|  | /* CPU control. | 
|  | * (C) 2001, 2002, 2003, 2004 Rusty Russell | 
|  | * | 
|  | * This code is licenced under the GPL. | 
|  | */ | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/sched/hotplug.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/stop_machine.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/lockdep.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/smpboot.h> | 
|  | #include <linux/relay.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <trace/events/power.h> | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/cpuhp.h> | 
|  |  | 
|  | #include "smpboot.h" | 
|  |  | 
|  | /** | 
|  | * cpuhp_cpu_state - Per cpu hotplug state storage | 
|  | * @state:	The current cpu state | 
|  | * @target:	The target state | 
|  | * @thread:	Pointer to the hotplug thread | 
|  | * @should_run:	Thread should execute | 
|  | * @rollback:	Perform a rollback | 
|  | * @single:	Single callback invocation | 
|  | * @bringup:	Single callback bringup or teardown selector | 
|  | * @cb_state:	The state for a single callback (install/uninstall) | 
|  | * @result:	Result of the operation | 
|  | * @done:	Signal completion to the issuer of the task | 
|  | */ | 
|  | struct cpuhp_cpu_state { | 
|  | enum cpuhp_state	state; | 
|  | enum cpuhp_state	target; | 
|  | #ifdef CONFIG_SMP | 
|  | struct task_struct	*thread; | 
|  | bool			should_run; | 
|  | bool			rollback; | 
|  | bool			single; | 
|  | bool			bringup; | 
|  | struct hlist_node	*node; | 
|  | enum cpuhp_state	cb_state; | 
|  | int			result; | 
|  | struct completion	done; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state); | 
|  |  | 
|  | /** | 
|  | * cpuhp_step - Hotplug state machine step | 
|  | * @name:	Name of the step | 
|  | * @startup:	Startup function of the step | 
|  | * @teardown:	Teardown function of the step | 
|  | * @skip_onerr:	Do not invoke the functions on error rollback | 
|  | *		Will go away once the notifiers	are gone | 
|  | * @cant_stop:	Bringup/teardown can't be stopped at this step | 
|  | */ | 
|  | struct cpuhp_step { | 
|  | const char		*name; | 
|  | union { | 
|  | int		(*single)(unsigned int cpu); | 
|  | int		(*multi)(unsigned int cpu, | 
|  | struct hlist_node *node); | 
|  | } startup; | 
|  | union { | 
|  | int		(*single)(unsigned int cpu); | 
|  | int		(*multi)(unsigned int cpu, | 
|  | struct hlist_node *node); | 
|  | } teardown; | 
|  | struct hlist_head	list; | 
|  | bool			skip_onerr; | 
|  | bool			cant_stop; | 
|  | bool			multi_instance; | 
|  | }; | 
|  |  | 
|  | static DEFINE_MUTEX(cpuhp_state_mutex); | 
|  | static struct cpuhp_step cpuhp_bp_states[]; | 
|  | static struct cpuhp_step cpuhp_ap_states[]; | 
|  |  | 
|  | static bool cpuhp_is_ap_state(enum cpuhp_state state) | 
|  | { | 
|  | /* | 
|  | * The extra check for CPUHP_TEARDOWN_CPU is only for documentation | 
|  | * purposes as that state is handled explicitly in cpu_down. | 
|  | */ | 
|  | return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; | 
|  | } | 
|  |  | 
|  | static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) | 
|  | { | 
|  | struct cpuhp_step *sp; | 
|  |  | 
|  | sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states; | 
|  | return sp + state; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuhp_invoke_callback _ Invoke the callbacks for a given state | 
|  | * @cpu:	The cpu for which the callback should be invoked | 
|  | * @step:	The step in the state machine | 
|  | * @bringup:	True if the bringup callback should be invoked | 
|  | * | 
|  | * Called from cpu hotplug and from the state register machinery. | 
|  | */ | 
|  | static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, | 
|  | bool bringup, struct hlist_node *node) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  | struct cpuhp_step *step = cpuhp_get_step(state); | 
|  | int (*cbm)(unsigned int cpu, struct hlist_node *node); | 
|  | int (*cb)(unsigned int cpu); | 
|  | int ret, cnt; | 
|  |  | 
|  | if (!step->multi_instance) { | 
|  | cb = bringup ? step->startup.single : step->teardown.single; | 
|  | if (!cb) | 
|  | return 0; | 
|  | trace_cpuhp_enter(cpu, st->target, state, cb); | 
|  | ret = cb(cpu); | 
|  | trace_cpuhp_exit(cpu, st->state, state, ret); | 
|  | return ret; | 
|  | } | 
|  | cbm = bringup ? step->startup.multi : step->teardown.multi; | 
|  | if (!cbm) | 
|  | return 0; | 
|  |  | 
|  | /* Single invocation for instance add/remove */ | 
|  | if (node) { | 
|  | trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); | 
|  | ret = cbm(cpu, node); | 
|  | trace_cpuhp_exit(cpu, st->state, state, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* State transition. Invoke on all instances */ | 
|  | cnt = 0; | 
|  | hlist_for_each(node, &step->list) { | 
|  | trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); | 
|  | ret = cbm(cpu, node); | 
|  | trace_cpuhp_exit(cpu, st->state, state, ret); | 
|  | if (ret) | 
|  | goto err; | 
|  | cnt++; | 
|  | } | 
|  | return 0; | 
|  | err: | 
|  | /* Rollback the instances if one failed */ | 
|  | cbm = !bringup ? step->startup.multi : step->teardown.multi; | 
|  | if (!cbm) | 
|  | return ret; | 
|  |  | 
|  | hlist_for_each(node, &step->list) { | 
|  | if (!cnt--) | 
|  | break; | 
|  | cbm(cpu, node); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* Serializes the updates to cpu_online_mask, cpu_present_mask */ | 
|  | static DEFINE_MUTEX(cpu_add_remove_lock); | 
|  | bool cpuhp_tasks_frozen; | 
|  | EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); | 
|  |  | 
|  | /* | 
|  | * The following two APIs (cpu_maps_update_begin/done) must be used when | 
|  | * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. | 
|  | */ | 
|  | void cpu_maps_update_begin(void) | 
|  | { | 
|  | mutex_lock(&cpu_add_remove_lock); | 
|  | } | 
|  |  | 
|  | void cpu_maps_update_done(void) | 
|  | { | 
|  | mutex_unlock(&cpu_add_remove_lock); | 
|  | } | 
|  |  | 
|  | /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. | 
|  | * Should always be manipulated under cpu_add_remove_lock | 
|  | */ | 
|  | static int cpu_hotplug_disabled; | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | static struct { | 
|  | struct task_struct *active_writer; | 
|  | /* wait queue to wake up the active_writer */ | 
|  | wait_queue_head_t wq; | 
|  | /* verifies that no writer will get active while readers are active */ | 
|  | struct mutex lock; | 
|  | /* | 
|  | * Also blocks the new readers during | 
|  | * an ongoing cpu hotplug operation. | 
|  | */ | 
|  | atomic_t refcount; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  | struct lockdep_map dep_map; | 
|  | #endif | 
|  | } cpu_hotplug = { | 
|  | .active_writer = NULL, | 
|  | .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq), | 
|  | .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock), | 
|  | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  | .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map), | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */ | 
|  | #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map) | 
|  | #define cpuhp_lock_acquire_tryread() \ | 
|  | lock_map_acquire_tryread(&cpu_hotplug.dep_map) | 
|  | #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map) | 
|  | #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map) | 
|  |  | 
|  |  | 
|  | void get_online_cpus(void) | 
|  | { | 
|  | might_sleep(); | 
|  | if (cpu_hotplug.active_writer == current) | 
|  | return; | 
|  | cpuhp_lock_acquire_read(); | 
|  | mutex_lock(&cpu_hotplug.lock); | 
|  | atomic_inc(&cpu_hotplug.refcount); | 
|  | mutex_unlock(&cpu_hotplug.lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_online_cpus); | 
|  |  | 
|  | void put_online_cpus(void) | 
|  | { | 
|  | int refcount; | 
|  |  | 
|  | if (cpu_hotplug.active_writer == current) | 
|  | return; | 
|  |  | 
|  | refcount = atomic_dec_return(&cpu_hotplug.refcount); | 
|  | if (WARN_ON(refcount < 0)) /* try to fix things up */ | 
|  | atomic_inc(&cpu_hotplug.refcount); | 
|  |  | 
|  | if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq)) | 
|  | wake_up(&cpu_hotplug.wq); | 
|  |  | 
|  | cpuhp_lock_release(); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(put_online_cpus); | 
|  |  | 
|  | /* | 
|  | * This ensures that the hotplug operation can begin only when the | 
|  | * refcount goes to zero. | 
|  | * | 
|  | * Note that during a cpu-hotplug operation, the new readers, if any, | 
|  | * will be blocked by the cpu_hotplug.lock | 
|  | * | 
|  | * Since cpu_hotplug_begin() is always called after invoking | 
|  | * cpu_maps_update_begin(), we can be sure that only one writer is active. | 
|  | * | 
|  | * Note that theoretically, there is a possibility of a livelock: | 
|  | * - Refcount goes to zero, last reader wakes up the sleeping | 
|  | *   writer. | 
|  | * - Last reader unlocks the cpu_hotplug.lock. | 
|  | * - A new reader arrives at this moment, bumps up the refcount. | 
|  | * - The writer acquires the cpu_hotplug.lock finds the refcount | 
|  | *   non zero and goes to sleep again. | 
|  | * | 
|  | * However, this is very difficult to achieve in practice since | 
|  | * get_online_cpus() not an api which is called all that often. | 
|  | * | 
|  | */ | 
|  | void cpu_hotplug_begin(void) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | cpu_hotplug.active_writer = current; | 
|  | cpuhp_lock_acquire(); | 
|  |  | 
|  | for (;;) { | 
|  | mutex_lock(&cpu_hotplug.lock); | 
|  | prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE); | 
|  | if (likely(!atomic_read(&cpu_hotplug.refcount))) | 
|  | break; | 
|  | mutex_unlock(&cpu_hotplug.lock); | 
|  | schedule(); | 
|  | } | 
|  | finish_wait(&cpu_hotplug.wq, &wait); | 
|  | } | 
|  |  | 
|  | void cpu_hotplug_done(void) | 
|  | { | 
|  | cpu_hotplug.active_writer = NULL; | 
|  | mutex_unlock(&cpu_hotplug.lock); | 
|  | cpuhp_lock_release(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for currently running CPU hotplug operations to complete (if any) and | 
|  | * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects | 
|  | * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the | 
|  | * hotplug path before performing hotplug operations. So acquiring that lock | 
|  | * guarantees mutual exclusion from any currently running hotplug operations. | 
|  | */ | 
|  | void cpu_hotplug_disable(void) | 
|  | { | 
|  | cpu_maps_update_begin(); | 
|  | cpu_hotplug_disabled++; | 
|  | cpu_maps_update_done(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cpu_hotplug_disable); | 
|  |  | 
|  | static void __cpu_hotplug_enable(void) | 
|  | { | 
|  | if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) | 
|  | return; | 
|  | cpu_hotplug_disabled--; | 
|  | } | 
|  |  | 
|  | void cpu_hotplug_enable(void) | 
|  | { | 
|  | cpu_maps_update_begin(); | 
|  | __cpu_hotplug_enable(); | 
|  | cpu_maps_update_done(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cpu_hotplug_enable); | 
|  | #endif	/* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* Notifier wrappers for transitioning to state machine */ | 
|  |  | 
|  | static int bringup_wait_for_ap(unsigned int cpu) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  |  | 
|  | wait_for_completion(&st->done); | 
|  | return st->result; | 
|  | } | 
|  |  | 
|  | static int bringup_cpu(unsigned int cpu) | 
|  | { | 
|  | struct task_struct *idle = idle_thread_get(cpu); | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Some architectures have to walk the irq descriptors to | 
|  | * setup the vector space for the cpu which comes online. | 
|  | * Prevent irq alloc/free across the bringup. | 
|  | */ | 
|  | irq_lock_sparse(); | 
|  |  | 
|  | /* Arch-specific enabling code. */ | 
|  | ret = __cpu_up(cpu, idle); | 
|  | irq_unlock_sparse(); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = bringup_wait_for_ap(cpu); | 
|  | BUG_ON(!cpu_online(cpu)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hotplug state machine related functions | 
|  | */ | 
|  | static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) | 
|  | { | 
|  | for (st->state++; st->state < st->target; st->state++) { | 
|  | struct cpuhp_step *step = cpuhp_get_step(st->state); | 
|  |  | 
|  | if (!step->skip_onerr) | 
|  | cpuhp_invoke_callback(cpu, st->state, true, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, | 
|  | enum cpuhp_state target) | 
|  | { | 
|  | enum cpuhp_state prev_state = st->state; | 
|  | int ret = 0; | 
|  |  | 
|  | for (; st->state > target; st->state--) { | 
|  | ret = cpuhp_invoke_callback(cpu, st->state, false, NULL); | 
|  | if (ret) { | 
|  | st->target = prev_state; | 
|  | undo_cpu_down(cpu, st); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) | 
|  | { | 
|  | for (st->state--; st->state > st->target; st->state--) { | 
|  | struct cpuhp_step *step = cpuhp_get_step(st->state); | 
|  |  | 
|  | if (!step->skip_onerr) | 
|  | cpuhp_invoke_callback(cpu, st->state, false, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, | 
|  | enum cpuhp_state target) | 
|  | { | 
|  | enum cpuhp_state prev_state = st->state; | 
|  | int ret = 0; | 
|  |  | 
|  | while (st->state < target) { | 
|  | st->state++; | 
|  | ret = cpuhp_invoke_callback(cpu, st->state, true, NULL); | 
|  | if (ret) { | 
|  | st->target = prev_state; | 
|  | undo_cpu_up(cpu, st); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The cpu hotplug threads manage the bringup and teardown of the cpus | 
|  | */ | 
|  | static void cpuhp_create(unsigned int cpu) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  |  | 
|  | init_completion(&st->done); | 
|  | } | 
|  |  | 
|  | static int cpuhp_should_run(unsigned int cpu) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | 
|  |  | 
|  | return st->should_run; | 
|  | } | 
|  |  | 
|  | /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */ | 
|  | static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st) | 
|  | { | 
|  | enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU); | 
|  |  | 
|  | return cpuhp_down_callbacks(cpu, st, target); | 
|  | } | 
|  |  | 
|  | /* Execute the online startup callbacks. Used to be CPU_ONLINE */ | 
|  | static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st) | 
|  | { | 
|  | return cpuhp_up_callbacks(cpu, st, st->target); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke | 
|  | * callbacks when a state gets [un]installed at runtime. | 
|  | */ | 
|  | static void cpuhp_thread_fun(unsigned int cpu) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Paired with the mb() in cpuhp_kick_ap_work and | 
|  | * cpuhp_invoke_ap_callback, so the work set is consistent visible. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (!st->should_run) | 
|  | return; | 
|  |  | 
|  | st->should_run = false; | 
|  |  | 
|  | /* Single callback invocation for [un]install ? */ | 
|  | if (st->single) { | 
|  | if (st->cb_state < CPUHP_AP_ONLINE) { | 
|  | local_irq_disable(); | 
|  | ret = cpuhp_invoke_callback(cpu, st->cb_state, | 
|  | st->bringup, st->node); | 
|  | local_irq_enable(); | 
|  | } else { | 
|  | ret = cpuhp_invoke_callback(cpu, st->cb_state, | 
|  | st->bringup, st->node); | 
|  | } | 
|  | } else if (st->rollback) { | 
|  | BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE); | 
|  |  | 
|  | undo_cpu_down(cpu, st); | 
|  | st->rollback = false; | 
|  | } else { | 
|  | /* Cannot happen .... */ | 
|  | BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE); | 
|  |  | 
|  | /* Regular hotplug work */ | 
|  | if (st->state < st->target) | 
|  | ret = cpuhp_ap_online(cpu, st); | 
|  | else if (st->state > st->target) | 
|  | ret = cpuhp_ap_offline(cpu, st); | 
|  | } | 
|  | st->result = ret; | 
|  | complete(&st->done); | 
|  | } | 
|  |  | 
|  | /* Invoke a single callback on a remote cpu */ | 
|  | static int | 
|  | cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, | 
|  | struct hlist_node *node) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  |  | 
|  | if (!cpu_online(cpu)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we are up and running, use the hotplug thread. For early calls | 
|  | * we invoke the thread function directly. | 
|  | */ | 
|  | if (!st->thread) | 
|  | return cpuhp_invoke_callback(cpu, state, bringup, node); | 
|  |  | 
|  | st->cb_state = state; | 
|  | st->single = true; | 
|  | st->bringup = bringup; | 
|  | st->node = node; | 
|  |  | 
|  | /* | 
|  | * Make sure the above stores are visible before should_run becomes | 
|  | * true. Paired with the mb() above in cpuhp_thread_fun() | 
|  | */ | 
|  | smp_mb(); | 
|  | st->should_run = true; | 
|  | wake_up_process(st->thread); | 
|  | wait_for_completion(&st->done); | 
|  | return st->result; | 
|  | } | 
|  |  | 
|  | /* Regular hotplug invocation of the AP hotplug thread */ | 
|  | static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st) | 
|  | { | 
|  | st->result = 0; | 
|  | st->single = false; | 
|  | /* | 
|  | * Make sure the above stores are visible before should_run becomes | 
|  | * true. Paired with the mb() above in cpuhp_thread_fun() | 
|  | */ | 
|  | smp_mb(); | 
|  | st->should_run = true; | 
|  | wake_up_process(st->thread); | 
|  | } | 
|  |  | 
|  | static int cpuhp_kick_ap_work(unsigned int cpu) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  | enum cpuhp_state state = st->state; | 
|  |  | 
|  | trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work); | 
|  | __cpuhp_kick_ap_work(st); | 
|  | wait_for_completion(&st->done); | 
|  | trace_cpuhp_exit(cpu, st->state, state, st->result); | 
|  | return st->result; | 
|  | } | 
|  |  | 
|  | static struct smp_hotplug_thread cpuhp_threads = { | 
|  | .store			= &cpuhp_state.thread, | 
|  | .create			= &cpuhp_create, | 
|  | .thread_should_run	= cpuhp_should_run, | 
|  | .thread_fn		= cpuhp_thread_fun, | 
|  | .thread_comm		= "cpuhp/%u", | 
|  | .selfparking		= true, | 
|  | }; | 
|  |  | 
|  | void __init cpuhp_threads_init(void) | 
|  | { | 
|  | BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); | 
|  | kthread_unpark(this_cpu_read(cpuhp_state.thread)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /** | 
|  | * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU | 
|  | * @cpu: a CPU id | 
|  | * | 
|  | * This function walks all processes, finds a valid mm struct for each one and | 
|  | * then clears a corresponding bit in mm's cpumask.  While this all sounds | 
|  | * trivial, there are various non-obvious corner cases, which this function | 
|  | * tries to solve in a safe manner. | 
|  | * | 
|  | * Also note that the function uses a somewhat relaxed locking scheme, so it may | 
|  | * be called only for an already offlined CPU. | 
|  | */ | 
|  | void clear_tasks_mm_cpumask(int cpu) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | /* | 
|  | * This function is called after the cpu is taken down and marked | 
|  | * offline, so its not like new tasks will ever get this cpu set in | 
|  | * their mm mask. -- Peter Zijlstra | 
|  | * Thus, we may use rcu_read_lock() here, instead of grabbing | 
|  | * full-fledged tasklist_lock. | 
|  | */ | 
|  | WARN_ON(cpu_online(cpu)); | 
|  | rcu_read_lock(); | 
|  | for_each_process(p) { | 
|  | struct task_struct *t; | 
|  |  | 
|  | /* | 
|  | * Main thread might exit, but other threads may still have | 
|  | * a valid mm. Find one. | 
|  | */ | 
|  | t = find_lock_task_mm(p); | 
|  | if (!t) | 
|  | continue; | 
|  | cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); | 
|  | task_unlock(t); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static inline void check_for_tasks(int dead_cpu) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | for_each_process_thread(g, p) { | 
|  | if (!p->on_rq) | 
|  | continue; | 
|  | /* | 
|  | * We do the check with unlocked task_rq(p)->lock. | 
|  | * Order the reading to do not warn about a task, | 
|  | * which was running on this cpu in the past, and | 
|  | * it's just been woken on another cpu. | 
|  | */ | 
|  | rmb(); | 
|  | if (task_cpu(p) != dead_cpu) | 
|  | continue; | 
|  |  | 
|  | pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n", | 
|  | p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags); | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* Take this CPU down. */ | 
|  | static int take_cpu_down(void *_param) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | 
|  | enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); | 
|  | int err, cpu = smp_processor_id(); | 
|  |  | 
|  | /* Ensure this CPU doesn't handle any more interrupts. */ | 
|  | err = __cpu_disable(); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not | 
|  | * do this step again. | 
|  | */ | 
|  | WARN_ON(st->state != CPUHP_TEARDOWN_CPU); | 
|  | st->state--; | 
|  | /* Invoke the former CPU_DYING callbacks */ | 
|  | for (; st->state > target; st->state--) | 
|  | cpuhp_invoke_callback(cpu, st->state, false, NULL); | 
|  |  | 
|  | /* Give up timekeeping duties */ | 
|  | tick_handover_do_timer(); | 
|  | /* Park the stopper thread */ | 
|  | stop_machine_park(cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int takedown_cpu(unsigned int cpu) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  | int err; | 
|  |  | 
|  | /* Park the smpboot threads */ | 
|  | kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); | 
|  | smpboot_park_threads(cpu); | 
|  |  | 
|  | /* | 
|  | * Prevent irq alloc/free while the dying cpu reorganizes the | 
|  | * interrupt affinities. | 
|  | */ | 
|  | irq_lock_sparse(); | 
|  |  | 
|  | /* | 
|  | * So now all preempt/rcu users must observe !cpu_active(). | 
|  | */ | 
|  | err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu)); | 
|  | if (err) { | 
|  | /* CPU refused to die */ | 
|  | irq_unlock_sparse(); | 
|  | /* Unpark the hotplug thread so we can rollback there */ | 
|  | kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); | 
|  | return err; | 
|  | } | 
|  | BUG_ON(cpu_online(cpu)); | 
|  |  | 
|  | /* | 
|  | * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all | 
|  | * runnable tasks from the cpu, there's only the idle task left now | 
|  | * that the migration thread is done doing the stop_machine thing. | 
|  | * | 
|  | * Wait for the stop thread to go away. | 
|  | */ | 
|  | wait_for_completion(&st->done); | 
|  | BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); | 
|  |  | 
|  | /* Interrupts are moved away from the dying cpu, reenable alloc/free */ | 
|  | irq_unlock_sparse(); | 
|  |  | 
|  | hotplug_cpu__broadcast_tick_pull(cpu); | 
|  | /* This actually kills the CPU. */ | 
|  | __cpu_die(cpu); | 
|  |  | 
|  | tick_cleanup_dead_cpu(cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cpuhp_complete_idle_dead(void *arg) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = arg; | 
|  |  | 
|  | complete(&st->done); | 
|  | } | 
|  |  | 
|  | void cpuhp_report_idle_dead(void) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | 
|  |  | 
|  | BUG_ON(st->state != CPUHP_AP_OFFLINE); | 
|  | rcu_report_dead(smp_processor_id()); | 
|  | st->state = CPUHP_AP_IDLE_DEAD; | 
|  | /* | 
|  | * We cannot call complete after rcu_report_dead() so we delegate it | 
|  | * to an online cpu. | 
|  | */ | 
|  | smp_call_function_single(cpumask_first(cpu_online_mask), | 
|  | cpuhp_complete_idle_dead, st, 0); | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define takedown_cpu		NULL | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | /* Requires cpu_add_remove_lock to be held */ | 
|  | static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, | 
|  | enum cpuhp_state target) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  | int prev_state, ret = 0; | 
|  |  | 
|  | if (num_online_cpus() == 1) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (!cpu_present(cpu)) | 
|  | return -EINVAL; | 
|  |  | 
|  | cpu_hotplug_begin(); | 
|  |  | 
|  | cpuhp_tasks_frozen = tasks_frozen; | 
|  |  | 
|  | prev_state = st->state; | 
|  | st->target = target; | 
|  | /* | 
|  | * If the current CPU state is in the range of the AP hotplug thread, | 
|  | * then we need to kick the thread. | 
|  | */ | 
|  | if (st->state > CPUHP_TEARDOWN_CPU) { | 
|  | ret = cpuhp_kick_ap_work(cpu); | 
|  | /* | 
|  | * The AP side has done the error rollback already. Just | 
|  | * return the error code.. | 
|  | */ | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We might have stopped still in the range of the AP hotplug | 
|  | * thread. Nothing to do anymore. | 
|  | */ | 
|  | if (st->state > CPUHP_TEARDOWN_CPU) | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need | 
|  | * to do the further cleanups. | 
|  | */ | 
|  | ret = cpuhp_down_callbacks(cpu, st, target); | 
|  | if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) { | 
|  | st->target = prev_state; | 
|  | st->rollback = true; | 
|  | cpuhp_kick_ap_work(cpu); | 
|  | } | 
|  |  | 
|  | out: | 
|  | cpu_hotplug_done(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | cpu_maps_update_begin(); | 
|  |  | 
|  | if (cpu_hotplug_disabled) { | 
|  | err = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = _cpu_down(cpu, 0, target); | 
|  |  | 
|  | out: | 
|  | cpu_maps_update_done(); | 
|  | return err; | 
|  | } | 
|  | int cpu_down(unsigned int cpu) | 
|  | { | 
|  | return do_cpu_down(cpu, CPUHP_OFFLINE); | 
|  | } | 
|  | EXPORT_SYMBOL(cpu_down); | 
|  | #endif /*CONFIG_HOTPLUG_CPU*/ | 
|  |  | 
|  | /** | 
|  | * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU | 
|  | * @cpu: cpu that just started | 
|  | * | 
|  | * It must be called by the arch code on the new cpu, before the new cpu | 
|  | * enables interrupts and before the "boot" cpu returns from __cpu_up(). | 
|  | */ | 
|  | void notify_cpu_starting(unsigned int cpu) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  | enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); | 
|  |  | 
|  | rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */ | 
|  | while (st->state < target) { | 
|  | st->state++; | 
|  | cpuhp_invoke_callback(cpu, st->state, true, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from the idle task. We need to set active here, so we can kick off | 
|  | * the stopper thread and unpark the smpboot threads. If the target state is | 
|  | * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the | 
|  | * cpu further. | 
|  | */ | 
|  | void cpuhp_online_idle(enum cpuhp_state state) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | 
|  | unsigned int cpu = smp_processor_id(); | 
|  |  | 
|  | /* Happens for the boot cpu */ | 
|  | if (state != CPUHP_AP_ONLINE_IDLE) | 
|  | return; | 
|  |  | 
|  | st->state = CPUHP_AP_ONLINE_IDLE; | 
|  |  | 
|  | /* Unpark the stopper thread and the hotplug thread of this cpu */ | 
|  | stop_machine_unpark(cpu); | 
|  | kthread_unpark(st->thread); | 
|  |  | 
|  | /* Should we go further up ? */ | 
|  | if (st->target > CPUHP_AP_ONLINE_IDLE) | 
|  | __cpuhp_kick_ap_work(st); | 
|  | else | 
|  | complete(&st->done); | 
|  | } | 
|  |  | 
|  | /* Requires cpu_add_remove_lock to be held */ | 
|  | static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  | struct task_struct *idle; | 
|  | int ret = 0; | 
|  |  | 
|  | cpu_hotplug_begin(); | 
|  |  | 
|  | if (!cpu_present(cpu)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The caller of do_cpu_up might have raced with another | 
|  | * caller. Ignore it for now. | 
|  | */ | 
|  | if (st->state >= target) | 
|  | goto out; | 
|  |  | 
|  | if (st->state == CPUHP_OFFLINE) { | 
|  | /* Let it fail before we try to bring the cpu up */ | 
|  | idle = idle_thread_get(cpu); | 
|  | if (IS_ERR(idle)) { | 
|  | ret = PTR_ERR(idle); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | cpuhp_tasks_frozen = tasks_frozen; | 
|  |  | 
|  | st->target = target; | 
|  | /* | 
|  | * If the current CPU state is in the range of the AP hotplug thread, | 
|  | * then we need to kick the thread once more. | 
|  | */ | 
|  | if (st->state > CPUHP_BRINGUP_CPU) { | 
|  | ret = cpuhp_kick_ap_work(cpu); | 
|  | /* | 
|  | * The AP side has done the error rollback already. Just | 
|  | * return the error code.. | 
|  | */ | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to reach the target state. We max out on the BP at | 
|  | * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is | 
|  | * responsible for bringing it up to the target state. | 
|  | */ | 
|  | target = min((int)target, CPUHP_BRINGUP_CPU); | 
|  | ret = cpuhp_up_callbacks(cpu, st, target); | 
|  | out: | 
|  | cpu_hotplug_done(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (!cpu_possible(cpu)) { | 
|  | pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", | 
|  | cpu); | 
|  | #if defined(CONFIG_IA64) | 
|  | pr_err("please check additional_cpus= boot parameter\n"); | 
|  | #endif | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = try_online_node(cpu_to_node(cpu)); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | cpu_maps_update_begin(); | 
|  |  | 
|  | if (cpu_hotplug_disabled) { | 
|  | err = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = _cpu_up(cpu, 0, target); | 
|  | out: | 
|  | cpu_maps_update_done(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int cpu_up(unsigned int cpu) | 
|  | { | 
|  | return do_cpu_up(cpu, CPUHP_ONLINE); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cpu_up); | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP_SMP | 
|  | static cpumask_var_t frozen_cpus; | 
|  |  | 
|  | int freeze_secondary_cpus(int primary) | 
|  | { | 
|  | int cpu, error = 0; | 
|  |  | 
|  | cpu_maps_update_begin(); | 
|  | if (!cpu_online(primary)) | 
|  | primary = cpumask_first(cpu_online_mask); | 
|  | /* | 
|  | * We take down all of the non-boot CPUs in one shot to avoid races | 
|  | * with the userspace trying to use the CPU hotplug at the same time | 
|  | */ | 
|  | cpumask_clear(frozen_cpus); | 
|  |  | 
|  | pr_info("Disabling non-boot CPUs ...\n"); | 
|  | for_each_online_cpu(cpu) { | 
|  | if (cpu == primary) | 
|  | continue; | 
|  | trace_suspend_resume(TPS("CPU_OFF"), cpu, true); | 
|  | error = _cpu_down(cpu, 1, CPUHP_OFFLINE); | 
|  | trace_suspend_resume(TPS("CPU_OFF"), cpu, false); | 
|  | if (!error) | 
|  | cpumask_set_cpu(cpu, frozen_cpus); | 
|  | else { | 
|  | pr_err("Error taking CPU%d down: %d\n", cpu, error); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!error) | 
|  | BUG_ON(num_online_cpus() > 1); | 
|  | else | 
|  | pr_err("Non-boot CPUs are not disabled\n"); | 
|  |  | 
|  | /* | 
|  | * Make sure the CPUs won't be enabled by someone else. We need to do | 
|  | * this even in case of failure as all disable_nonboot_cpus() users are | 
|  | * supposed to do enable_nonboot_cpus() on the failure path. | 
|  | */ | 
|  | cpu_hotplug_disabled++; | 
|  |  | 
|  | cpu_maps_update_done(); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void __weak arch_enable_nonboot_cpus_begin(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | void __weak arch_enable_nonboot_cpus_end(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | void enable_nonboot_cpus(void) | 
|  | { | 
|  | int cpu, error; | 
|  |  | 
|  | /* Allow everyone to use the CPU hotplug again */ | 
|  | cpu_maps_update_begin(); | 
|  | __cpu_hotplug_enable(); | 
|  | if (cpumask_empty(frozen_cpus)) | 
|  | goto out; | 
|  |  | 
|  | pr_info("Enabling non-boot CPUs ...\n"); | 
|  |  | 
|  | arch_enable_nonboot_cpus_begin(); | 
|  |  | 
|  | for_each_cpu(cpu, frozen_cpus) { | 
|  | trace_suspend_resume(TPS("CPU_ON"), cpu, true); | 
|  | error = _cpu_up(cpu, 1, CPUHP_ONLINE); | 
|  | trace_suspend_resume(TPS("CPU_ON"), cpu, false); | 
|  | if (!error) { | 
|  | pr_info("CPU%d is up\n", cpu); | 
|  | continue; | 
|  | } | 
|  | pr_warn("Error taking CPU%d up: %d\n", cpu, error); | 
|  | } | 
|  |  | 
|  | arch_enable_nonboot_cpus_end(); | 
|  |  | 
|  | cpumask_clear(frozen_cpus); | 
|  | out: | 
|  | cpu_maps_update_done(); | 
|  | } | 
|  |  | 
|  | static int __init alloc_frozen_cpus(void) | 
|  | { | 
|  | if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  | core_initcall(alloc_frozen_cpus); | 
|  |  | 
|  | /* | 
|  | * When callbacks for CPU hotplug notifications are being executed, we must | 
|  | * ensure that the state of the system with respect to the tasks being frozen | 
|  | * or not, as reported by the notification, remains unchanged *throughout the | 
|  | * duration* of the execution of the callbacks. | 
|  | * Hence we need to prevent the freezer from racing with regular CPU hotplug. | 
|  | * | 
|  | * This synchronization is implemented by mutually excluding regular CPU | 
|  | * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ | 
|  | * Hibernate notifications. | 
|  | */ | 
|  | static int | 
|  | cpu_hotplug_pm_callback(struct notifier_block *nb, | 
|  | unsigned long action, void *ptr) | 
|  | { | 
|  | switch (action) { | 
|  |  | 
|  | case PM_SUSPEND_PREPARE: | 
|  | case PM_HIBERNATION_PREPARE: | 
|  | cpu_hotplug_disable(); | 
|  | break; | 
|  |  | 
|  | case PM_POST_SUSPEND: | 
|  | case PM_POST_HIBERNATION: | 
|  | cpu_hotplug_enable(); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __init cpu_hotplug_pm_sync_init(void) | 
|  | { | 
|  | /* | 
|  | * cpu_hotplug_pm_callback has higher priority than x86 | 
|  | * bsp_pm_callback which depends on cpu_hotplug_pm_callback | 
|  | * to disable cpu hotplug to avoid cpu hotplug race. | 
|  | */ | 
|  | pm_notifier(cpu_hotplug_pm_callback, 0); | 
|  | return 0; | 
|  | } | 
|  | core_initcall(cpu_hotplug_pm_sync_init); | 
|  |  | 
|  | #endif /* CONFIG_PM_SLEEP_SMP */ | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* Boot processor state steps */ | 
|  | static struct cpuhp_step cpuhp_bp_states[] = { | 
|  | [CPUHP_OFFLINE] = { | 
|  | .name			= "offline", | 
|  | .startup.single		= NULL, | 
|  | .teardown.single	= NULL, | 
|  | }, | 
|  | #ifdef CONFIG_SMP | 
|  | [CPUHP_CREATE_THREADS]= { | 
|  | .name			= "threads:prepare", | 
|  | .startup.single		= smpboot_create_threads, | 
|  | .teardown.single	= NULL, | 
|  | .cant_stop		= true, | 
|  | }, | 
|  | [CPUHP_PERF_PREPARE] = { | 
|  | .name			= "perf:prepare", | 
|  | .startup.single		= perf_event_init_cpu, | 
|  | .teardown.single	= perf_event_exit_cpu, | 
|  | }, | 
|  | [CPUHP_WORKQUEUE_PREP] = { | 
|  | .name			= "workqueue:prepare", | 
|  | .startup.single		= workqueue_prepare_cpu, | 
|  | .teardown.single	= NULL, | 
|  | }, | 
|  | [CPUHP_HRTIMERS_PREPARE] = { | 
|  | .name			= "hrtimers:prepare", | 
|  | .startup.single		= hrtimers_prepare_cpu, | 
|  | .teardown.single	= hrtimers_dead_cpu, | 
|  | }, | 
|  | [CPUHP_SMPCFD_PREPARE] = { | 
|  | .name			= "smpcfd:prepare", | 
|  | .startup.single		= smpcfd_prepare_cpu, | 
|  | .teardown.single	= smpcfd_dead_cpu, | 
|  | }, | 
|  | [CPUHP_RELAY_PREPARE] = { | 
|  | .name			= "relay:prepare", | 
|  | .startup.single		= relay_prepare_cpu, | 
|  | .teardown.single	= NULL, | 
|  | }, | 
|  | [CPUHP_SLAB_PREPARE] = { | 
|  | .name			= "slab:prepare", | 
|  | .startup.single		= slab_prepare_cpu, | 
|  | .teardown.single	= slab_dead_cpu, | 
|  | }, | 
|  | [CPUHP_RCUTREE_PREP] = { | 
|  | .name			= "RCU/tree:prepare", | 
|  | .startup.single		= rcutree_prepare_cpu, | 
|  | .teardown.single	= rcutree_dead_cpu, | 
|  | }, | 
|  | /* | 
|  | * On the tear-down path, timers_dead_cpu() must be invoked | 
|  | * before blk_mq_queue_reinit_notify() from notify_dead(), | 
|  | * otherwise a RCU stall occurs. | 
|  | */ | 
|  | [CPUHP_TIMERS_DEAD] = { | 
|  | .name			= "timers:dead", | 
|  | .startup.single		= NULL, | 
|  | .teardown.single	= timers_dead_cpu, | 
|  | }, | 
|  | /* Kicks the plugged cpu into life */ | 
|  | [CPUHP_BRINGUP_CPU] = { | 
|  | .name			= "cpu:bringup", | 
|  | .startup.single		= bringup_cpu, | 
|  | .teardown.single	= NULL, | 
|  | .cant_stop		= true, | 
|  | }, | 
|  | [CPUHP_AP_SMPCFD_DYING] = { | 
|  | .name			= "smpcfd:dying", | 
|  | .startup.single		= NULL, | 
|  | .teardown.single	= smpcfd_dying_cpu, | 
|  | }, | 
|  | /* | 
|  | * Handled on controll processor until the plugged processor manages | 
|  | * this itself. | 
|  | */ | 
|  | [CPUHP_TEARDOWN_CPU] = { | 
|  | .name			= "cpu:teardown", | 
|  | .startup.single		= NULL, | 
|  | .teardown.single	= takedown_cpu, | 
|  | .cant_stop		= true, | 
|  | }, | 
|  | #else | 
|  | [CPUHP_BRINGUP_CPU] = { }, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* Application processor state steps */ | 
|  | static struct cpuhp_step cpuhp_ap_states[] = { | 
|  | #ifdef CONFIG_SMP | 
|  | /* Final state before CPU kills itself */ | 
|  | [CPUHP_AP_IDLE_DEAD] = { | 
|  | .name			= "idle:dead", | 
|  | }, | 
|  | /* | 
|  | * Last state before CPU enters the idle loop to die. Transient state | 
|  | * for synchronization. | 
|  | */ | 
|  | [CPUHP_AP_OFFLINE] = { | 
|  | .name			= "ap:offline", | 
|  | .cant_stop		= true, | 
|  | }, | 
|  | /* First state is scheduler control. Interrupts are disabled */ | 
|  | [CPUHP_AP_SCHED_STARTING] = { | 
|  | .name			= "sched:starting", | 
|  | .startup.single		= sched_cpu_starting, | 
|  | .teardown.single	= sched_cpu_dying, | 
|  | }, | 
|  | [CPUHP_AP_RCUTREE_DYING] = { | 
|  | .name			= "RCU/tree:dying", | 
|  | .startup.single		= NULL, | 
|  | .teardown.single	= rcutree_dying_cpu, | 
|  | }, | 
|  | /* Entry state on starting. Interrupts enabled from here on. Transient | 
|  | * state for synchronsization */ | 
|  | [CPUHP_AP_ONLINE] = { | 
|  | .name			= "ap:online", | 
|  | }, | 
|  | /* Handle smpboot threads park/unpark */ | 
|  | [CPUHP_AP_SMPBOOT_THREADS] = { | 
|  | .name			= "smpboot/threads:online", | 
|  | .startup.single		= smpboot_unpark_threads, | 
|  | .teardown.single	= NULL, | 
|  | }, | 
|  | [CPUHP_AP_PERF_ONLINE] = { | 
|  | .name			= "perf:online", | 
|  | .startup.single		= perf_event_init_cpu, | 
|  | .teardown.single	= perf_event_exit_cpu, | 
|  | }, | 
|  | [CPUHP_AP_WORKQUEUE_ONLINE] = { | 
|  | .name			= "workqueue:online", | 
|  | .startup.single		= workqueue_online_cpu, | 
|  | .teardown.single	= workqueue_offline_cpu, | 
|  | }, | 
|  | [CPUHP_AP_RCUTREE_ONLINE] = { | 
|  | .name			= "RCU/tree:online", | 
|  | .startup.single		= rcutree_online_cpu, | 
|  | .teardown.single	= rcutree_offline_cpu, | 
|  | }, | 
|  | #endif | 
|  | /* | 
|  | * The dynamically registered state space is here | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* Last state is scheduler control setting the cpu active */ | 
|  | [CPUHP_AP_ACTIVE] = { | 
|  | .name			= "sched:active", | 
|  | .startup.single		= sched_cpu_activate, | 
|  | .teardown.single	= sched_cpu_deactivate, | 
|  | }, | 
|  | #endif | 
|  |  | 
|  | /* CPU is fully up and running. */ | 
|  | [CPUHP_ONLINE] = { | 
|  | .name			= "online", | 
|  | .startup.single		= NULL, | 
|  | .teardown.single	= NULL, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* Sanity check for callbacks */ | 
|  | static int cpuhp_cb_check(enum cpuhp_state state) | 
|  | { | 
|  | if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a free for dynamic slot assignment of the Online state. The states | 
|  | * are protected by the cpuhp_slot_states mutex and an empty slot is identified | 
|  | * by having no name assigned. | 
|  | */ | 
|  | static int cpuhp_reserve_state(enum cpuhp_state state) | 
|  | { | 
|  | enum cpuhp_state i, end; | 
|  | struct cpuhp_step *step; | 
|  |  | 
|  | switch (state) { | 
|  | case CPUHP_AP_ONLINE_DYN: | 
|  | step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN; | 
|  | end = CPUHP_AP_ONLINE_DYN_END; | 
|  | break; | 
|  | case CPUHP_BP_PREPARE_DYN: | 
|  | step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN; | 
|  | end = CPUHP_BP_PREPARE_DYN_END; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (i = state; i <= end; i++, step++) { | 
|  | if (!step->name) | 
|  | return i; | 
|  | } | 
|  | WARN(1, "No more dynamic states available for CPU hotplug\n"); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, | 
|  | int (*startup)(unsigned int cpu), | 
|  | int (*teardown)(unsigned int cpu), | 
|  | bool multi_instance) | 
|  | { | 
|  | /* (Un)Install the callbacks for further cpu hotplug operations */ | 
|  | struct cpuhp_step *sp; | 
|  | int ret = 0; | 
|  |  | 
|  | if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) { | 
|  | ret = cpuhp_reserve_state(state); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | state = ret; | 
|  | } | 
|  | sp = cpuhp_get_step(state); | 
|  | if (name && sp->name) | 
|  | return -EBUSY; | 
|  |  | 
|  | sp->startup.single = startup; | 
|  | sp->teardown.single = teardown; | 
|  | sp->name = name; | 
|  | sp->multi_instance = multi_instance; | 
|  | INIT_HLIST_HEAD(&sp->list); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void *cpuhp_get_teardown_cb(enum cpuhp_state state) | 
|  | { | 
|  | return cpuhp_get_step(state)->teardown.single; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call the startup/teardown function for a step either on the AP or | 
|  | * on the current CPU. | 
|  | */ | 
|  | static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, | 
|  | struct hlist_node *node) | 
|  | { | 
|  | struct cpuhp_step *sp = cpuhp_get_step(state); | 
|  | int ret; | 
|  |  | 
|  | if ((bringup && !sp->startup.single) || | 
|  | (!bringup && !sp->teardown.single)) | 
|  | return 0; | 
|  | /* | 
|  | * The non AP bound callbacks can fail on bringup. On teardown | 
|  | * e.g. module removal we crash for now. | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  | if (cpuhp_is_ap_state(state)) | 
|  | ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); | 
|  | else | 
|  | ret = cpuhp_invoke_callback(cpu, state, bringup, node); | 
|  | #else | 
|  | ret = cpuhp_invoke_callback(cpu, state, bringup, node); | 
|  | #endif | 
|  | BUG_ON(ret && !bringup); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from __cpuhp_setup_state on a recoverable failure. | 
|  | * | 
|  | * Note: The teardown callbacks for rollback are not allowed to fail! | 
|  | */ | 
|  | static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, | 
|  | struct hlist_node *node) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | /* Roll back the already executed steps on the other cpus */ | 
|  | for_each_present_cpu(cpu) { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  | int cpustate = st->state; | 
|  |  | 
|  | if (cpu >= failedcpu) | 
|  | break; | 
|  |  | 
|  | /* Did we invoke the startup call on that cpu ? */ | 
|  | if (cpustate >= state) | 
|  | cpuhp_issue_call(cpu, state, false, node); | 
|  | } | 
|  | } | 
|  |  | 
|  | int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, | 
|  | bool invoke) | 
|  | { | 
|  | struct cpuhp_step *sp; | 
|  | int cpu; | 
|  | int ret; | 
|  |  | 
|  | sp = cpuhp_get_step(state); | 
|  | if (sp->multi_instance == false) | 
|  | return -EINVAL; | 
|  |  | 
|  | get_online_cpus(); | 
|  | mutex_lock(&cpuhp_state_mutex); | 
|  |  | 
|  | if (!invoke || !sp->startup.multi) | 
|  | goto add_node; | 
|  |  | 
|  | /* | 
|  | * Try to call the startup callback for each present cpu | 
|  | * depending on the hotplug state of the cpu. | 
|  | */ | 
|  | for_each_present_cpu(cpu) { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  | int cpustate = st->state; | 
|  |  | 
|  | if (cpustate < state) | 
|  | continue; | 
|  |  | 
|  | ret = cpuhp_issue_call(cpu, state, true, node); | 
|  | if (ret) { | 
|  | if (sp->teardown.multi) | 
|  | cpuhp_rollback_install(cpu, state, node); | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  | add_node: | 
|  | ret = 0; | 
|  | hlist_add_head(node, &sp->list); | 
|  | unlock: | 
|  | mutex_unlock(&cpuhp_state_mutex); | 
|  | put_online_cpus(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); | 
|  |  | 
|  | /** | 
|  | * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state | 
|  | * @state:		The state to setup | 
|  | * @invoke:		If true, the startup function is invoked for cpus where | 
|  | *			cpu state >= @state | 
|  | * @startup:		startup callback function | 
|  | * @teardown:		teardown callback function | 
|  | * @multi_instance:	State is set up for multiple instances which get | 
|  | *			added afterwards. | 
|  | * | 
|  | * Returns: | 
|  | *   On success: | 
|  | *      Positive state number if @state is CPUHP_AP_ONLINE_DYN | 
|  | *      0 for all other states | 
|  | *   On failure: proper (negative) error code | 
|  | */ | 
|  | int __cpuhp_setup_state(enum cpuhp_state state, | 
|  | const char *name, bool invoke, | 
|  | int (*startup)(unsigned int cpu), | 
|  | int (*teardown)(unsigned int cpu), | 
|  | bool multi_instance) | 
|  | { | 
|  | int cpu, ret = 0; | 
|  | bool dynstate; | 
|  |  | 
|  | if (cpuhp_cb_check(state) || !name) | 
|  | return -EINVAL; | 
|  |  | 
|  | get_online_cpus(); | 
|  | mutex_lock(&cpuhp_state_mutex); | 
|  |  | 
|  | ret = cpuhp_store_callbacks(state, name, startup, teardown, | 
|  | multi_instance); | 
|  |  | 
|  | dynstate = state == CPUHP_AP_ONLINE_DYN; | 
|  | if (ret > 0 && dynstate) { | 
|  | state = ret; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (ret || !invoke || !startup) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Try to call the startup callback for each present cpu | 
|  | * depending on the hotplug state of the cpu. | 
|  | */ | 
|  | for_each_present_cpu(cpu) { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  | int cpustate = st->state; | 
|  |  | 
|  | if (cpustate < state) | 
|  | continue; | 
|  |  | 
|  | ret = cpuhp_issue_call(cpu, state, true, NULL); | 
|  | if (ret) { | 
|  | if (teardown) | 
|  | cpuhp_rollback_install(cpu, state, NULL); | 
|  | cpuhp_store_callbacks(state, NULL, NULL, NULL, false); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&cpuhp_state_mutex); | 
|  | put_online_cpus(); | 
|  | /* | 
|  | * If the requested state is CPUHP_AP_ONLINE_DYN, return the | 
|  | * dynamically allocated state in case of success. | 
|  | */ | 
|  | if (!ret && dynstate) | 
|  | return state; | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__cpuhp_setup_state); | 
|  |  | 
|  | int __cpuhp_state_remove_instance(enum cpuhp_state state, | 
|  | struct hlist_node *node, bool invoke) | 
|  | { | 
|  | struct cpuhp_step *sp = cpuhp_get_step(state); | 
|  | int cpu; | 
|  |  | 
|  | BUG_ON(cpuhp_cb_check(state)); | 
|  |  | 
|  | if (!sp->multi_instance) | 
|  | return -EINVAL; | 
|  |  | 
|  | get_online_cpus(); | 
|  | mutex_lock(&cpuhp_state_mutex); | 
|  |  | 
|  | if (!invoke || !cpuhp_get_teardown_cb(state)) | 
|  | goto remove; | 
|  | /* | 
|  | * Call the teardown callback for each present cpu depending | 
|  | * on the hotplug state of the cpu. This function is not | 
|  | * allowed to fail currently! | 
|  | */ | 
|  | for_each_present_cpu(cpu) { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  | int cpustate = st->state; | 
|  |  | 
|  | if (cpustate >= state) | 
|  | cpuhp_issue_call(cpu, state, false, node); | 
|  | } | 
|  |  | 
|  | remove: | 
|  | hlist_del(node); | 
|  | mutex_unlock(&cpuhp_state_mutex); | 
|  | put_online_cpus(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); | 
|  |  | 
|  | /** | 
|  | * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state | 
|  | * @state:	The state to remove | 
|  | * @invoke:	If true, the teardown function is invoked for cpus where | 
|  | *		cpu state >= @state | 
|  | * | 
|  | * The teardown callback is currently not allowed to fail. Think | 
|  | * about module removal! | 
|  | */ | 
|  | void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) | 
|  | { | 
|  | struct cpuhp_step *sp = cpuhp_get_step(state); | 
|  | int cpu; | 
|  |  | 
|  | BUG_ON(cpuhp_cb_check(state)); | 
|  |  | 
|  | get_online_cpus(); | 
|  |  | 
|  | mutex_lock(&cpuhp_state_mutex); | 
|  | if (sp->multi_instance) { | 
|  | WARN(!hlist_empty(&sp->list), | 
|  | "Error: Removing state %d which has instances left.\n", | 
|  | state); | 
|  | goto remove; | 
|  | } | 
|  |  | 
|  | if (!invoke || !cpuhp_get_teardown_cb(state)) | 
|  | goto remove; | 
|  |  | 
|  | /* | 
|  | * Call the teardown callback for each present cpu depending | 
|  | * on the hotplug state of the cpu. This function is not | 
|  | * allowed to fail currently! | 
|  | */ | 
|  | for_each_present_cpu(cpu) { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | 
|  | int cpustate = st->state; | 
|  |  | 
|  | if (cpustate >= state) | 
|  | cpuhp_issue_call(cpu, state, false, NULL); | 
|  | } | 
|  | remove: | 
|  | cpuhp_store_callbacks(state, NULL, NULL, NULL, false); | 
|  | mutex_unlock(&cpuhp_state_mutex); | 
|  | put_online_cpus(); | 
|  | } | 
|  | EXPORT_SYMBOL(__cpuhp_remove_state); | 
|  |  | 
|  | #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) | 
|  | static ssize_t show_cpuhp_state(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | 
|  |  | 
|  | return sprintf(buf, "%d\n", st->state); | 
|  | } | 
|  | static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); | 
|  |  | 
|  | static ssize_t write_cpuhp_target(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | 
|  | struct cpuhp_step *sp; | 
|  | int target, ret; | 
|  |  | 
|  | ret = kstrtoint(buf, 10, &target); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL | 
|  | if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) | 
|  | return -EINVAL; | 
|  | #else | 
|  | if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) | 
|  | return -EINVAL; | 
|  | #endif | 
|  |  | 
|  | ret = lock_device_hotplug_sysfs(); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&cpuhp_state_mutex); | 
|  | sp = cpuhp_get_step(target); | 
|  | ret = !sp->name || sp->cant_stop ? -EINVAL : 0; | 
|  | mutex_unlock(&cpuhp_state_mutex); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (st->state < target) | 
|  | ret = do_cpu_up(dev->id, target); | 
|  | else | 
|  | ret = do_cpu_down(dev->id, target); | 
|  |  | 
|  | unlock_device_hotplug(); | 
|  | return ret ? ret : count; | 
|  | } | 
|  |  | 
|  | static ssize_t show_cpuhp_target(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | 
|  |  | 
|  | return sprintf(buf, "%d\n", st->target); | 
|  | } | 
|  | static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); | 
|  |  | 
|  | static struct attribute *cpuhp_cpu_attrs[] = { | 
|  | &dev_attr_state.attr, | 
|  | &dev_attr_target.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static struct attribute_group cpuhp_cpu_attr_group = { | 
|  | .attrs = cpuhp_cpu_attrs, | 
|  | .name = "hotplug", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static ssize_t show_cpuhp_states(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | ssize_t cur, res = 0; | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&cpuhp_state_mutex); | 
|  | for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { | 
|  | struct cpuhp_step *sp = cpuhp_get_step(i); | 
|  |  | 
|  | if (sp->name) { | 
|  | cur = sprintf(buf, "%3d: %s\n", i, sp->name); | 
|  | buf += cur; | 
|  | res += cur; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&cpuhp_state_mutex); | 
|  | return res; | 
|  | } | 
|  | static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); | 
|  |  | 
|  | static struct attribute *cpuhp_cpu_root_attrs[] = { | 
|  | &dev_attr_states.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static struct attribute_group cpuhp_cpu_root_attr_group = { | 
|  | .attrs = cpuhp_cpu_root_attrs, | 
|  | .name = "hotplug", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static int __init cpuhp_sysfs_init(void) | 
|  | { | 
|  | int cpu, ret; | 
|  |  | 
|  | ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, | 
|  | &cpuhp_cpu_root_attr_group); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct device *dev = get_cpu_device(cpu); | 
|  |  | 
|  | if (!dev) | 
|  | continue; | 
|  | ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | device_initcall(cpuhp_sysfs_init); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * cpu_bit_bitmap[] is a special, "compressed" data structure that | 
|  | * represents all NR_CPUS bits binary values of 1<<nr. | 
|  | * | 
|  | * It is used by cpumask_of() to get a constant address to a CPU | 
|  | * mask value that has a single bit set only. | 
|  | */ | 
|  |  | 
|  | /* cpu_bit_bitmap[0] is empty - so we can back into it */ | 
|  | #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x)) | 
|  | #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) | 
|  | #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) | 
|  | #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) | 
|  |  | 
|  | const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { | 
|  |  | 
|  | MASK_DECLARE_8(0),	MASK_DECLARE_8(8), | 
|  | MASK_DECLARE_8(16),	MASK_DECLARE_8(24), | 
|  | #if BITS_PER_LONG > 32 | 
|  | MASK_DECLARE_8(32),	MASK_DECLARE_8(40), | 
|  | MASK_DECLARE_8(48),	MASK_DECLARE_8(56), | 
|  | #endif | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(cpu_bit_bitmap); | 
|  |  | 
|  | const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; | 
|  | EXPORT_SYMBOL(cpu_all_bits); | 
|  |  | 
|  | #ifdef CONFIG_INIT_ALL_POSSIBLE | 
|  | struct cpumask __cpu_possible_mask __read_mostly | 
|  | = {CPU_BITS_ALL}; | 
|  | #else | 
|  | struct cpumask __cpu_possible_mask __read_mostly; | 
|  | #endif | 
|  | EXPORT_SYMBOL(__cpu_possible_mask); | 
|  |  | 
|  | struct cpumask __cpu_online_mask __read_mostly; | 
|  | EXPORT_SYMBOL(__cpu_online_mask); | 
|  |  | 
|  | struct cpumask __cpu_present_mask __read_mostly; | 
|  | EXPORT_SYMBOL(__cpu_present_mask); | 
|  |  | 
|  | struct cpumask __cpu_active_mask __read_mostly; | 
|  | EXPORT_SYMBOL(__cpu_active_mask); | 
|  |  | 
|  | void init_cpu_present(const struct cpumask *src) | 
|  | { | 
|  | cpumask_copy(&__cpu_present_mask, src); | 
|  | } | 
|  |  | 
|  | void init_cpu_possible(const struct cpumask *src) | 
|  | { | 
|  | cpumask_copy(&__cpu_possible_mask, src); | 
|  | } | 
|  |  | 
|  | void init_cpu_online(const struct cpumask *src) | 
|  | { | 
|  | cpumask_copy(&__cpu_online_mask, src); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Activate the first processor. | 
|  | */ | 
|  | void __init boot_cpu_init(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | /* Mark the boot cpu "present", "online" etc for SMP and UP case */ | 
|  | set_cpu_online(cpu, true); | 
|  | set_cpu_active(cpu, true); | 
|  | set_cpu_present(cpu, true); | 
|  | set_cpu_possible(cpu, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be called _AFTER_ setting up the per_cpu areas | 
|  | */ | 
|  | void __init boot_cpu_state_init(void) | 
|  | { | 
|  | per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE; | 
|  | } |