq->rd->rto_lock); | 
 |  | 
 | 	rto_start_unlock(&rq->rd->rto_loop_start); | 
 |  | 
 | 	if (cpu >= 0) { | 
 | 		/* Make sure the rd does not get freed while pushing */ | 
 | 		sched_get_rd(rq->rd); | 
 | 		irq_work_queue_on(&rq->rd->rto_push_work, cpu); | 
 | 	} | 
 | } | 
 |  | 
 | /* Called from hardirq context */ | 
 | void rto_push_irq_work_func(struct irq_work *work) | 
 | { | 
 | 	struct root_domain *rd = | 
 | 		container_of(work, struct root_domain, rto_push_work); | 
 | 	struct rq *rq; | 
 | 	int cpu; | 
 |  | 
 | 	rq = this_rq(); | 
 |  | 
 | 	/* | 
 | 	 * We do not need to grab the lock to check for has_pushable_tasks. | 
 | 	 * When it gets updated, a check is made if a push is possible. | 
 | 	 */ | 
 | 	if (has_pushable_tasks(rq)) { | 
 | 		raw_spin_lock(&rq->lock); | 
 | 		push_rt_tasks(rq); | 
 | 		raw_spin_unlock(&rq->lock); | 
 | 	} | 
 |  | 
 | 	raw_spin_lock(&rd->rto_lock); | 
 |  | 
 | 	/* Pass the IPI to the next rt overloaded queue */ | 
 | 	cpu = rto_next_cpu(rd); | 
 |  | 
 | 	raw_spin_unlock(&rd->rto_lock); | 
 |  | 
 | 	if (cpu < 0) { | 
 | 		sched_put_rd(rd); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Try the next RT overloaded CPU */ | 
 | 	irq_work_queue_on(&rd->rto_push_work, cpu); | 
 | } | 
 | #endif /* HAVE_RT_PUSH_IPI */ | 
 |  | 
 | static void pull_rt_task(struct rq *this_rq) | 
 | { | 
 | 	int this_cpu = this_rq->cpu, cpu; | 
 | 	bool resched = false; | 
 | 	struct task_struct *p; | 
 | 	struct rq *src_rq; | 
 | 	int rt_overload_count = rt_overloaded(this_rq); | 
 |  | 
 | 	if (likely(!rt_overload_count)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Match the barrier from rt_set_overloaded; this guarantees that if we | 
 | 	 * see overloaded we must also see the rto_mask bit. | 
 | 	 */ | 
 | 	smp_rmb(); | 
 |  | 
 | 	/* If we are the only overloaded CPU do nothing */ | 
 | 	if (rt_overload_count == 1 && | 
 | 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) | 
 | 		return; | 
 |  | 
 | #ifdef HAVE_RT_PUSH_IPI | 
 | 	if (sched_feat(RT_PUSH_IPI)) { | 
 | 		tell_cpu_to_push(this_rq); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	for_each_cpu(cpu, this_rq->rd->rto_mask) { | 
 | 		if (this_cpu == cpu) | 
 | 			continue; | 
 |  | 
 | 		src_rq = cpu_rq(cpu); | 
 |  | 
 | 		/* | 
 | 		 * Don't bother taking the src_rq->lock if the next highest | 
 | 		 * task is known to be lower-priority than our current task. | 
 | 		 * This may look racy, but if this value is about to go | 
 | 		 * logically higher, the src_rq will push this task away. | 
 | 		 * And if its going logically lower, we do not care | 
 | 		 */ | 
 | 		if (src_rq->rt.highest_prio.next >= | 
 | 		    this_rq->rt.highest_prio.curr) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * We can potentially drop this_rq's lock in | 
 | 		 * double_lock_balance, and another CPU could | 
 | 		 * alter this_rq | 
 | 		 */ | 
 | 		double_lock_balance(this_rq, src_rq); | 
 |  | 
 | 		/* | 
 | 		 * We can pull only a task, which is pushable | 
 | 		 * on its rq, and no others. | 
 | 		 */ | 
 | 		p = pick_highest_pushable_task(src_rq, this_cpu); | 
 |  | 
 | 		/* | 
 | 		 * Do we have an RT task that preempts | 
 | 		 * the to-be-scheduled task? | 
 | 		 */ | 
 | 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) { | 
 | 			WARN_ON(p == src_rq->curr); | 
 | 			WARN_ON(!task_on_rq_queued(p)); | 
 |  | 
 | 			/* | 
 | 			 * There's a chance that p is higher in priority | 
 | 			 * than what's currently running on its CPU. | 
 | 			 * This is just that p is wakeing up and hasn't | 
 | 			 * had a chance to schedule. We only pull | 
 | 			 * p if it is lower in priority than the | 
 | 			 * current task on the run queue | 
 | 			 */ | 
 | 			if (p->prio < src_rq->curr->prio) | 
 | 				goto skip; | 
 |  | 
 | 			resched = true; | 
 |  | 
 | 			deactivate_task(src_rq, p, 0); | 
 | 			set_task_cpu(p, this_cpu); | 
 | 			activate_task(this_rq, p, 0); | 
 | 			/* | 
 | 			 * We continue with the search, just in | 
 | 			 * case there's an even higher prio task | 
 | 			 * in another runqueue. (low likelihood | 
 | 			 * but possible) | 
 | 			 */ | 
 | 		} | 
 | skip: | 
 | 		double_unlock_balance(this_rq, src_rq); | 
 | 	} | 
 |  | 
 | 	if (resched) | 
 | 		resched_curr(this_rq); | 
 | } | 
 |  | 
 | /* | 
 |  * If we are not running and we are not going to reschedule soon, we should | 
 |  * try to push tasks away now | 
 |  */ | 
 | static void task_woken_rt(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	if (!task_running(rq, p) && | 
 | 	    !test_tsk_need_resched(rq->curr) && | 
 | 	    p->nr_cpus_allowed > 1 && | 
 | 	    (dl_task(rq->curr) || rt_task(rq->curr)) && | 
 | 	    (rq->curr->nr_cpus_allowed < 2 || | 
 | 	     rq->curr->prio <= p->prio)) | 
 | 		push_rt_tasks(rq); | 
 | } | 
 |  | 
 | /* Assumes rq->lock is held */ | 
 | static void rq_online_rt(struct rq *rq) | 
 | { | 
 | 	if (rq->rt.overloaded) | 
 | 		rt_set_overload(rq); | 
 |  | 
 | 	__enable_runtime(rq); | 
 |  | 
 | 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); | 
 | } | 
 |  | 
 | /* Assumes rq->lock is held */ | 
 | static void rq_offline_rt(struct rq *rq) | 
 | { | 
 | 	if (rq->rt.overloaded) | 
 | 		rt_clear_overload(rq); | 
 |  | 
 | 	__disable_runtime(rq); | 
 |  | 
 | 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); | 
 | } | 
 |  | 
 | /* | 
 |  * When switch from the rt queue, we bring ourselves to a position | 
 |  * that we might want to pull RT tasks from other runqueues. | 
 |  */ | 
 | static void switched_from_rt(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * If there are other RT tasks then we will reschedule | 
 | 	 * and the scheduling of the other RT tasks will handle | 
 | 	 * the balancing. But if we are the last RT task | 
 | 	 * we may need to handle the pulling of RT tasks | 
 | 	 * now. | 
 | 	 */ | 
 | 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) | 
 | 		return; | 
 |  | 
 | 	rt_queue_pull_task(rq); | 
 | } | 
 |  | 
 | void __init init_sched_rt_class(void) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), | 
 | 					GFP_KERNEL, cpu_to_node(i)); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * When switching a task to RT, we may overload the runqueue | 
 |  * with RT tasks. In this case we try to push them off to | 
 |  * other runqueues. | 
 |  */ | 
 | static void switched_to_rt(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * If we are already running, then there's nothing | 
 | 	 * that needs to be done. But if we are not running | 
 | 	 * we may need to preempt the current running task. | 
 | 	 * If that current running task is also an RT task | 
 | 	 * then see if we can move to another run queue. | 
 | 	 */ | 
 | 	if (task_on_rq_queued(p) && rq->curr != p) { | 
 | #ifdef CONFIG_SMP | 
 | 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) | 
 | 			rt_queue_push_tasks(rq); | 
 | #endif /* CONFIG_SMP */ | 
 | 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) | 
 | 			resched_curr(rq); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Priority of the task has changed. This may cause | 
 |  * us to initiate a push or pull. | 
 |  */ | 
 | static void | 
 | prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) | 
 | { | 
 | 	if (!task_on_rq_queued(p)) | 
 | 		return; | 
 |  | 
 | 	if (rq->curr == p) { | 
 | #ifdef CONFIG_SMP | 
 | 		/* | 
 | 		 * If our priority decreases while running, we | 
 | 		 * may need to pull tasks to this runqueue. | 
 | 		 */ | 
 | 		if (oldprio < p->prio) | 
 | 			rt_queue_pull_task(rq); | 
 |  | 
 | 		/* | 
 | 		 * If there's a higher priority task waiting to run | 
 | 		 * then reschedule. | 
 | 		 */ | 
 | 		if (p->prio > rq->rt.highest_prio.curr) | 
 | 			resched_curr(rq); | 
 | #else | 
 | 		/* For UP simply resched on drop of prio */ | 
 | 		if (oldprio < p->prio) | 
 | 			resched_curr(rq); | 
 | #endif /* CONFIG_SMP */ | 
 | 	} else { | 
 | 		/* | 
 | 		 * This task is not running, but if it is | 
 | 		 * greater than the current running task | 
 | 		 * then reschedule. | 
 | 		 */ | 
 | 		if (p->prio < rq->curr->prio) | 
 | 			resched_curr(rq); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_POSIX_TIMERS | 
 | static void watchdog(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	unsigned long soft, hard; | 
 |  | 
 | 	/* max may change after cur was read, this will be fixed next tick */ | 
 | 	soft = task_rlimit(p, RLIMIT_RTTIME); | 
 | 	hard = task_rlimit_max(p, RLIMIT_RTTIME); | 
 |  | 
 | 	if (soft != RLIM_INFINITY) { | 
 | 		unsigned long next; | 
 |  | 
 | 		if (p->rt.watchdog_stamp != jiffies) { | 
 | 			p->rt.timeout++; | 
 | 			p->rt.watchdog_stamp = jiffies; | 
 | 		} | 
 |  | 
 | 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); | 
 | 		if (p->rt.timeout > next) | 
 | 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime; | 
 | 	} | 
 | } | 
 | #else | 
 | static inline void watchdog(struct rq *rq, struct task_struct *p) { } | 
 | #endif | 
 |  | 
 | /* | 
 |  * scheduler tick hitting a task of our scheduling class. | 
 |  * | 
 |  * NOTE: This function can be called remotely by the tick offload that | 
 |  * goes along full dynticks. Therefore no local assumption can be made | 
 |  * and everything must be accessed through the @rq and @curr passed in | 
 |  * parameters. | 
 |  */ | 
 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) | 
 | { | 
 | 	struct sched_rt_entity *rt_se = &p->rt; | 
 |  | 
 | 	update_curr_rt(rq); | 
 |  | 
 | 	watchdog(rq, p); | 
 |  | 
 | 	/* | 
 | 	 * RR tasks need a special form of timeslice management. | 
 | 	 * FIFO tasks have no timeslices. | 
 | 	 */ | 
 | 	if (p->policy != SCHED_RR) | 
 | 		return; | 
 |  | 
 | 	if (--p->rt.time_slice) | 
 | 		return; | 
 |  | 
 | 	p->rt.time_slice = sched_rr_timeslice; | 
 |  | 
 | 	/* | 
 | 	 * Requeue to the end of queue if we (and all of our ancestors) are not | 
 | 	 * the only element on the queue | 
 | 	 */ | 
 | 	for_each_sched_rt_entity(rt_se) { | 
 | 		if (rt_se->run_list.prev != rt_se->run_list.next) { | 
 | 			requeue_task_rt(rq, p, 0); | 
 | 			resched_curr(rq); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void set_curr_task_rt(struct rq *rq) | 
 | { | 
 | 	struct task_struct *p = rq->curr; | 
 |  | 
 | 	p->se.exec_start = rq_clock_task(rq); | 
 |  | 
 | 	/* The running task is never eligible for pushing */ | 
 | 	dequeue_pushable_task(rq, p); | 
 | } | 
 |  | 
 | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) | 
 | { | 
 | 	/* | 
 | 	 * Time slice is 0 for SCHED_FIFO tasks | 
 | 	 */ | 
 | 	if (task->policy == SCHED_RR) | 
 | 		return sched_rr_timeslice; | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | const struct sched_class rt_sched_class = { | 
 | 	.next			= &fair_sched_class, | 
 | 	.enqueue_task		= enqueue_task_rt, | 
 | 	.dequeue_task		= dequeue_task_rt, | 
 | 	.yield_task		= yield_task_rt, | 
 |  | 
 | 	.check_preempt_curr	= check_preempt_curr_rt, | 
 |  | 
 | 	.pick_next_task		= pick_next_task_rt, | 
 | 	.put_prev_task		= put_prev_task_rt, | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	.select_task_rq		= select_task_rq_rt, | 
 |  | 
 | 	.set_cpus_allowed       = set_cpus_allowed_common, | 
 | 	.rq_online              = rq_online_rt, | 
 | 	.rq_offline             = rq_offline_rt, | 
 | 	.task_woken		= task_woken_rt, | 
 | 	.switched_from		= switched_from_rt, | 
 | #endif | 
 |  | 
 | 	.set_curr_task          = set_curr_task_rt, | 
 | 	.task_tick		= task_tick_rt, | 
 |  | 
 | 	.get_rr_interval	= get_rr_interval_rt, | 
 |  | 
 | 	.prio_changed		= prio_changed_rt, | 
 | 	.switched_to		= switched_to_rt, | 
 |  | 
 | 	.update_curr		= update_curr_rt, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | /* | 
 |  * Ensure that the real time constraints are schedulable. | 
 |  */ | 
 | static DEFINE_MUTEX(rt_constraints_mutex); | 
 |  | 
 | /* Must be called with tasklist_lock held */ | 
 | static inline int tg_has_rt_tasks(struct task_group *tg) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 |  | 
 | 	/* | 
 | 	 * Autogroups do not have RT tasks; see autogroup_create(). | 
 | 	 */ | 
 | 	if (task_group_is_autogroup(tg)) | 
 | 		return 0; | 
 |  | 
 | 	for_each_process_thread(g, p) { | 
 | 		if (rt_task(p) && task_group(p) == tg) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct rt_schedulable_data { | 
 | 	struct task_group *tg; | 
 | 	u64 rt_period; | 
 | 	u64 rt_runtime; | 
 | }; | 
 |  | 
 | static int tg_rt_schedulable(struct task_group *tg, void *data) | 
 | { | 
 | 	struct rt_schedulable_data *d = data; | 
 | 	struct task_group *child; | 
 | 	unsigned long total, sum = 0; | 
 | 	u64 period, runtime; | 
 |  | 
 | 	period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
 | 	runtime = tg->rt_bandwidth.rt_runtime; | 
 |  | 
 | 	if (tg == d->tg) { | 
 | 		period = d->rt_period; | 
 | 		runtime = d->rt_runtime; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Cannot have more runtime than the period. | 
 | 	 */ | 
 | 	if (runtime > period && runtime != RUNTIME_INF) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Ensure we don't starve existing RT tasks. | 
 | 	 */ | 
 | 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	total = to_ratio(period, runtime); | 
 |  | 
 | 	/* | 
 | 	 * Nobody can have more than the global setting allows. | 
 | 	 */ | 
 | 	if (total > to_ratio(global_rt_period(), global_rt_runtime())) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * The sum of our children's runtime should not exceed our own. | 
 | 	 */ | 
 | 	list_for_each_entry_rcu(child, &tg->children, siblings) { | 
 | 		period = ktime_to_ns(child->rt_bandwidth.rt_period); | 
 | 		runtime = child->rt_bandwidth.rt_runtime; | 
 |  | 
 | 		if (child == d->tg) { | 
 | 			period = d->rt_period; | 
 | 			runtime = d->rt_runtime; | 
 | 		} | 
 |  | 
 | 		sum += to_ratio(period, runtime); | 
 | 	} | 
 |  | 
 | 	if (sum > total) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	struct rt_schedulable_data data = { | 
 | 		.tg = tg, | 
 | 		.rt_period = period, | 
 | 		.rt_runtime = runtime, | 
 | 	}; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int tg_set_rt_bandwidth(struct task_group *tg, | 
 | 		u64 rt_period, u64 rt_runtime) | 
 | { | 
 | 	int i, err = 0; | 
 |  | 
 | 	/* | 
 | 	 * Disallowing the root group RT runtime is BAD, it would disallow the | 
 | 	 * kernel creating (and or operating) RT threads. | 
 | 	 */ | 
 | 	if (tg == &root_task_group && rt_runtime == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* No period doesn't make any sense. */ | 
 | 	if (rt_period == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&rt_constraints_mutex); | 
 | 	read_lock(&tasklist_lock); | 
 | 	err = __rt_schedulable(tg, rt_period, rt_runtime); | 
 | 	if (err) | 
 | 		goto unlock; | 
 |  | 
 | 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 
 | 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | 
 | 	tg->rt_bandwidth.rt_runtime = rt_runtime; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct rt_rq *rt_rq = tg->rt_rq[i]; | 
 |  | 
 | 		raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 		rt_rq->rt_runtime = rt_runtime; | 
 | 		raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 	} | 
 | 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 
 | unlock: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	mutex_unlock(&rt_constraints_mutex); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) | 
 | { | 
 | 	u64 rt_runtime, rt_period; | 
 |  | 
 | 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
 | 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | 
 | 	if (rt_runtime_us < 0) | 
 | 		rt_runtime = RUNTIME_INF; | 
 |  | 
 | 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | 
 | } | 
 |  | 
 | long sched_group_rt_runtime(struct task_group *tg) | 
 | { | 
 | 	u64 rt_runtime_us; | 
 |  | 
 | 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) | 
 | 		return -1; | 
 |  | 
 | 	rt_runtime_us = tg->rt_bandwidth.rt_runtime; | 
 | 	do_div(rt_runtime_us, NSEC_PER_USEC); | 
 | 	return rt_runtime_us; | 
 | } | 
 |  | 
 | int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) | 
 | { | 
 | 	u64 rt_runtime, rt_period; | 
 |  | 
 | 	rt_period = rt_period_us * NSEC_PER_USEC; | 
 | 	rt_runtime = tg->rt_bandwidth.rt_runtime; | 
 |  | 
 | 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | 
 | } | 
 |  | 
 | long sched_group_rt_period(struct task_group *tg) | 
 | { | 
 | 	u64 rt_period_us; | 
 |  | 
 | 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
 | 	do_div(rt_period_us, NSEC_PER_USEC); | 
 | 	return rt_period_us; | 
 | } | 
 |  | 
 | static int sched_rt_global_constraints(void) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&rt_constraints_mutex); | 
 | 	read_lock(&tasklist_lock); | 
 | 	ret = __rt_schedulable(NULL, 0, 0); | 
 | 	read_unlock(&tasklist_lock); | 
 | 	mutex_unlock(&rt_constraints_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | 
 | { | 
 | 	/* Don't accept realtime tasks when there is no way for them to run */ | 
 | 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | #else /* !CONFIG_RT_GROUP_SCHED */ | 
 | static int sched_rt_global_constraints(void) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int i; | 
 |  | 
 | 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct rt_rq *rt_rq = &cpu_rq(i)->rt; | 
 |  | 
 | 		raw_spin_lock(&rt_rq->rt_runtime_lock); | 
 | 		rt_rq->rt_runtime = global_rt_runtime(); | 
 | 		raw_spin_unlock(&rt_rq->rt_runtime_lock); | 
 | 	} | 
 | 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_RT_GROUP_SCHED */ | 
 |  | 
 | static int sched_rt_global_validate(void) | 
 | { | 
 | 	if (sysctl_sched_rt_period <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) && | 
 | 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void sched_rt_do_global(void) | 
 | { | 
 | 	def_rt_bandwidth.rt_runtime = global_rt_runtime(); | 
 | 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); | 
 | } | 
 |  | 
 | int sched_rt_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int old_period, old_runtime; | 
 | 	static DEFINE_MUTEX(mutex); | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&mutex); | 
 | 	old_period = sysctl_sched_rt_period; | 
 | 	old_runtime = sysctl_sched_rt_runtime; | 
 |  | 
 | 	ret = proc_dointvec(table, write, buffer, lenp, ppos); | 
 |  | 
 | 	if (!ret && write) { | 
 | 		ret = sched_rt_global_validate(); | 
 | 		if (ret) | 
 | 			goto undo; | 
 |  | 
 | 		ret = sched_dl_global_validate(); | 
 | 		if (ret) | 
 | 			goto undo; | 
 |  | 
 | 		ret = sched_rt_global_constraints(); | 
 | 		if (ret) | 
 | 			goto undo; | 
 |  | 
 | 		sched_rt_do_global(); | 
 | 		sched_dl_do_global(); | 
 | 	} | 
 | 	if (0) { | 
 | undo: | 
 | 		sysctl_sched_rt_period = old_period; | 
 | 		sysctl_sched_rt_runtime = old_runtime; | 
 | 	} | 
 | 	mutex_unlock(&mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int sched_rr_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int ret; | 
 | 	static DEFINE_MUTEX(mutex); | 
 |  | 
 | 	mutex_lock(&mutex); | 
 | 	ret = proc_dointvec(table, write, buffer, lenp, ppos); | 
 | 	/* | 
 | 	 * Make sure that internally we keep jiffies. | 
 | 	 * Also, writing zero resets the timeslice to default: | 
 | 	 */ | 
 | 	if (!ret && write) { | 
 | 		sched_rr_timeslice = | 
 | 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : | 
 | 			msecs_to_jiffies(sysctl_sched_rr_timeslice); | 
 | 	} | 
 | 	mutex_unlock(&mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | 
 |  | 
 | void print_rt_stats(struct seq_file *m, int cpu) | 
 | { | 
 | 	rt_rq_iter_t iter; | 
 | 	struct rt_rq *rt_rq; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) | 
 | 		print_rt_rq(m, cpu, rt_rq); | 
 | 	rcu_read_unlock(); | 
 | } | 
 | #endif /* CONFIG_SCHED_DEBUG */ |