| /* | 
 |  *  Kernel Probes (KProbes) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
 |  * | 
 |  * Copyright (C) IBM Corporation, 2002, 2006 | 
 |  * | 
 |  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> | 
 |  */ | 
 |  | 
 | #include <linux/kprobes.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/preempt.h> | 
 | #include <linux/stop_machine.h> | 
 | #include <linux/kdebug.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/uaccess.h> | 
 | #include <linux/module.h> | 
 |  | 
 | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | 
 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
 |  | 
 | struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; | 
 |  | 
 | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
 | { | 
 | 	/* Make sure the probe isn't going on a difficult instruction */ | 
 | 	if (is_prohibited_opcode((kprobe_opcode_t *) p->addr)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if ((unsigned long)p->addr & 0x01) { | 
 | 		printk("Attempt to register kprobe at an unaligned address\n"); | 
 | 		return -EINVAL; | 
 | 		} | 
 |  | 
 | 	/* Use the get_insn_slot() facility for correctness */ | 
 | 	if (!(p->ainsn.insn = get_insn_slot())) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); | 
 |  | 
 | 	get_instruction_type(&p->ainsn); | 
 | 	p->opcode = *p->addr; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction) | 
 | { | 
 | 	switch (*(__u8 *) instruction) { | 
 | 	case 0x0c:	/* bassm */ | 
 | 	case 0x0b:	/* bsm	 */ | 
 | 	case 0x83:	/* diag  */ | 
 | 	case 0x44:	/* ex	 */ | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	switch (*(__u16 *) instruction) { | 
 | 	case 0x0101:	/* pr	 */ | 
 | 	case 0xb25a:	/* bsa	 */ | 
 | 	case 0xb240:	/* bakr  */ | 
 | 	case 0xb258:	/* bsg	 */ | 
 | 	case 0xb218:	/* pc	 */ | 
 | 	case 0xb228:	/* pt	 */ | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __kprobes get_instruction_type(struct arch_specific_insn *ainsn) | 
 | { | 
 | 	/* default fixup method */ | 
 | 	ainsn->fixup = FIXUP_PSW_NORMAL; | 
 |  | 
 | 	/* save r1 operand */ | 
 | 	ainsn->reg = (*ainsn->insn & 0xf0) >> 4; | 
 |  | 
 | 	/* save the instruction length (pop 5-5) in bytes */ | 
 | 	switch (*(__u8 *) (ainsn->insn) >> 6) { | 
 | 	case 0: | 
 | 		ainsn->ilen = 2; | 
 | 		break; | 
 | 	case 1: | 
 | 	case 2: | 
 | 		ainsn->ilen = 4; | 
 | 		break; | 
 | 	case 3: | 
 | 		ainsn->ilen = 6; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	switch (*(__u8 *) ainsn->insn) { | 
 | 	case 0x05:	/* balr	*/ | 
 | 	case 0x0d:	/* basr */ | 
 | 		ainsn->fixup = FIXUP_RETURN_REGISTER; | 
 | 		/* if r2 = 0, no branch will be taken */ | 
 | 		if ((*ainsn->insn & 0x0f) == 0) | 
 | 			ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN; | 
 | 		break; | 
 | 	case 0x06:	/* bctr	*/ | 
 | 	case 0x07:	/* bcr	*/ | 
 | 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; | 
 | 		break; | 
 | 	case 0x45:	/* bal	*/ | 
 | 	case 0x4d:	/* bas	*/ | 
 | 		ainsn->fixup = FIXUP_RETURN_REGISTER; | 
 | 		break; | 
 | 	case 0x47:	/* bc	*/ | 
 | 	case 0x46:	/* bct	*/ | 
 | 	case 0x86:	/* bxh	*/ | 
 | 	case 0x87:	/* bxle	*/ | 
 | 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; | 
 | 		break; | 
 | 	case 0x82:	/* lpsw	*/ | 
 | 		ainsn->fixup = FIXUP_NOT_REQUIRED; | 
 | 		break; | 
 | 	case 0xb2:	/* lpswe */ | 
 | 		if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) { | 
 | 			ainsn->fixup = FIXUP_NOT_REQUIRED; | 
 | 		} | 
 | 		break; | 
 | 	case 0xa7:	/* bras	*/ | 
 | 		if ((*ainsn->insn & 0x0f) == 0x05) { | 
 | 			ainsn->fixup |= FIXUP_RETURN_REGISTER; | 
 | 		} | 
 | 		break; | 
 | 	case 0xc0: | 
 | 		if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */ | 
 | 			|| (*ainsn->insn & 0x0f) == 0x05) /* brasl */ | 
 | 		ainsn->fixup |= FIXUP_RETURN_REGISTER; | 
 | 		break; | 
 | 	case 0xeb: | 
 | 		if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||	/* bxhg  */ | 
 | 			*(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */ | 
 | 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; | 
 | 		} | 
 | 		break; | 
 | 	case 0xe3:	/* bctg	*/ | 
 | 		if (*(((__u8 *) ainsn->insn) + 5) == 0x46) { | 
 | 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static int __kprobes swap_instruction(void *aref) | 
 | { | 
 | 	struct ins_replace_args *args = aref; | 
 | 	u32 *addr; | 
 | 	u32 instr; | 
 | 	int err = -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * Text segment is read-only, hence we use stura to bypass dynamic | 
 | 	 * address translation to exchange the instruction. Since stura | 
 | 	 * always operates on four bytes, but we only want to exchange two | 
 | 	 * bytes do some calculations to get things right. In addition we | 
 | 	 * shall not cross any page boundaries (vmalloc area!) when writing | 
 | 	 * the new instruction. | 
 | 	 */ | 
 | 	addr = (u32 *)((unsigned long)args->ptr & -4UL); | 
 | 	if ((unsigned long)args->ptr & 2) | 
 | 		instr = ((*addr) & 0xffff0000) | args->new; | 
 | 	else | 
 | 		instr = ((*addr) & 0x0000ffff) | args->new << 16; | 
 |  | 
 | 	asm volatile( | 
 | 		"	lra	%1,0(%1)\n" | 
 | 		"0:	stura	%2,%1\n" | 
 | 		"1:	la	%0,0\n" | 
 | 		"2:\n" | 
 | 		EX_TABLE(0b,2b) | 
 | 		: "+d" (err) | 
 | 		: "a" (addr), "d" (instr) | 
 | 		: "memory", "cc"); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
 | { | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 	unsigned long status = kcb->kprobe_status; | 
 | 	struct ins_replace_args args; | 
 |  | 
 | 	args.ptr = p->addr; | 
 | 	args.old = p->opcode; | 
 | 	args.new = BREAKPOINT_INSTRUCTION; | 
 |  | 
 | 	kcb->kprobe_status = KPROBE_SWAP_INST; | 
 | 	stop_machine_run(swap_instruction, &args, NR_CPUS); | 
 | 	kcb->kprobe_status = status; | 
 | } | 
 |  | 
 | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
 | { | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 	unsigned long status = kcb->kprobe_status; | 
 | 	struct ins_replace_args args; | 
 |  | 
 | 	args.ptr = p->addr; | 
 | 	args.old = BREAKPOINT_INSTRUCTION; | 
 | 	args.new = p->opcode; | 
 |  | 
 | 	kcb->kprobe_status = KPROBE_SWAP_INST; | 
 | 	stop_machine_run(swap_instruction, &args, NR_CPUS); | 
 | 	kcb->kprobe_status = status; | 
 | } | 
 |  | 
 | void __kprobes arch_remove_kprobe(struct kprobe *p) | 
 | { | 
 | 	mutex_lock(&kprobe_mutex); | 
 | 	free_insn_slot(p->ainsn.insn, 0); | 
 | 	mutex_unlock(&kprobe_mutex); | 
 | } | 
 |  | 
 | static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	per_cr_bits kprobe_per_regs[1]; | 
 |  | 
 | 	memset(kprobe_per_regs, 0, sizeof(per_cr_bits)); | 
 | 	regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE; | 
 |  | 
 | 	/* Set up the per control reg info, will pass to lctl */ | 
 | 	kprobe_per_regs[0].em_instruction_fetch = 1; | 
 | 	kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn; | 
 | 	kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1; | 
 |  | 
 | 	/* Set the PER control regs, turns on single step for this address */ | 
 | 	__ctl_load(kprobe_per_regs, 9, 11); | 
 | 	regs->psw.mask |= PSW_MASK_PER; | 
 | 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK); | 
 | } | 
 |  | 
 | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	kcb->prev_kprobe.kp = kprobe_running(); | 
 | 	kcb->prev_kprobe.status = kcb->kprobe_status; | 
 | 	kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask; | 
 | 	memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl, | 
 | 					sizeof(kcb->kprobe_saved_ctl)); | 
 | } | 
 |  | 
 | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; | 
 | 	kcb->kprobe_status = kcb->prev_kprobe.status; | 
 | 	kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask; | 
 | 	memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl, | 
 | 					sizeof(kcb->kprobe_saved_ctl)); | 
 | } | 
 |  | 
 | static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | 
 | 						struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__get_cpu_var(current_kprobe) = p; | 
 | 	/* Save the interrupt and per flags */ | 
 | 	kcb->kprobe_saved_imask = regs->psw.mask & | 
 | 	    (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK); | 
 | 	/* Save the control regs that govern PER */ | 
 | 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11); | 
 | } | 
 |  | 
 | /* Called with kretprobe_lock held */ | 
 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | 
 | 					struct pt_regs *regs) | 
 | { | 
 | 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; | 
 |  | 
 | 	/* Replace the return addr with trampoline addr */ | 
 | 	regs->gprs[14] = (unsigned long)&kretprobe_trampoline; | 
 | } | 
 |  | 
 | static int __kprobes kprobe_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe *p; | 
 | 	int ret = 0; | 
 | 	unsigned long *addr = (unsigned long *) | 
 | 		((regs->psw.addr & PSW_ADDR_INSN) - 2); | 
 | 	struct kprobe_ctlblk *kcb; | 
 |  | 
 | 	/* | 
 | 	 * We don't want to be preempted for the entire | 
 | 	 * duration of kprobe processing | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	/* Check we're not actually recursing */ | 
 | 	if (kprobe_running()) { | 
 | 		p = get_kprobe(addr); | 
 | 		if (p) { | 
 | 			if (kcb->kprobe_status == KPROBE_HIT_SS && | 
 | 			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { | 
 | 				regs->psw.mask &= ~PSW_MASK_PER; | 
 | 				regs->psw.mask |= kcb->kprobe_saved_imask; | 
 | 				goto no_kprobe; | 
 | 			} | 
 | 			/* We have reentered the kprobe_handler(), since | 
 | 			 * another probe was hit while within the handler. | 
 | 			 * We here save the original kprobes variables and | 
 | 			 * just single step on the instruction of the new probe | 
 | 			 * without calling any user handlers. | 
 | 			 */ | 
 | 			save_previous_kprobe(kcb); | 
 | 			set_current_kprobe(p, regs, kcb); | 
 | 			kprobes_inc_nmissed_count(p); | 
 | 			prepare_singlestep(p, regs); | 
 | 			kcb->kprobe_status = KPROBE_REENTER; | 
 | 			return 1; | 
 | 		} else { | 
 | 			p = __get_cpu_var(current_kprobe); | 
 | 			if (p->break_handler && p->break_handler(p, regs)) { | 
 | 				goto ss_probe; | 
 | 			} | 
 | 		} | 
 | 		goto no_kprobe; | 
 | 	} | 
 |  | 
 | 	p = get_kprobe(addr); | 
 | 	if (!p) | 
 | 		/* | 
 | 		 * No kprobe at this address. The fault has not been | 
 | 		 * caused by a kprobe breakpoint. The race of breakpoint | 
 | 		 * vs. kprobe remove does not exist because on s390 we | 
 | 		 * use stop_machine_run to arm/disarm the breakpoints. | 
 | 		 */ | 
 | 		goto no_kprobe; | 
 |  | 
 | 	kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
 | 	set_current_kprobe(p, regs, kcb); | 
 | 	if (p->pre_handler && p->pre_handler(p, regs)) | 
 | 		/* handler has already set things up, so skip ss setup */ | 
 | 		return 1; | 
 |  | 
 | ss_probe: | 
 | 	prepare_singlestep(p, regs); | 
 | 	kcb->kprobe_status = KPROBE_HIT_SS; | 
 | 	return 1; | 
 |  | 
 | no_kprobe: | 
 | 	preempt_enable_no_resched(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Function return probe trampoline: | 
 |  *	- init_kprobes() establishes a probepoint here | 
 |  *	- When the probed function returns, this probe | 
 |  *		causes the handlers to fire | 
 |  */ | 
 | static void __used kretprobe_trampoline_holder(void) | 
 | { | 
 | 	asm volatile(".global kretprobe_trampoline\n" | 
 | 		     "kretprobe_trampoline: bcr 0,0\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * Called when the probe at kretprobe trampoline is hit | 
 |  */ | 
 | static int __kprobes trampoline_probe_handler(struct kprobe *p, | 
 | 					      struct pt_regs *regs) | 
 | { | 
 | 	struct kretprobe_instance *ri = NULL; | 
 | 	struct hlist_head *head, empty_rp; | 
 | 	struct hlist_node *node, *tmp; | 
 | 	unsigned long flags, orig_ret_address = 0; | 
 | 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; | 
 |  | 
 | 	INIT_HLIST_HEAD(&empty_rp); | 
 | 	spin_lock_irqsave(&kretprobe_lock, flags); | 
 | 	head = kretprobe_inst_table_head(current); | 
 |  | 
 | 	/* | 
 | 	 * It is possible to have multiple instances associated with a given | 
 | 	 * task either because an multiple functions in the call path | 
 | 	 * have a return probe installed on them, and/or more then one return | 
 | 	 * return probe was registered for a target function. | 
 | 	 * | 
 | 	 * We can handle this because: | 
 | 	 *     - instances are always inserted at the head of the list | 
 | 	 *     - when multiple return probes are registered for the same | 
 | 	 *	 function, the first instance's ret_addr will point to the | 
 | 	 *	 real return address, and all the rest will point to | 
 | 	 *	 kretprobe_trampoline | 
 | 	 */ | 
 | 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | 
 | 		if (ri->task != current) | 
 | 			/* another task is sharing our hash bucket */ | 
 | 			continue; | 
 |  | 
 | 		if (ri->rp && ri->rp->handler) | 
 | 			ri->rp->handler(ri, regs); | 
 |  | 
 | 		orig_ret_address = (unsigned long)ri->ret_addr; | 
 | 		recycle_rp_inst(ri, &empty_rp); | 
 |  | 
 | 		if (orig_ret_address != trampoline_address) { | 
 | 			/* | 
 | 			 * This is the real return address. Any other | 
 | 			 * instances associated with this task are for | 
 | 			 * other calls deeper on the call stack | 
 | 			 */ | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	kretprobe_assert(ri, orig_ret_address, trampoline_address); | 
 | 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE; | 
 |  | 
 | 	reset_current_kprobe(); | 
 | 	spin_unlock_irqrestore(&kretprobe_lock, flags); | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { | 
 | 		hlist_del(&ri->hlist); | 
 | 		kfree(ri); | 
 | 	} | 
 | 	/* | 
 | 	 * By returning a non-zero value, we are telling | 
 | 	 * kprobe_handler() that we don't want the post_handler | 
 | 	 * to run (and have re-enabled preemption) | 
 | 	 */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Called after single-stepping.  p->addr is the address of the | 
 |  * instruction whose first byte has been replaced by the "breakpoint" | 
 |  * instruction.  To avoid the SMP problems that can occur when we | 
 |  * temporarily put back the original opcode to single-step, we | 
 |  * single-stepped a copy of the instruction.  The address of this | 
 |  * copy is p->ainsn.insn. | 
 |  */ | 
 | static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	regs->psw.addr &= PSW_ADDR_INSN; | 
 |  | 
 | 	if (p->ainsn.fixup & FIXUP_PSW_NORMAL) | 
 | 		regs->psw.addr = (unsigned long)p->addr + | 
 | 				((unsigned long)regs->psw.addr - | 
 | 				 (unsigned long)p->ainsn.insn); | 
 |  | 
 | 	if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN) | 
 | 		if ((unsigned long)regs->psw.addr - | 
 | 		    (unsigned long)p->ainsn.insn == p->ainsn.ilen) | 
 | 			regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen; | 
 |  | 
 | 	if (p->ainsn.fixup & FIXUP_RETURN_REGISTER) | 
 | 		regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr + | 
 | 						(regs->gprs[p->ainsn.reg] - | 
 | 						(unsigned long)p->ainsn.insn)) | 
 | 						| PSW_ADDR_AMODE; | 
 |  | 
 | 	regs->psw.addr |= PSW_ADDR_AMODE; | 
 | 	/* turn off PER mode */ | 
 | 	regs->psw.mask &= ~PSW_MASK_PER; | 
 | 	/* Restore the original per control regs */ | 
 | 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11); | 
 | 	regs->psw.mask |= kcb->kprobe_saved_imask; | 
 | } | 
 |  | 
 | static int __kprobes post_kprobe_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	if (!cur) | 
 | 		return 0; | 
 |  | 
 | 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | 
 | 		kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
 | 		cur->post_handler(cur, regs, 0); | 
 | 	} | 
 |  | 
 | 	resume_execution(cur, regs); | 
 |  | 
 | 	/*Restore back the original saved kprobes variables and continue. */ | 
 | 	if (kcb->kprobe_status == KPROBE_REENTER) { | 
 | 		restore_previous_kprobe(kcb); | 
 | 		goto out; | 
 | 	} | 
 | 	reset_current_kprobe(); | 
 | out: | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	/* | 
 | 	 * if somebody else is singlestepping across a probe point, psw mask | 
 | 	 * will have PER set, in which case, continue the remaining processing | 
 | 	 * of do_single_step, as if this is not a probe hit. | 
 | 	 */ | 
 | 	if (regs->psw.mask & PSW_MASK_PER) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 	const struct exception_table_entry *entry; | 
 |  | 
 | 	switch(kcb->kprobe_status) { | 
 | 	case KPROBE_SWAP_INST: | 
 | 		/* We are here because the instruction replacement failed */ | 
 | 		return 0; | 
 | 	case KPROBE_HIT_SS: | 
 | 	case KPROBE_REENTER: | 
 | 		/* | 
 | 		 * We are here because the instruction being single | 
 | 		 * stepped caused a page fault. We reset the current | 
 | 		 * kprobe and the nip points back to the probe address | 
 | 		 * and allow the page fault handler to continue as a | 
 | 		 * normal page fault. | 
 | 		 */ | 
 | 		regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE; | 
 | 		regs->psw.mask &= ~PSW_MASK_PER; | 
 | 		regs->psw.mask |= kcb->kprobe_saved_imask; | 
 | 		if (kcb->kprobe_status == KPROBE_REENTER) | 
 | 			restore_previous_kprobe(kcb); | 
 | 		else | 
 | 			reset_current_kprobe(); | 
 | 		preempt_enable_no_resched(); | 
 | 		break; | 
 | 	case KPROBE_HIT_ACTIVE: | 
 | 	case KPROBE_HIT_SSDONE: | 
 | 		/* | 
 | 		 * We increment the nmissed count for accounting, | 
 | 		 * we can also use npre/npostfault count for accouting | 
 | 		 * these specific fault cases. | 
 | 		 */ | 
 | 		kprobes_inc_nmissed_count(cur); | 
 |  | 
 | 		/* | 
 | 		 * We come here because instructions in the pre/post | 
 | 		 * handler caused the page_fault, this could happen | 
 | 		 * if handler tries to access user space by | 
 | 		 * copy_from_user(), get_user() etc. Let the | 
 | 		 * user-specified handler try to fix it first. | 
 | 		 */ | 
 | 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * In case the user-specified fault handler returned | 
 | 		 * zero, try to fix up. | 
 | 		 */ | 
 | 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN); | 
 | 		if (entry) { | 
 | 			regs->psw.addr = entry->fixup | PSW_ADDR_AMODE; | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * fixup_exception() could not handle it, | 
 | 		 * Let do_page_fault() fix it. | 
 | 		 */ | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Wrapper routine to for handling exceptions. | 
 |  */ | 
 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
 | 				       unsigned long val, void *data) | 
 | { | 
 | 	struct die_args *args = (struct die_args *)data; | 
 | 	int ret = NOTIFY_DONE; | 
 |  | 
 | 	switch (val) { | 
 | 	case DIE_BPT: | 
 | 		if (kprobe_handler(args->regs)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	case DIE_SSTEP: | 
 | 		if (post_kprobe_handler(args->regs)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	case DIE_TRAP: | 
 | 		/* kprobe_running() needs smp_processor_id() */ | 
 | 		preempt_disable(); | 
 | 		if (kprobe_running() && | 
 | 		    kprobe_fault_handler(args->regs, args->trapnr)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		preempt_enable(); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct jprobe *jp = container_of(p, struct jprobe, kp); | 
 | 	unsigned long addr; | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); | 
 |  | 
 | 	/* setup return addr to the jprobe handler routine */ | 
 | 	regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE; | 
 |  | 
 | 	/* r14 is the function return address */ | 
 | 	kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14]; | 
 | 	/* r15 is the stack pointer */ | 
 | 	kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15]; | 
 | 	addr = (unsigned long)kcb->jprobe_saved_r15; | 
 |  | 
 | 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr, | 
 | 	       MIN_STACK_SIZE(addr)); | 
 | 	return 1; | 
 | } | 
 |  | 
 | void __kprobes jprobe_return(void) | 
 | { | 
 | 	asm volatile(".word 0x0002"); | 
 | } | 
 |  | 
 | void __kprobes jprobe_return_end(void) | 
 | { | 
 | 	asm volatile("bcr 0,0"); | 
 | } | 
 |  | 
 | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 	unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15); | 
 |  | 
 | 	/* Put the regs back */ | 
 | 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); | 
 | 	/* put the stack back */ | 
 | 	memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, | 
 | 	       MIN_STACK_SIZE(stack_addr)); | 
 | 	preempt_enable_no_resched(); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static struct kprobe trampoline_p = { | 
 | 	.addr = (kprobe_opcode_t *) & kretprobe_trampoline, | 
 | 	.pre_handler = trampoline_probe_handler | 
 | }; | 
 |  | 
 | int __init arch_init_kprobes(void) | 
 | { | 
 | 	return register_kprobe(&trampoline_p); | 
 | } | 
 |  | 
 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | 
 | { | 
 | 	if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline) | 
 | 		return 1; | 
 | 	return 0; | 
 | } |