|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * This module enables machines with Intel VT-x extensions to run virtual | 
|  | * machines without emulation or binary translation. | 
|  | * | 
|  | * MMU support | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Authors: | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * We need the mmu code to access both 32-bit and 64-bit guest ptes, | 
|  | * so the code in this file is compiled twice, once per pte size. | 
|  | */ | 
|  |  | 
|  | #if PTTYPE == 64 | 
|  | #define pt_element_t u64 | 
|  | #define guest_walker guest_walker64 | 
|  | #define FNAME(name) paging##64_##name | 
|  | #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK | 
|  | #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) | 
|  | #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) | 
|  | #define PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
|  | #define PT_LEVEL_BITS PT64_LEVEL_BITS | 
|  | #ifdef CONFIG_X86_64 | 
|  | #define PT_MAX_FULL_LEVELS 4 | 
|  | #define CMPXCHG cmpxchg | 
|  | #else | 
|  | #define CMPXCHG cmpxchg64 | 
|  | #define PT_MAX_FULL_LEVELS 2 | 
|  | #endif | 
|  | #elif PTTYPE == 32 | 
|  | #define pt_element_t u32 | 
|  | #define guest_walker guest_walker32 | 
|  | #define FNAME(name) paging##32_##name | 
|  | #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK | 
|  | #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) | 
|  | #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) | 
|  | #define PT_INDEX(addr, level) PT32_INDEX(addr, level) | 
|  | #define PT_LEVEL_BITS PT32_LEVEL_BITS | 
|  | #define PT_MAX_FULL_LEVELS 2 | 
|  | #define CMPXCHG cmpxchg | 
|  | #else | 
|  | #error Invalid PTTYPE value | 
|  | #endif | 
|  |  | 
|  | #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) | 
|  | #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) | 
|  |  | 
|  | /* | 
|  | * The guest_walker structure emulates the behavior of the hardware page | 
|  | * table walker. | 
|  | */ | 
|  | struct guest_walker { | 
|  | int level; | 
|  | unsigned max_level; | 
|  | gfn_t table_gfn[PT_MAX_FULL_LEVELS]; | 
|  | pt_element_t ptes[PT_MAX_FULL_LEVELS]; | 
|  | pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; | 
|  | gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; | 
|  | pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; | 
|  | unsigned pt_access; | 
|  | unsigned pte_access; | 
|  | gfn_t gfn; | 
|  | struct x86_exception fault; | 
|  | }; | 
|  |  | 
|  | static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) | 
|  | { | 
|  | return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | 
|  | pt_element_t __user *ptep_user, unsigned index, | 
|  | pt_element_t orig_pte, pt_element_t new_pte) | 
|  | { | 
|  | int npages; | 
|  | pt_element_t ret; | 
|  | pt_element_t *table; | 
|  | struct page *page; | 
|  |  | 
|  | npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page); | 
|  | /* Check if the user is doing something meaningless. */ | 
|  | if (unlikely(npages != 1)) | 
|  | return -EFAULT; | 
|  |  | 
|  | table = kmap_atomic(page); | 
|  | ret = CMPXCHG(&table[index], orig_pte, new_pte); | 
|  | kunmap_atomic(table); | 
|  |  | 
|  | kvm_release_page_dirty(page); | 
|  |  | 
|  | return (ret != orig_pte); | 
|  | } | 
|  |  | 
|  | static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu *mmu, | 
|  | struct guest_walker *walker, | 
|  | int write_fault) | 
|  | { | 
|  | unsigned level, index; | 
|  | pt_element_t pte, orig_pte; | 
|  | pt_element_t __user *ptep_user; | 
|  | gfn_t table_gfn; | 
|  | int ret; | 
|  |  | 
|  | for (level = walker->max_level; level >= walker->level; --level) { | 
|  | pte = orig_pte = walker->ptes[level - 1]; | 
|  | table_gfn = walker->table_gfn[level - 1]; | 
|  | ptep_user = walker->ptep_user[level - 1]; | 
|  | index = offset_in_page(ptep_user) / sizeof(pt_element_t); | 
|  | if (!(pte & PT_ACCESSED_MASK)) { | 
|  | trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); | 
|  | pte |= PT_ACCESSED_MASK; | 
|  | } | 
|  | if (level == walker->level && write_fault && !is_dirty_gpte(pte)) { | 
|  | trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); | 
|  | pte |= PT_DIRTY_MASK; | 
|  | } | 
|  | if (pte == orig_pte) | 
|  | continue; | 
|  |  | 
|  | ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mark_page_dirty(vcpu->kvm, table_gfn); | 
|  | walker->ptes[level] = pte; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fetch a guest pte for a guest virtual address | 
|  | */ | 
|  | static int FNAME(walk_addr_generic)(struct guest_walker *walker, | 
|  | struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | 
|  | gva_t addr, u32 access) | 
|  | { | 
|  | int ret; | 
|  | pt_element_t pte; | 
|  | pt_element_t __user *uninitialized_var(ptep_user); | 
|  | gfn_t table_gfn; | 
|  | unsigned index, pt_access, pte_access, accessed_dirty; | 
|  | gpa_t pte_gpa; | 
|  | int offset; | 
|  | const int write_fault = access & PFERR_WRITE_MASK; | 
|  | const int user_fault  = access & PFERR_USER_MASK; | 
|  | const int fetch_fault = access & PFERR_FETCH_MASK; | 
|  | u16 errcode = 0; | 
|  | gpa_t real_gpa; | 
|  | gfn_t gfn; | 
|  |  | 
|  | trace_kvm_mmu_pagetable_walk(addr, access); | 
|  | retry_walk: | 
|  | walker->level = mmu->root_level; | 
|  | pte           = mmu->get_cr3(vcpu); | 
|  |  | 
|  | #if PTTYPE == 64 | 
|  | if (walker->level == PT32E_ROOT_LEVEL) { | 
|  | pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); | 
|  | trace_kvm_mmu_paging_element(pte, walker->level); | 
|  | if (!is_present_gpte(pte)) | 
|  | goto error; | 
|  | --walker->level; | 
|  | } | 
|  | #endif | 
|  | walker->max_level = walker->level; | 
|  | ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) || | 
|  | (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0); | 
|  |  | 
|  | accessed_dirty = PT_ACCESSED_MASK; | 
|  | pt_access = pte_access = ACC_ALL; | 
|  | ++walker->level; | 
|  |  | 
|  | do { | 
|  | gfn_t real_gfn; | 
|  | unsigned long host_addr; | 
|  |  | 
|  | pt_access &= pte_access; | 
|  | --walker->level; | 
|  |  | 
|  | index = PT_INDEX(addr, walker->level); | 
|  |  | 
|  | table_gfn = gpte_to_gfn(pte); | 
|  | offset    = index * sizeof(pt_element_t); | 
|  | pte_gpa   = gfn_to_gpa(table_gfn) + offset; | 
|  | walker->table_gfn[walker->level - 1] = table_gfn; | 
|  | walker->pte_gpa[walker->level - 1] = pte_gpa; | 
|  |  | 
|  | real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), | 
|  | PFERR_USER_MASK|PFERR_WRITE_MASK); | 
|  | if (unlikely(real_gfn == UNMAPPED_GVA)) | 
|  | goto error; | 
|  | real_gfn = gpa_to_gfn(real_gfn); | 
|  |  | 
|  | host_addr = gfn_to_hva(vcpu->kvm, real_gfn); | 
|  | if (unlikely(kvm_is_error_hva(host_addr))) | 
|  | goto error; | 
|  |  | 
|  | ptep_user = (pt_element_t __user *)((void *)host_addr + offset); | 
|  | if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) | 
|  | goto error; | 
|  | walker->ptep_user[walker->level - 1] = ptep_user; | 
|  |  | 
|  | trace_kvm_mmu_paging_element(pte, walker->level); | 
|  |  | 
|  | if (unlikely(!is_present_gpte(pte))) | 
|  | goto error; | 
|  |  | 
|  | if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte, | 
|  | walker->level))) { | 
|  | errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | accessed_dirty &= pte; | 
|  | pte_access = pt_access & gpte_access(vcpu, pte); | 
|  |  | 
|  | walker->ptes[walker->level - 1] = pte; | 
|  | } while (!is_last_gpte(mmu, walker->level, pte)); | 
|  |  | 
|  | if (unlikely(permission_fault(mmu, pte_access, access))) { | 
|  | errcode |= PFERR_PRESENT_MASK; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | gfn = gpte_to_gfn_lvl(pte, walker->level); | 
|  | gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; | 
|  |  | 
|  | if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36()) | 
|  | gfn += pse36_gfn_delta(pte); | 
|  |  | 
|  | real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access); | 
|  | if (real_gpa == UNMAPPED_GVA) | 
|  | return 0; | 
|  |  | 
|  | walker->gfn = real_gpa >> PAGE_SHIFT; | 
|  |  | 
|  | if (!write_fault) | 
|  | protect_clean_gpte(&pte_access, pte); | 
|  | else | 
|  | /* | 
|  | * On a write fault, fold the dirty bit into accessed_dirty by | 
|  | * shifting it one place right. | 
|  | */ | 
|  | accessed_dirty &= pte >> (PT_DIRTY_SHIFT - PT_ACCESSED_SHIFT); | 
|  |  | 
|  | if (unlikely(!accessed_dirty)) { | 
|  | ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault); | 
|  | if (unlikely(ret < 0)) | 
|  | goto error; | 
|  | else if (ret) | 
|  | goto retry_walk; | 
|  | } | 
|  |  | 
|  | walker->pt_access = pt_access; | 
|  | walker->pte_access = pte_access; | 
|  | pgprintk("%s: pte %llx pte_access %x pt_access %x\n", | 
|  | __func__, (u64)pte, pte_access, pt_access); | 
|  | return 1; | 
|  |  | 
|  | error: | 
|  | errcode |= write_fault | user_fault; | 
|  | if (fetch_fault && (mmu->nx || | 
|  | kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))) | 
|  | errcode |= PFERR_FETCH_MASK; | 
|  |  | 
|  | walker->fault.vector = PF_VECTOR; | 
|  | walker->fault.error_code_valid = true; | 
|  | walker->fault.error_code = errcode; | 
|  | walker->fault.address = addr; | 
|  | walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; | 
|  |  | 
|  | trace_kvm_mmu_walker_error(walker->fault.error_code); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int FNAME(walk_addr)(struct guest_walker *walker, | 
|  | struct kvm_vcpu *vcpu, gva_t addr, u32 access) | 
|  | { | 
|  | return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr, | 
|  | access); | 
|  | } | 
|  |  | 
|  | static int FNAME(walk_addr_nested)(struct guest_walker *walker, | 
|  | struct kvm_vcpu *vcpu, gva_t addr, | 
|  | u32 access) | 
|  | { | 
|  | return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, | 
|  | addr, access); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
|  | u64 *spte, pt_element_t gpte, bool no_dirty_log) | 
|  | { | 
|  | unsigned pte_access; | 
|  | gfn_t gfn; | 
|  | pfn_t pfn; | 
|  |  | 
|  | if (prefetch_invalid_gpte(vcpu, sp, spte, gpte)) | 
|  | return false; | 
|  |  | 
|  | pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); | 
|  |  | 
|  | gfn = gpte_to_gfn(gpte); | 
|  | pte_access = sp->role.access & gpte_access(vcpu, gpte); | 
|  | protect_clean_gpte(&pte_access, gpte); | 
|  | pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, | 
|  | no_dirty_log && (pte_access & ACC_WRITE_MASK)); | 
|  | if (is_error_pfn(pfn)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * we call mmu_set_spte() with host_writable = true because | 
|  | * pte_prefetch_gfn_to_pfn always gets a writable pfn. | 
|  | */ | 
|  | mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL, | 
|  | gfn, pfn, true, true); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, | 
|  | u64 *spte, const void *pte) | 
|  | { | 
|  | pt_element_t gpte = *(const pt_element_t *)pte; | 
|  |  | 
|  | FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false); | 
|  | } | 
|  |  | 
|  | static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, | 
|  | struct guest_walker *gw, int level) | 
|  | { | 
|  | pt_element_t curr_pte; | 
|  | gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; | 
|  | u64 mask; | 
|  | int r, index; | 
|  |  | 
|  | if (level == PT_PAGE_TABLE_LEVEL) { | 
|  | mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; | 
|  | base_gpa = pte_gpa & ~mask; | 
|  | index = (pte_gpa - base_gpa) / sizeof(pt_element_t); | 
|  |  | 
|  | r = kvm_read_guest_atomic(vcpu->kvm, base_gpa, | 
|  | gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); | 
|  | curr_pte = gw->prefetch_ptes[index]; | 
|  | } else | 
|  | r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, | 
|  | &curr_pte, sizeof(curr_pte)); | 
|  |  | 
|  | return r || curr_pte != gw->ptes[level - 1]; | 
|  | } | 
|  |  | 
|  | static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, | 
|  | u64 *sptep) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | pt_element_t *gptep = gw->prefetch_ptes; | 
|  | u64 *spte; | 
|  | int i; | 
|  |  | 
|  | sp = page_header(__pa(sptep)); | 
|  |  | 
|  | if (sp->role.level > PT_PAGE_TABLE_LEVEL) | 
|  | return; | 
|  |  | 
|  | if (sp->role.direct) | 
|  | return __direct_pte_prefetch(vcpu, sp, sptep); | 
|  |  | 
|  | i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); | 
|  | spte = sp->spt + i; | 
|  |  | 
|  | for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { | 
|  | if (spte == sptep) | 
|  | continue; | 
|  |  | 
|  | if (is_shadow_present_pte(*spte)) | 
|  | continue; | 
|  |  | 
|  | if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fetch a shadow pte for a specific level in the paging hierarchy. | 
|  | * If the guest tries to write a write-protected page, we need to | 
|  | * emulate this operation, return 1 to indicate this case. | 
|  | */ | 
|  | static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, | 
|  | struct guest_walker *gw, | 
|  | int write_fault, int hlevel, | 
|  | pfn_t pfn, bool map_writable, bool prefault) | 
|  | { | 
|  | struct kvm_mmu_page *sp = NULL; | 
|  | struct kvm_shadow_walk_iterator it; | 
|  | unsigned direct_access, access = gw->pt_access; | 
|  | int top_level, emulate = 0; | 
|  |  | 
|  | direct_access = gw->pte_access; | 
|  |  | 
|  | top_level = vcpu->arch.mmu.root_level; | 
|  | if (top_level == PT32E_ROOT_LEVEL) | 
|  | top_level = PT32_ROOT_LEVEL; | 
|  | /* | 
|  | * Verify that the top-level gpte is still there.  Since the page | 
|  | * is a root page, it is either write protected (and cannot be | 
|  | * changed from now on) or it is invalid (in which case, we don't | 
|  | * really care if it changes underneath us after this point). | 
|  | */ | 
|  | if (FNAME(gpte_changed)(vcpu, gw, top_level)) | 
|  | goto out_gpte_changed; | 
|  |  | 
|  | for (shadow_walk_init(&it, vcpu, addr); | 
|  | shadow_walk_okay(&it) && it.level > gw->level; | 
|  | shadow_walk_next(&it)) { | 
|  | gfn_t table_gfn; | 
|  |  | 
|  | clear_sp_write_flooding_count(it.sptep); | 
|  | drop_large_spte(vcpu, it.sptep); | 
|  |  | 
|  | sp = NULL; | 
|  | if (!is_shadow_present_pte(*it.sptep)) { | 
|  | table_gfn = gw->table_gfn[it.level - 2]; | 
|  | sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, | 
|  | false, access, it.sptep); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that the gpte in the page we've just write | 
|  | * protected is still there. | 
|  | */ | 
|  | if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) | 
|  | goto out_gpte_changed; | 
|  |  | 
|  | if (sp) | 
|  | link_shadow_page(it.sptep, sp); | 
|  | } | 
|  |  | 
|  | for (; | 
|  | shadow_walk_okay(&it) && it.level > hlevel; | 
|  | shadow_walk_next(&it)) { | 
|  | gfn_t direct_gfn; | 
|  |  | 
|  | clear_sp_write_flooding_count(it.sptep); | 
|  | validate_direct_spte(vcpu, it.sptep, direct_access); | 
|  |  | 
|  | drop_large_spte(vcpu, it.sptep); | 
|  |  | 
|  | if (is_shadow_present_pte(*it.sptep)) | 
|  | continue; | 
|  |  | 
|  | direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); | 
|  |  | 
|  | sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1, | 
|  | true, direct_access, it.sptep); | 
|  | link_shadow_page(it.sptep, sp); | 
|  | } | 
|  |  | 
|  | clear_sp_write_flooding_count(it.sptep); | 
|  | mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate, | 
|  | it.level, gw->gfn, pfn, prefault, map_writable); | 
|  | FNAME(pte_prefetch)(vcpu, gw, it.sptep); | 
|  |  | 
|  | return emulate; | 
|  |  | 
|  | out_gpte_changed: | 
|  | if (sp) | 
|  | kvm_mmu_put_page(sp, it.sptep); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To see whether the mapped gfn can write its page table in the current | 
|  | * mapping. | 
|  | * | 
|  | * It is the helper function of FNAME(page_fault). When guest uses large page | 
|  | * size to map the writable gfn which is used as current page table, we should | 
|  | * force kvm to use small page size to map it because new shadow page will be | 
|  | * created when kvm establishes shadow page table that stop kvm using large | 
|  | * page size. Do it early can avoid unnecessary #PF and emulation. | 
|  | * | 
|  | * @write_fault_to_shadow_pgtable will return true if the fault gfn is | 
|  | * currently used as its page table. | 
|  | * | 
|  | * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok | 
|  | * since the PDPT is always shadowed, that means, we can not use large page | 
|  | * size to map the gfn which is used as PDPT. | 
|  | */ | 
|  | static bool | 
|  | FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, | 
|  | struct guest_walker *walker, int user_fault, | 
|  | bool *write_fault_to_shadow_pgtable) | 
|  | { | 
|  | int level; | 
|  | gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); | 
|  | bool self_changed = false; | 
|  |  | 
|  | if (!(walker->pte_access & ACC_WRITE_MASK || | 
|  | (!is_write_protection(vcpu) && !user_fault))) | 
|  | return false; | 
|  |  | 
|  | for (level = walker->level; level <= walker->max_level; level++) { | 
|  | gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; | 
|  |  | 
|  | self_changed |= !(gfn & mask); | 
|  | *write_fault_to_shadow_pgtable |= !gfn; | 
|  | } | 
|  |  | 
|  | return self_changed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Page fault handler.  There are several causes for a page fault: | 
|  | *   - there is no shadow pte for the guest pte | 
|  | *   - write access through a shadow pte marked read only so that we can set | 
|  | *     the dirty bit | 
|  | *   - write access to a shadow pte marked read only so we can update the page | 
|  | *     dirty bitmap, when userspace requests it | 
|  | *   - mmio access; in this case we will never install a present shadow pte | 
|  | *   - normal guest page fault due to the guest pte marked not present, not | 
|  | *     writable, or not executable | 
|  | * | 
|  | *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or | 
|  | *           a negative value on error. | 
|  | */ | 
|  | static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code, | 
|  | bool prefault) | 
|  | { | 
|  | int write_fault = error_code & PFERR_WRITE_MASK; | 
|  | int user_fault = error_code & PFERR_USER_MASK; | 
|  | struct guest_walker walker; | 
|  | int r; | 
|  | pfn_t pfn; | 
|  | int level = PT_PAGE_TABLE_LEVEL; | 
|  | int force_pt_level; | 
|  | unsigned long mmu_seq; | 
|  | bool map_writable, is_self_change_mapping; | 
|  |  | 
|  | pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); | 
|  |  | 
|  | if (unlikely(error_code & PFERR_RSVD_MASK)) { | 
|  | r = handle_mmio_page_fault(vcpu, addr, error_code, | 
|  | mmu_is_nested(vcpu)); | 
|  | if (likely(r != RET_MMIO_PF_INVALID)) | 
|  | return r; | 
|  | }; | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | /* | 
|  | * Look up the guest pte for the faulting address. | 
|  | */ | 
|  | r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); | 
|  |  | 
|  | /* | 
|  | * The page is not mapped by the guest.  Let the guest handle it. | 
|  | */ | 
|  | if (!r) { | 
|  | pgprintk("%s: guest page fault\n", __func__); | 
|  | if (!prefault) | 
|  | inject_page_fault(vcpu, &walker.fault); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | vcpu->arch.write_fault_to_shadow_pgtable = false; | 
|  |  | 
|  | is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, | 
|  | &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable); | 
|  |  | 
|  | if (walker.level >= PT_DIRECTORY_LEVEL) | 
|  | force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn) | 
|  | || is_self_change_mapping; | 
|  | else | 
|  | force_pt_level = 1; | 
|  | if (!force_pt_level) { | 
|  | level = min(walker.level, mapping_level(vcpu, walker.gfn)); | 
|  | walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1); | 
|  | } | 
|  |  | 
|  | mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
|  | smp_rmb(); | 
|  |  | 
|  | if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault, | 
|  | &map_writable)) | 
|  | return 0; | 
|  |  | 
|  | if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr, | 
|  | walker.gfn, pfn, walker.pte_access, &r)) | 
|  | return r; | 
|  |  | 
|  | /* | 
|  | * Do not change pte_access if the pfn is a mmio page, otherwise | 
|  | * we will cache the incorrect access into mmio spte. | 
|  | */ | 
|  | if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) && | 
|  | !is_write_protection(vcpu) && !user_fault && | 
|  | !is_noslot_pfn(pfn)) { | 
|  | walker.pte_access |= ACC_WRITE_MASK; | 
|  | walker.pte_access &= ~ACC_USER_MASK; | 
|  |  | 
|  | /* | 
|  | * If we converted a user page to a kernel page, | 
|  | * so that the kernel can write to it when cr0.wp=0, | 
|  | * then we should prevent the kernel from executing it | 
|  | * if SMEP is enabled. | 
|  | */ | 
|  | if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) | 
|  | walker.pte_access &= ~ACC_EXEC_MASK; | 
|  | } | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) | 
|  | goto out_unlock; | 
|  |  | 
|  | kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); | 
|  | make_mmu_pages_available(vcpu); | 
|  | if (!force_pt_level) | 
|  | transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level); | 
|  | r = FNAME(fetch)(vcpu, addr, &walker, write_fault, | 
|  | level, pfn, map_writable, prefault); | 
|  | ++vcpu->stat.pf_fixed; | 
|  | kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | return r; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) | 
|  | { | 
|  | int offset = 0; | 
|  |  | 
|  | WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); | 
|  |  | 
|  | if (PTTYPE == 32) | 
|  | offset = sp->role.quadrant << PT64_LEVEL_BITS; | 
|  |  | 
|  | return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); | 
|  | } | 
|  |  | 
|  | static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  | struct kvm_mmu_page *sp; | 
|  | int level; | 
|  | u64 *sptep; | 
|  |  | 
|  | vcpu_clear_mmio_info(vcpu, gva); | 
|  |  | 
|  | /* | 
|  | * No need to check return value here, rmap_can_add() can | 
|  | * help us to skip pte prefetch later. | 
|  | */ | 
|  | mmu_topup_memory_caches(vcpu); | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | for_each_shadow_entry(vcpu, gva, iterator) { | 
|  | level = iterator.level; | 
|  | sptep = iterator.sptep; | 
|  |  | 
|  | sp = page_header(__pa(sptep)); | 
|  | if (is_last_spte(*sptep, level)) { | 
|  | pt_element_t gpte; | 
|  | gpa_t pte_gpa; | 
|  |  | 
|  | if (!sp->unsync) | 
|  | break; | 
|  |  | 
|  | pte_gpa = FNAME(get_level1_sp_gpa)(sp); | 
|  | pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); | 
|  |  | 
|  | if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  |  | 
|  | if (!rmap_can_add(vcpu)) | 
|  | break; | 
|  |  | 
|  | if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte, | 
|  | sizeof(pt_element_t))) | 
|  | break; | 
|  |  | 
|  | FNAME(update_pte)(vcpu, sp, sptep, &gpte); | 
|  | } | 
|  |  | 
|  | if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) | 
|  | break; | 
|  | } | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, | 
|  | struct x86_exception *exception) | 
|  | { | 
|  | struct guest_walker walker; | 
|  | gpa_t gpa = UNMAPPED_GVA; | 
|  | int r; | 
|  |  | 
|  | r = FNAME(walk_addr)(&walker, vcpu, vaddr, access); | 
|  |  | 
|  | if (r) { | 
|  | gpa = gfn_to_gpa(walker.gfn); | 
|  | gpa |= vaddr & ~PAGE_MASK; | 
|  | } else if (exception) | 
|  | *exception = walker.fault; | 
|  |  | 
|  | return gpa; | 
|  | } | 
|  |  | 
|  | static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr, | 
|  | u32 access, | 
|  | struct x86_exception *exception) | 
|  | { | 
|  | struct guest_walker walker; | 
|  | gpa_t gpa = UNMAPPED_GVA; | 
|  | int r; | 
|  |  | 
|  | r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); | 
|  |  | 
|  | if (r) { | 
|  | gpa = gfn_to_gpa(walker.gfn); | 
|  | gpa |= vaddr & ~PAGE_MASK; | 
|  | } else if (exception) | 
|  | *exception = walker.fault; | 
|  |  | 
|  | return gpa; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Using the cached information from sp->gfns is safe because: | 
|  | * - The spte has a reference to the struct page, so the pfn for a given gfn | 
|  | *   can't change unless all sptes pointing to it are nuked first. | 
|  | * | 
|  | * Note: | 
|  | *   We should flush all tlbs if spte is dropped even though guest is | 
|  | *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page | 
|  | *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't | 
|  | *   used by guest then tlbs are not flushed, so guest is allowed to access the | 
|  | *   freed pages. | 
|  | *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case. | 
|  | */ | 
|  | static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) | 
|  | { | 
|  | int i, nr_present = 0; | 
|  | bool host_writable; | 
|  | gpa_t first_pte_gpa; | 
|  |  | 
|  | /* direct kvm_mmu_page can not be unsync. */ | 
|  | BUG_ON(sp->role.direct); | 
|  |  | 
|  | first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; i++) { | 
|  | unsigned pte_access; | 
|  | pt_element_t gpte; | 
|  | gpa_t pte_gpa; | 
|  | gfn_t gfn; | 
|  |  | 
|  | if (!sp->spt[i]) | 
|  | continue; | 
|  |  | 
|  | pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); | 
|  |  | 
|  | if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte, | 
|  | sizeof(pt_element_t))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (prefetch_invalid_gpte(vcpu, sp, &sp->spt[i], gpte)) { | 
|  | vcpu->kvm->tlbs_dirty++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | gfn = gpte_to_gfn(gpte); | 
|  | pte_access = sp->role.access; | 
|  | pte_access &= gpte_access(vcpu, gpte); | 
|  | protect_clean_gpte(&pte_access, gpte); | 
|  |  | 
|  | if (sync_mmio_spte(vcpu->kvm, &sp->spt[i], gfn, pte_access, | 
|  | &nr_present)) | 
|  | continue; | 
|  |  | 
|  | if (gfn != sp->gfns[i]) { | 
|  | drop_spte(vcpu->kvm, &sp->spt[i]); | 
|  | vcpu->kvm->tlbs_dirty++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nr_present++; | 
|  |  | 
|  | host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE; | 
|  |  | 
|  | set_spte(vcpu, &sp->spt[i], pte_access, | 
|  | PT_PAGE_TABLE_LEVEL, gfn, | 
|  | spte_to_pfn(sp->spt[i]), true, false, | 
|  | host_writable); | 
|  | } | 
|  |  | 
|  | return !nr_present; | 
|  | } | 
|  |  | 
|  | #undef pt_element_t | 
|  | #undef guest_walker | 
|  | #undef FNAME | 
|  | #undef PT_BASE_ADDR_MASK | 
|  | #undef PT_INDEX | 
|  | #undef PT_LVL_ADDR_MASK | 
|  | #undef PT_LVL_OFFSET_MASK | 
|  | #undef PT_LEVEL_BITS | 
|  | #undef PT_MAX_FULL_LEVELS | 
|  | #undef gpte_to_gfn | 
|  | #undef gpte_to_gfn_lvl | 
|  | #undef CMPXCHG |