blob: e772752f056d3330a805d6da25294be9ef11093f [file] [log] [blame]
/*
* PCI handling of I2O controller
*
* Copyright (C) 1999-2002 Red Hat Software
*
* Written by Alan Cox, Building Number Three Ltd
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* A lot of the I2O message side code from this is taken from the Red
* Creek RCPCI45 adapter driver by Red Creek Communications
*
* Fixes/additions:
* Philipp Rumpf
* Juha Sievänen <Juha.Sievanen@cs.Helsinki.FI>
* Auvo Häkkinen <Auvo.Hakkinen@cs.Helsinki.FI>
* Deepak Saxena <deepak@plexity.net>
* Boji T Kannanthanam <boji.t.kannanthanam@intel.com>
* Alan Cox <alan@redhat.com>:
* Ported to Linux 2.5.
* Markus Lidel <Markus.Lidel@shadowconnect.com>:
* Minor fixes for 2.6.
* Markus Lidel <Markus.Lidel@shadowconnect.com>:
* Support for sysfs included.
*/
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/i2o.h>
#ifdef CONFIG_MTRR
#include <asm/mtrr.h>
#endif // CONFIG_MTRR
/* Module internal functions from other sources */
extern struct i2o_controller *i2o_iop_alloc(void);
extern void i2o_iop_free(struct i2o_controller *);
extern int i2o_iop_add(struct i2o_controller *);
extern void i2o_iop_remove(struct i2o_controller *);
extern int i2o_driver_dispatch(struct i2o_controller *, u32,
struct i2o_message *);
/* PCI device id table for all I2O controllers */
static struct pci_device_id __devinitdata i2o_pci_ids[] = {
{PCI_DEVICE_CLASS(PCI_CLASS_INTELLIGENT_I2O << 8, 0xffff00)},
{PCI_DEVICE(PCI_VENDOR_ID_DPT, 0xa511)},
{0}
};
/**
* i2o_dma_realloc - Realloc DMA memory
* @dev: struct device pointer to the PCI device of the I2O controller
* @addr: pointer to a i2o_dma struct DMA buffer
* @len: new length of memory
* @gfp_mask: GFP mask
*
* If there was something allocated in the addr, free it first. If len > 0
* than try to allocate it and write the addresses back to the addr
* structure. If len == 0 set the virtual address to NULL.
*
* Returns the 0 on success or negative error code on failure.
*/
int i2o_dma_realloc(struct device *dev, struct i2o_dma *addr, size_t len,
unsigned int gfp_mask)
{
i2o_dma_free(dev, addr);
if (len)
return i2o_dma_alloc(dev, addr, len, gfp_mask);
return 0;
};
/**
* i2o_pci_free - Frees the DMA memory for the I2O controller
* @c: I2O controller to free
*
* Remove all allocated DMA memory and unmap memory IO regions. If MTRR
* is enabled, also remove it again.
*/
static void i2o_pci_free(struct i2o_controller *c)
{
struct device *dev;
dev = &c->pdev->dev;
i2o_dma_free(dev, &c->out_queue);
i2o_dma_free(dev, &c->status_block);
if (c->lct)
kfree(c->lct);
i2o_dma_free(dev, &c->dlct);
i2o_dma_free(dev, &c->hrt);
i2o_dma_free(dev, &c->status);
#ifdef CONFIG_MTRR
if (c->mtrr_reg0 >= 0)
mtrr_del(c->mtrr_reg0, 0, 0);
if (c->mtrr_reg1 >= 0)
mtrr_del(c->mtrr_reg1, 0, 0);
#endif
if (c->raptor && c->in_queue.virt)
iounmap(c->in_queue.virt);
if (c->base.virt)
iounmap(c->base.virt);
}
/**
* i2o_pci_alloc - Allocate DMA memory, map IO memory for I2O controller
* @c: I2O controller
*
* Allocate DMA memory for a PCI (or in theory AGP) I2O controller. All
* IO mappings are also done here. If MTRR is enabled, also do add memory
* regions here.
*
* Returns 0 on success or negative error code on failure.
*/
static int __devinit i2o_pci_alloc(struct i2o_controller *c)
{
struct pci_dev *pdev = c->pdev;
struct device *dev = &pdev->dev;
int i;
for (i = 0; i < 6; i++) {
/* Skip I/O spaces */
if (!(pci_resource_flags(pdev, i) & IORESOURCE_IO)) {
if (!c->base.phys) {
c->base.phys = pci_resource_start(pdev, i);
c->base.len = pci_resource_len(pdev, i);
/*
* If we know what card it is, set the size
* correctly. Code is taken from dpt_i2o.c
*/
if (pdev->device == 0xa501) {
if (pdev->subsystem_device >= 0xc032 &&
pdev->subsystem_device <= 0xc03b) {
if (c->base.len > 0x400000)
c->base.len = 0x400000;
} else {
if (c->base.len > 0x100000)
c->base.len = 0x100000;
}
}
if (!c->raptor)
break;
} else {
c->in_queue.phys = pci_resource_start(pdev, i);
c->in_queue.len = pci_resource_len(pdev, i);
break;
}
}
}
if (i == 6) {
printk(KERN_ERR "%s: I2O controller has no memory regions"
" defined.\n", c->name);
i2o_pci_free(c);
return -EINVAL;
}
/* Map the I2O controller */
if (c->raptor) {
printk(KERN_INFO "%s: PCI I2O controller\n", c->name);
printk(KERN_INFO " BAR0 at 0x%08lX size=%ld\n",
(unsigned long)c->base.phys, (unsigned long)c->base.len);
printk(KERN_INFO " BAR1 at 0x%08lX size=%ld\n",
(unsigned long)c->in_queue.phys,
(unsigned long)c->in_queue.len);
} else
printk(KERN_INFO "%s: PCI I2O controller at %08lX size=%ld\n",
c->name, (unsigned long)c->base.phys,
(unsigned long)c->base.len);
c->base.virt = ioremap(c->base.phys, c->base.len);
if (!c->base.virt) {
printk(KERN_ERR "%s: Unable to map controller.\n", c->name);
return -ENOMEM;
}
if (c->raptor) {
c->in_queue.virt = ioremap(c->in_queue.phys, c->in_queue.len);
if (!c->in_queue.virt) {
printk(KERN_ERR "%s: Unable to map controller.\n",
c->name);
i2o_pci_free(c);
return -ENOMEM;
}
} else
c->in_queue = c->base;
c->irq_mask = c->base.virt + 0x34;
c->post_port = c->base.virt + 0x40;
c->reply_port = c->base.virt + 0x44;
#ifdef CONFIG_MTRR
/* Enable Write Combining MTRR for IOP's memory region */
c->mtrr_reg0 = mtrr_add(c->in_queue.phys, c->in_queue.len,
MTRR_TYPE_WRCOMB, 1);
c->mtrr_reg1 = -1;
if (c->mtrr_reg0 < 0)
printk(KERN_WARNING "%s: could not enable write combining "
"MTRR\n", c->name);
else
printk(KERN_INFO "%s: using write combining MTRR\n", c->name);
/*
* If it is an INTEL i960 I/O processor then set the first 64K to
* Uncacheable since the region contains the messaging unit which
* shouldn't be cached.
*/
if ((pdev->vendor == PCI_VENDOR_ID_INTEL ||
pdev->vendor == PCI_VENDOR_ID_DPT) && !c->raptor) {
printk(KERN_INFO "%s: MTRR workaround for Intel i960 processor"
"\n", c->name);
c->mtrr_reg1 = mtrr_add(c->base.phys, 0x10000,
MTRR_TYPE_UNCACHABLE, 1);
if (c->mtrr_reg1 < 0) {
printk(KERN_WARNING "%s: Error in setting "
"MTRR_TYPE_UNCACHABLE\n", c->name);
mtrr_del(c->mtrr_reg0, c->in_queue.phys,
c->in_queue.len);
c->mtrr_reg0 = -1;
}
}
#endif
if (i2o_dma_alloc(dev, &c->status, 8, GFP_KERNEL)) {
i2o_pci_free(c);
return -ENOMEM;
}
if (i2o_dma_alloc(dev, &c->hrt, sizeof(i2o_hrt), GFP_KERNEL)) {
i2o_pci_free(c);
return -ENOMEM;
}
if (i2o_dma_alloc(dev, &c->dlct, 8192, GFP_KERNEL)) {
i2o_pci_free(c);
return -ENOMEM;
}
if (i2o_dma_alloc(dev, &c->status_block, sizeof(i2o_status_block),
GFP_KERNEL)) {
i2o_pci_free(c);
return -ENOMEM;
}
if (i2o_dma_alloc(dev, &c->out_queue, MSG_POOL_SIZE, GFP_KERNEL)) {
i2o_pci_free(c);
return -ENOMEM;
}
pci_set_drvdata(pdev, c);
return 0;
}
/**
* i2o_pci_interrupt - Interrupt handler for I2O controller
* @irq: interrupt line
* @dev_id: pointer to the I2O controller
* @r: pointer to registers
*
* Handle an interrupt from a PCI based I2O controller. This turns out
* to be rather simple. We keep the controller pointer in the cookie.
*/
static irqreturn_t i2o_pci_interrupt(int irq, void *dev_id, struct pt_regs *r)
{
struct i2o_controller *c = dev_id;
struct device *dev = &c->pdev->dev;
struct i2o_message *m;
u32 mv;
/*
* Old 960 steppings had a bug in the I2O unit that caused
* the queue to appear empty when it wasn't.
*/
mv = I2O_REPLY_READ32(c);
if (mv == I2O_QUEUE_EMPTY) {
mv = I2O_REPLY_READ32(c);
if (unlikely(mv == I2O_QUEUE_EMPTY)) {
return IRQ_NONE;
} else
pr_debug("%s: 960 bug detected\n", c->name);
}
while (mv != I2O_QUEUE_EMPTY) {
/*
* Map the message from the page frame map to kernel virtual.
* Because bus_to_virt is deprecated, we have calculate the
* location by ourself!
*/
m = i2o_msg_out_to_virt(c, mv);
/*
* Ensure this message is seen coherently but cachably by
* the processor
*/
dma_sync_single_for_cpu(dev, mv, MSG_FRAME_SIZE * 4,
PCI_DMA_FROMDEVICE);
/* dispatch it */
if (i2o_driver_dispatch(c, mv, m))
/* flush it if result != 0 */
i2o_flush_reply(c, mv);
/*
* That 960 bug again...
*/
mv = I2O_REPLY_READ32(c);
if (mv == I2O_QUEUE_EMPTY)
mv = I2O_REPLY_READ32(c);
}
return IRQ_HANDLED;
}
/**
* i2o_pci_irq_enable - Allocate interrupt for I2O controller
*
* Allocate an interrupt for the I2O controller, and activate interrupts
* on the I2O controller.
*
* Returns 0 on success or negative error code on failure.
*/
static int i2o_pci_irq_enable(struct i2o_controller *c)
{
struct pci_dev *pdev = c->pdev;
int rc;
I2O_IRQ_WRITE32(c, 0xffffffff);
if (pdev->irq) {
rc = request_irq(pdev->irq, i2o_pci_interrupt, SA_SHIRQ,
c->name, c);
if (rc < 0) {
printk(KERN_ERR "%s: unable to allocate interrupt %d."
"\n", c->name, pdev->irq);
return rc;
}
}
I2O_IRQ_WRITE32(c, 0x00000000);
printk(KERN_INFO "%s: Installed at IRQ %d\n", c->name, pdev->irq);
return 0;
}
/**
* i2o_pci_irq_disable - Free interrupt for I2O controller
* @c: I2O controller
*
* Disable interrupts in I2O controller and then free interrupt.
*/
static void i2o_pci_irq_disable(struct i2o_controller *c)
{
I2O_IRQ_WRITE32(c, 0xffffffff);
if (c->pdev->irq > 0)
free_irq(c->pdev->irq, c);
}
/**
* i2o_pci_probe - Probe the PCI device for an I2O controller
* @dev: PCI device to test
* @id: id which matched with the PCI device id table
*
* Probe the PCI device for any device which is a memory of the
* Intelligent, I2O class or an Adaptec Zero Channel Controller. We
* attempt to set up each such device and register it with the core.
*
* Returns 0 on success or negative error code on failure.
*/
static int __devinit i2o_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct i2o_controller *c;
int rc;
printk(KERN_INFO "i2o: Checking for PCI I2O controllers...\n");
if ((pdev->class & 0xff) > 1) {
printk(KERN_WARNING "i2o: I2O controller found but does not "
"support I2O 1.5 (skipping).\n");
return -ENODEV;
}
if ((rc = pci_enable_device(pdev))) {
printk(KERN_WARNING "i2o: I2O controller found but could not be"
" enabled.\n");
return rc;
}
printk(KERN_INFO "i2o: I2O controller found on bus %d at %d.\n",
pdev->bus->number, pdev->devfn);
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
printk(KERN_WARNING "i2o: I2O controller on bus %d at %d: No "
"suitable DMA available!\n", pdev->bus->number,
pdev->devfn);
rc = -ENODEV;
goto disable;
}
pci_set_master(pdev);
c = i2o_iop_alloc();
if (IS_ERR(c)) {
printk(KERN_ERR "i2o: memory for I2O controller could not be "
"allocated\n");
rc = PTR_ERR(c);
goto disable;
}
c->pdev = pdev;
c->device = pdev->dev;
/* Cards that fall apart if you hit them with large I/O loads... */
if (pdev->vendor == PCI_VENDOR_ID_NCR && pdev->device == 0x0630) {
c->short_req = 1;
printk(KERN_INFO "%s: Symbios FC920 workarounds activated.\n",
c->name);
}
if (pdev->subsystem_vendor == PCI_VENDOR_ID_PROMISE) {
c->promise = 1;
printk(KERN_INFO "%s: Promise workarounds activated.\n",
c->name);
}
/* Cards that go bananas if you quiesce them before you reset them. */
if (pdev->vendor == PCI_VENDOR_ID_DPT) {
c->no_quiesce = 1;
if (pdev->device == 0xa511)
c->raptor = 1;
}
if ((rc = i2o_pci_alloc(c))) {
printk(KERN_ERR "%s: DMA / IO allocation for I2O controller "
" failed\n", c->name);
goto free_controller;
}
if (i2o_pci_irq_enable(c)) {
printk(KERN_ERR "%s: unable to enable interrupts for I2O "
"controller\n", c->name);
goto free_pci;
}
if ((rc = i2o_iop_add(c)))
goto uninstall;
return 0;
uninstall:
i2o_pci_irq_disable(c);
free_pci:
i2o_pci_free(c);
free_controller:
i2o_iop_free(c);
disable:
pci_disable_device(pdev);
return rc;
}
/**
* i2o_pci_remove - Removes a I2O controller from the system
* pdev: I2O controller which should be removed
*
* Reset the I2O controller, disable interrupts and remove all allocated
* resources.
*/
static void __devexit i2o_pci_remove(struct pci_dev *pdev)
{
struct i2o_controller *c;
c = pci_get_drvdata(pdev);
i2o_iop_remove(c);
i2o_pci_irq_disable(c);
i2o_pci_free(c);
printk(KERN_INFO "%s: Controller removed.\n", c->name);
i2o_iop_free(c);
pci_disable_device(pdev);
};
/* PCI driver for I2O controller */
static struct pci_driver i2o_pci_driver = {
.name = "I2O controller",
.id_table = i2o_pci_ids,
.probe = i2o_pci_probe,
.remove = __devexit_p(i2o_pci_remove),
};
/**
* i2o_pci_init - registers I2O PCI driver in PCI subsystem
*
* Returns > 0 on success or negative error code on failure.
*/
int __init i2o_pci_init(void)
{
return pci_register_driver(&i2o_pci_driver);
};
/**
* i2o_pci_exit - unregisters I2O PCI driver from PCI subsystem
*/
void __exit i2o_pci_exit(void)
{
pci_unregister_driver(&i2o_pci_driver);
};
EXPORT_SYMBOL(i2o_dma_realloc);
MODULE_DEVICE_TABLE(pci, i2o_pci_ids);