|  | /* | 
|  | * Copyright (C) 2012 Fusion-io  All rights reserved. | 
|  | * Copyright (C) 2012 Intel Corp. All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  | #include <linux/sched.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/iocontext.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/raid/pq.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/list_sort.h> | 
|  | #include <linux/raid/xor.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <asm/div64.h> | 
|  | #include "ctree.h" | 
|  | #include "extent_map.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "print-tree.h" | 
|  | #include "volumes.h" | 
|  | #include "raid56.h" | 
|  | #include "async-thread.h" | 
|  | #include "check-integrity.h" | 
|  | #include "rcu-string.h" | 
|  |  | 
|  | /* set when additional merges to this rbio are not allowed */ | 
|  | #define RBIO_RMW_LOCKED_BIT	1 | 
|  |  | 
|  | /* | 
|  | * set when this rbio is sitting in the hash, but it is just a cache | 
|  | * of past RMW | 
|  | */ | 
|  | #define RBIO_CACHE_BIT		2 | 
|  |  | 
|  | /* | 
|  | * set when it is safe to trust the stripe_pages for caching | 
|  | */ | 
|  | #define RBIO_CACHE_READY_BIT	3 | 
|  |  | 
|  | #define RBIO_CACHE_SIZE 1024 | 
|  |  | 
|  | enum btrfs_rbio_ops { | 
|  | BTRFS_RBIO_WRITE, | 
|  | BTRFS_RBIO_READ_REBUILD, | 
|  | BTRFS_RBIO_PARITY_SCRUB, | 
|  | BTRFS_RBIO_REBUILD_MISSING, | 
|  | }; | 
|  |  | 
|  | struct btrfs_raid_bio { | 
|  | struct btrfs_fs_info *fs_info; | 
|  | struct btrfs_bio *bbio; | 
|  |  | 
|  | /* while we're doing rmw on a stripe | 
|  | * we put it into a hash table so we can | 
|  | * lock the stripe and merge more rbios | 
|  | * into it. | 
|  | */ | 
|  | struct list_head hash_list; | 
|  |  | 
|  | /* | 
|  | * LRU list for the stripe cache | 
|  | */ | 
|  | struct list_head stripe_cache; | 
|  |  | 
|  | /* | 
|  | * for scheduling work in the helper threads | 
|  | */ | 
|  | struct btrfs_work work; | 
|  |  | 
|  | /* | 
|  | * bio list and bio_list_lock are used | 
|  | * to add more bios into the stripe | 
|  | * in hopes of avoiding the full rmw | 
|  | */ | 
|  | struct bio_list bio_list; | 
|  | spinlock_t bio_list_lock; | 
|  |  | 
|  | /* also protected by the bio_list_lock, the | 
|  | * plug list is used by the plugging code | 
|  | * to collect partial bios while plugged.  The | 
|  | * stripe locking code also uses it to hand off | 
|  | * the stripe lock to the next pending IO | 
|  | */ | 
|  | struct list_head plug_list; | 
|  |  | 
|  | /* | 
|  | * flags that tell us if it is safe to | 
|  | * merge with this bio | 
|  | */ | 
|  | unsigned long flags; | 
|  |  | 
|  | /* size of each individual stripe on disk */ | 
|  | int stripe_len; | 
|  |  | 
|  | /* number of data stripes (no p/q) */ | 
|  | int nr_data; | 
|  |  | 
|  | int real_stripes; | 
|  |  | 
|  | int stripe_npages; | 
|  | /* | 
|  | * set if we're doing a parity rebuild | 
|  | * for a read from higher up, which is handled | 
|  | * differently from a parity rebuild as part of | 
|  | * rmw | 
|  | */ | 
|  | enum btrfs_rbio_ops operation; | 
|  |  | 
|  | /* first bad stripe */ | 
|  | int faila; | 
|  |  | 
|  | /* second bad stripe (for raid6 use) */ | 
|  | int failb; | 
|  |  | 
|  | int scrubp; | 
|  | /* | 
|  | * number of pages needed to represent the full | 
|  | * stripe | 
|  | */ | 
|  | int nr_pages; | 
|  |  | 
|  | /* | 
|  | * size of all the bios in the bio_list.  This | 
|  | * helps us decide if the rbio maps to a full | 
|  | * stripe or not | 
|  | */ | 
|  | int bio_list_bytes; | 
|  |  | 
|  | int generic_bio_cnt; | 
|  |  | 
|  | atomic_t refs; | 
|  |  | 
|  | atomic_t stripes_pending; | 
|  |  | 
|  | atomic_t error; | 
|  | /* | 
|  | * these are two arrays of pointers.  We allocate the | 
|  | * rbio big enough to hold them both and setup their | 
|  | * locations when the rbio is allocated | 
|  | */ | 
|  |  | 
|  | /* pointers to pages that we allocated for | 
|  | * reading/writing stripes directly from the disk (including P/Q) | 
|  | */ | 
|  | struct page **stripe_pages; | 
|  |  | 
|  | /* | 
|  | * pointers to the pages in the bio_list.  Stored | 
|  | * here for faster lookup | 
|  | */ | 
|  | struct page **bio_pages; | 
|  |  | 
|  | /* | 
|  | * bitmap to record which horizontal stripe has data | 
|  | */ | 
|  | unsigned long *dbitmap; | 
|  | }; | 
|  |  | 
|  | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); | 
|  | static noinline void finish_rmw(struct btrfs_raid_bio *rbio); | 
|  | static void rmw_work(struct btrfs_work *work); | 
|  | static void read_rebuild_work(struct btrfs_work *work); | 
|  | static void async_rmw_stripe(struct btrfs_raid_bio *rbio); | 
|  | static void async_read_rebuild(struct btrfs_raid_bio *rbio); | 
|  | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); | 
|  | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); | 
|  | static void __free_raid_bio(struct btrfs_raid_bio *rbio); | 
|  | static void index_rbio_pages(struct btrfs_raid_bio *rbio); | 
|  | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); | 
|  |  | 
|  | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, | 
|  | int need_check); | 
|  | static void async_scrub_parity(struct btrfs_raid_bio *rbio); | 
|  |  | 
|  | /* | 
|  | * the stripe hash table is used for locking, and to collect | 
|  | * bios in hopes of making a full stripe | 
|  | */ | 
|  | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | struct btrfs_stripe_hash_table *x; | 
|  | struct btrfs_stripe_hash *cur; | 
|  | struct btrfs_stripe_hash *h; | 
|  | int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; | 
|  | int i; | 
|  | int table_size; | 
|  |  | 
|  | if (info->stripe_hash_table) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The table is large, starting with order 4 and can go as high as | 
|  | * order 7 in case lock debugging is turned on. | 
|  | * | 
|  | * Try harder to allocate and fallback to vmalloc to lower the chance | 
|  | * of a failing mount. | 
|  | */ | 
|  | table_size = sizeof(*table) + sizeof(*h) * num_entries; | 
|  | table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); | 
|  | if (!table) { | 
|  | table = vzalloc(table_size); | 
|  | if (!table) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&table->cache_lock); | 
|  | INIT_LIST_HEAD(&table->stripe_cache); | 
|  |  | 
|  | h = table->table; | 
|  |  | 
|  | for (i = 0; i < num_entries; i++) { | 
|  | cur = h + i; | 
|  | INIT_LIST_HEAD(&cur->hash_list); | 
|  | spin_lock_init(&cur->lock); | 
|  | init_waitqueue_head(&cur->wait); | 
|  | } | 
|  |  | 
|  | x = cmpxchg(&info->stripe_hash_table, NULL, table); | 
|  | if (x) | 
|  | kvfree(x); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * caching an rbio means to copy anything from the | 
|  | * bio_pages array into the stripe_pages array.  We | 
|  | * use the page uptodate bit in the stripe cache array | 
|  | * to indicate if it has valid data | 
|  | * | 
|  | * once the caching is done, we set the cache ready | 
|  | * bit. | 
|  | */ | 
|  | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int i; | 
|  | char *s; | 
|  | char *d; | 
|  | int ret; | 
|  |  | 
|  | ret = alloc_rbio_pages(rbio); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < rbio->nr_pages; i++) { | 
|  | if (!rbio->bio_pages[i]) | 
|  | continue; | 
|  |  | 
|  | s = kmap(rbio->bio_pages[i]); | 
|  | d = kmap(rbio->stripe_pages[i]); | 
|  |  | 
|  | memcpy(d, s, PAGE_CACHE_SIZE); | 
|  |  | 
|  | kunmap(rbio->bio_pages[i]); | 
|  | kunmap(rbio->stripe_pages[i]); | 
|  | SetPageUptodate(rbio->stripe_pages[i]); | 
|  | } | 
|  | set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we hash on the first logical address of the stripe | 
|  | */ | 
|  | static int rbio_bucket(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | u64 num = rbio->bbio->raid_map[0]; | 
|  |  | 
|  | /* | 
|  | * we shift down quite a bit.  We're using byte | 
|  | * addressing, and most of the lower bits are zeros. | 
|  | * This tends to upset hash_64, and it consistently | 
|  | * returns just one or two different values. | 
|  | * | 
|  | * shifting off the lower bits fixes things. | 
|  | */ | 
|  | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * stealing an rbio means taking all the uptodate pages from the stripe | 
|  | * array in the source rbio and putting them into the destination rbio | 
|  | */ | 
|  | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) | 
|  | { | 
|  | int i; | 
|  | struct page *s; | 
|  | struct page *d; | 
|  |  | 
|  | if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < dest->nr_pages; i++) { | 
|  | s = src->stripe_pages[i]; | 
|  | if (!s || !PageUptodate(s)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | d = dest->stripe_pages[i]; | 
|  | if (d) | 
|  | __free_page(d); | 
|  |  | 
|  | dest->stripe_pages[i] = s; | 
|  | src->stripe_pages[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * merging means we take the bio_list from the victim and | 
|  | * splice it into the destination.  The victim should | 
|  | * be discarded afterwards. | 
|  | * | 
|  | * must be called with dest->rbio_list_lock held | 
|  | */ | 
|  | static void merge_rbio(struct btrfs_raid_bio *dest, | 
|  | struct btrfs_raid_bio *victim) | 
|  | { | 
|  | bio_list_merge(&dest->bio_list, &victim->bio_list); | 
|  | dest->bio_list_bytes += victim->bio_list_bytes; | 
|  | dest->generic_bio_cnt += victim->generic_bio_cnt; | 
|  | bio_list_init(&victim->bio_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * used to prune items that are in the cache.  The caller | 
|  | * must hold the hash table lock. | 
|  | */ | 
|  | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bucket = rbio_bucket(rbio); | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | struct btrfs_stripe_hash *h; | 
|  | int freeit = 0; | 
|  |  | 
|  | /* | 
|  | * check the bit again under the hash table lock. | 
|  | */ | 
|  | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
|  | return; | 
|  |  | 
|  | table = rbio->fs_info->stripe_hash_table; | 
|  | h = table->table + bucket; | 
|  |  | 
|  | /* hold the lock for the bucket because we may be | 
|  | * removing it from the hash table | 
|  | */ | 
|  | spin_lock(&h->lock); | 
|  |  | 
|  | /* | 
|  | * hold the lock for the bio list because we need | 
|  | * to make sure the bio list is empty | 
|  | */ | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  |  | 
|  | if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { | 
|  | list_del_init(&rbio->stripe_cache); | 
|  | table->cache_size -= 1; | 
|  | freeit = 1; | 
|  |  | 
|  | /* if the bio list isn't empty, this rbio is | 
|  | * still involved in an IO.  We take it out | 
|  | * of the cache list, and drop the ref that | 
|  | * was held for the list. | 
|  | * | 
|  | * If the bio_list was empty, we also remove | 
|  | * the rbio from the hash_table, and drop | 
|  | * the corresponding ref | 
|  | */ | 
|  | if (bio_list_empty(&rbio->bio_list)) { | 
|  | if (!list_empty(&rbio->hash_list)) { | 
|  | list_del_init(&rbio->hash_list); | 
|  | atomic_dec(&rbio->refs); | 
|  | BUG_ON(!list_empty(&rbio->plug_list)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | spin_unlock(&h->lock); | 
|  |  | 
|  | if (freeit) | 
|  | __free_raid_bio(rbio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * prune a given rbio from the cache | 
|  | */ | 
|  | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
|  | return; | 
|  |  | 
|  | table = rbio->fs_info->stripe_hash_table; | 
|  |  | 
|  | spin_lock_irqsave(&table->cache_lock, flags); | 
|  | __remove_rbio_from_cache(rbio); | 
|  | spin_unlock_irqrestore(&table->cache_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove everything in the cache | 
|  | */ | 
|  | static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | unsigned long flags; | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | table = info->stripe_hash_table; | 
|  |  | 
|  | spin_lock_irqsave(&table->cache_lock, flags); | 
|  | while (!list_empty(&table->stripe_cache)) { | 
|  | rbio = list_entry(table->stripe_cache.next, | 
|  | struct btrfs_raid_bio, | 
|  | stripe_cache); | 
|  | __remove_rbio_from_cache(rbio); | 
|  | } | 
|  | spin_unlock_irqrestore(&table->cache_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove all cached entries and free the hash table | 
|  | * used by unmount | 
|  | */ | 
|  | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) | 
|  | { | 
|  | if (!info->stripe_hash_table) | 
|  | return; | 
|  | btrfs_clear_rbio_cache(info); | 
|  | kvfree(info->stripe_hash_table); | 
|  | info->stripe_hash_table = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * insert an rbio into the stripe cache.  It | 
|  | * must have already been prepared by calling | 
|  | * cache_rbio_pages | 
|  | * | 
|  | * If this rbio was already cached, it gets | 
|  | * moved to the front of the lru. | 
|  | * | 
|  | * If the size of the rbio cache is too big, we | 
|  | * prune an item. | 
|  | */ | 
|  | static void cache_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) | 
|  | return; | 
|  |  | 
|  | table = rbio->fs_info->stripe_hash_table; | 
|  |  | 
|  | spin_lock_irqsave(&table->cache_lock, flags); | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  |  | 
|  | /* bump our ref if we were not in the list before */ | 
|  | if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
|  | atomic_inc(&rbio->refs); | 
|  |  | 
|  | if (!list_empty(&rbio->stripe_cache)){ | 
|  | list_move(&rbio->stripe_cache, &table->stripe_cache); | 
|  | } else { | 
|  | list_add(&rbio->stripe_cache, &table->stripe_cache); | 
|  | table->cache_size += 1; | 
|  | } | 
|  |  | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  |  | 
|  | if (table->cache_size > RBIO_CACHE_SIZE) { | 
|  | struct btrfs_raid_bio *found; | 
|  |  | 
|  | found = list_entry(table->stripe_cache.prev, | 
|  | struct btrfs_raid_bio, | 
|  | stripe_cache); | 
|  |  | 
|  | if (found != rbio) | 
|  | __remove_rbio_from_cache(found); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&table->cache_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to run the xor_blocks api.  It is only | 
|  | * able to do MAX_XOR_BLOCKS at a time, so we need to | 
|  | * loop through. | 
|  | */ | 
|  | static void run_xor(void **pages, int src_cnt, ssize_t len) | 
|  | { | 
|  | int src_off = 0; | 
|  | int xor_src_cnt = 0; | 
|  | void *dest = pages[src_cnt]; | 
|  |  | 
|  | while(src_cnt > 0) { | 
|  | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); | 
|  | xor_blocks(xor_src_cnt, len, dest, pages + src_off); | 
|  |  | 
|  | src_cnt -= xor_src_cnt; | 
|  | src_off += xor_src_cnt; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns true if the bio list inside this rbio | 
|  | * covers an entire stripe (no rmw required). | 
|  | * Must be called with the bio list lock held, or | 
|  | * at a time when you know it is impossible to add | 
|  | * new bios into the list | 
|  | */ | 
|  | static int __rbio_is_full(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | unsigned long size = rbio->bio_list_bytes; | 
|  | int ret = 1; | 
|  |  | 
|  | if (size != rbio->nr_data * rbio->stripe_len) | 
|  | ret = 0; | 
|  |  | 
|  | BUG_ON(size > rbio->nr_data * rbio->stripe_len); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int rbio_is_full(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | spin_lock_irqsave(&rbio->bio_list_lock, flags); | 
|  | ret = __rbio_is_full(rbio); | 
|  | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns 1 if it is safe to merge two rbios together. | 
|  | * The merging is safe if the two rbios correspond to | 
|  | * the same stripe and if they are both going in the same | 
|  | * direction (read vs write), and if neither one is | 
|  | * locked for final IO | 
|  | * | 
|  | * The caller is responsible for locking such that | 
|  | * rmw_locked is safe to test | 
|  | */ | 
|  | static int rbio_can_merge(struct btrfs_raid_bio *last, | 
|  | struct btrfs_raid_bio *cur) | 
|  | { | 
|  | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || | 
|  | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * we can't merge with cached rbios, since the | 
|  | * idea is that when we merge the destination | 
|  | * rbio is going to run our IO for us.  We can | 
|  | * steal from cached rbio's though, other functions | 
|  | * handle that. | 
|  | */ | 
|  | if (test_bit(RBIO_CACHE_BIT, &last->flags) || | 
|  | test_bit(RBIO_CACHE_BIT, &cur->flags)) | 
|  | return 0; | 
|  |  | 
|  | if (last->bbio->raid_map[0] != | 
|  | cur->bbio->raid_map[0]) | 
|  | return 0; | 
|  |  | 
|  | /* we can't merge with different operations */ | 
|  | if (last->operation != cur->operation) | 
|  | return 0; | 
|  | /* | 
|  | * We've need read the full stripe from the drive. | 
|  | * check and repair the parity and write the new results. | 
|  | * | 
|  | * We're not allowed to add any new bios to the | 
|  | * bio list here, anyone else that wants to | 
|  | * change this stripe needs to do their own rmw. | 
|  | */ | 
|  | if (last->operation == BTRFS_RBIO_PARITY_SCRUB || | 
|  | cur->operation == BTRFS_RBIO_PARITY_SCRUB) | 
|  | return 0; | 
|  |  | 
|  | if (last->operation == BTRFS_RBIO_REBUILD_MISSING || | 
|  | cur->operation == BTRFS_RBIO_REBUILD_MISSING) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, | 
|  | int index) | 
|  | { | 
|  | return stripe * rbio->stripe_npages + index; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * these are just the pages from the rbio array, not from anything | 
|  | * the FS sent down to us | 
|  | */ | 
|  | static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, | 
|  | int index) | 
|  | { | 
|  | return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to index into the pstripe | 
|  | */ | 
|  | static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) | 
|  | { | 
|  | return rbio_stripe_page(rbio, rbio->nr_data, index); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to index into the qstripe, returns null | 
|  | * if there is no qstripe | 
|  | */ | 
|  | static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) | 
|  | { | 
|  | if (rbio->nr_data + 1 == rbio->real_stripes) | 
|  | return NULL; | 
|  | return rbio_stripe_page(rbio, rbio->nr_data + 1, index); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The first stripe in the table for a logical address | 
|  | * has the lock.  rbios are added in one of three ways: | 
|  | * | 
|  | * 1) Nobody has the stripe locked yet.  The rbio is given | 
|  | * the lock and 0 is returned.  The caller must start the IO | 
|  | * themselves. | 
|  | * | 
|  | * 2) Someone has the stripe locked, but we're able to merge | 
|  | * with the lock owner.  The rbio is freed and the IO will | 
|  | * start automatically along with the existing rbio.  1 is returned. | 
|  | * | 
|  | * 3) Someone has the stripe locked, but we're not able to merge. | 
|  | * The rbio is added to the lock owner's plug list, or merged into | 
|  | * an rbio already on the plug list.  When the lock owner unlocks, | 
|  | * the next rbio on the list is run and the IO is started automatically. | 
|  | * 1 is returned | 
|  | * | 
|  | * If we return 0, the caller still owns the rbio and must continue with | 
|  | * IO submission.  If we return 1, the caller must assume the rbio has | 
|  | * already been freed. | 
|  | */ | 
|  | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bucket = rbio_bucket(rbio); | 
|  | struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; | 
|  | struct btrfs_raid_bio *cur; | 
|  | struct btrfs_raid_bio *pending; | 
|  | unsigned long flags; | 
|  | DEFINE_WAIT(wait); | 
|  | struct btrfs_raid_bio *freeit = NULL; | 
|  | struct btrfs_raid_bio *cache_drop = NULL; | 
|  | int ret = 0; | 
|  | int walk = 0; | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | list_for_each_entry(cur, &h->hash_list, hash_list) { | 
|  | walk++; | 
|  | if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { | 
|  | spin_lock(&cur->bio_list_lock); | 
|  |  | 
|  | /* can we steal this cached rbio's pages? */ | 
|  | if (bio_list_empty(&cur->bio_list) && | 
|  | list_empty(&cur->plug_list) && | 
|  | test_bit(RBIO_CACHE_BIT, &cur->flags) && | 
|  | !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { | 
|  | list_del_init(&cur->hash_list); | 
|  | atomic_dec(&cur->refs); | 
|  |  | 
|  | steal_rbio(cur, rbio); | 
|  | cache_drop = cur; | 
|  | spin_unlock(&cur->bio_list_lock); | 
|  |  | 
|  | goto lockit; | 
|  | } | 
|  |  | 
|  | /* can we merge into the lock owner? */ | 
|  | if (rbio_can_merge(cur, rbio)) { | 
|  | merge_rbio(cur, rbio); | 
|  | spin_unlock(&cur->bio_list_lock); | 
|  | freeit = rbio; | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * we couldn't merge with the running | 
|  | * rbio, see if we can merge with the | 
|  | * pending ones.  We don't have to | 
|  | * check for rmw_locked because there | 
|  | * is no way they are inside finish_rmw | 
|  | * right now | 
|  | */ | 
|  | list_for_each_entry(pending, &cur->plug_list, | 
|  | plug_list) { | 
|  | if (rbio_can_merge(pending, rbio)) { | 
|  | merge_rbio(pending, rbio); | 
|  | spin_unlock(&cur->bio_list_lock); | 
|  | freeit = rbio; | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* no merging, put us on the tail of the plug list, | 
|  | * our rbio will be started with the currently | 
|  | * running rbio unlocks | 
|  | */ | 
|  | list_add_tail(&rbio->plug_list, &cur->plug_list); | 
|  | spin_unlock(&cur->bio_list_lock); | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | lockit: | 
|  | atomic_inc(&rbio->refs); | 
|  | list_add(&rbio->hash_list, &h->hash_list); | 
|  | out: | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | if (cache_drop) | 
|  | remove_rbio_from_cache(cache_drop); | 
|  | if (freeit) | 
|  | __free_raid_bio(freeit); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called as rmw or parity rebuild is completed.  If the plug list has more | 
|  | * rbios waiting for this stripe, the next one on the list will be started | 
|  | */ | 
|  | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bucket; | 
|  | struct btrfs_stripe_hash *h; | 
|  | unsigned long flags; | 
|  | int keep_cache = 0; | 
|  |  | 
|  | bucket = rbio_bucket(rbio); | 
|  | h = rbio->fs_info->stripe_hash_table->table + bucket; | 
|  |  | 
|  | if (list_empty(&rbio->plug_list)) | 
|  | cache_rbio(rbio); | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  |  | 
|  | if (!list_empty(&rbio->hash_list)) { | 
|  | /* | 
|  | * if we're still cached and there is no other IO | 
|  | * to perform, just leave this rbio here for others | 
|  | * to steal from later | 
|  | */ | 
|  | if (list_empty(&rbio->plug_list) && | 
|  | test_bit(RBIO_CACHE_BIT, &rbio->flags)) { | 
|  | keep_cache = 1; | 
|  | clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
|  | BUG_ON(!bio_list_empty(&rbio->bio_list)); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | list_del_init(&rbio->hash_list); | 
|  | atomic_dec(&rbio->refs); | 
|  |  | 
|  | /* | 
|  | * we use the plug list to hold all the rbios | 
|  | * waiting for the chance to lock this stripe. | 
|  | * hand the lock over to one of them. | 
|  | */ | 
|  | if (!list_empty(&rbio->plug_list)) { | 
|  | struct btrfs_raid_bio *next; | 
|  | struct list_head *head = rbio->plug_list.next; | 
|  |  | 
|  | next = list_entry(head, struct btrfs_raid_bio, | 
|  | plug_list); | 
|  |  | 
|  | list_del_init(&rbio->plug_list); | 
|  |  | 
|  | list_add(&next->hash_list, &h->hash_list); | 
|  | atomic_inc(&next->refs); | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  |  | 
|  | if (next->operation == BTRFS_RBIO_READ_REBUILD) | 
|  | async_read_rebuild(next); | 
|  | else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { | 
|  | steal_rbio(rbio, next); | 
|  | async_read_rebuild(next); | 
|  | } else if (next->operation == BTRFS_RBIO_WRITE) { | 
|  | steal_rbio(rbio, next); | 
|  | async_rmw_stripe(next); | 
|  | } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { | 
|  | steal_rbio(rbio, next); | 
|  | async_scrub_parity(next); | 
|  | } | 
|  |  | 
|  | goto done_nolock; | 
|  | /* | 
|  | * The barrier for this waitqueue_active is not needed, | 
|  | * we're protected by h->lock and can't miss a wakeup. | 
|  | */ | 
|  | } else if (waitqueue_active(&h->wait)) { | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | wake_up(&h->wait); | 
|  | goto done_nolock; | 
|  | } | 
|  | } | 
|  | done: | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  |  | 
|  | done_nolock: | 
|  | if (!keep_cache) | 
|  | remove_rbio_from_cache(rbio); | 
|  | } | 
|  |  | 
|  | static void __free_raid_bio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | WARN_ON(atomic_read(&rbio->refs) < 0); | 
|  | if (!atomic_dec_and_test(&rbio->refs)) | 
|  | return; | 
|  |  | 
|  | WARN_ON(!list_empty(&rbio->stripe_cache)); | 
|  | WARN_ON(!list_empty(&rbio->hash_list)); | 
|  | WARN_ON(!bio_list_empty(&rbio->bio_list)); | 
|  |  | 
|  | for (i = 0; i < rbio->nr_pages; i++) { | 
|  | if (rbio->stripe_pages[i]) { | 
|  | __free_page(rbio->stripe_pages[i]); | 
|  | rbio->stripe_pages[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_put_bbio(rbio->bbio); | 
|  | kfree(rbio); | 
|  | } | 
|  |  | 
|  | static void free_raid_bio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | unlock_stripe(rbio); | 
|  | __free_raid_bio(rbio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this frees the rbio and runs through all the bios in the | 
|  | * bio_list and calls end_io on them | 
|  | */ | 
|  | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err) | 
|  | { | 
|  | struct bio *cur = bio_list_get(&rbio->bio_list); | 
|  | struct bio *next; | 
|  |  | 
|  | if (rbio->generic_bio_cnt) | 
|  | btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); | 
|  |  | 
|  | free_raid_bio(rbio); | 
|  |  | 
|  | while (cur) { | 
|  | next = cur->bi_next; | 
|  | cur->bi_next = NULL; | 
|  | cur->bi_error = err; | 
|  | bio_endio(cur); | 
|  | cur = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * end io function used by finish_rmw.  When we finally | 
|  | * get here, we've written a full stripe | 
|  | */ | 
|  | static void raid_write_end_io(struct bio *bio) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio = bio->bi_private; | 
|  | int err = bio->bi_error; | 
|  | int max_errors; | 
|  |  | 
|  | if (err) | 
|  | fail_bio_stripe(rbio, bio); | 
|  |  | 
|  | bio_put(bio); | 
|  |  | 
|  | if (!atomic_dec_and_test(&rbio->stripes_pending)) | 
|  | return; | 
|  |  | 
|  | err = 0; | 
|  |  | 
|  | /* OK, we have read all the stripes we need to. */ | 
|  | max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? | 
|  | 0 : rbio->bbio->max_errors; | 
|  | if (atomic_read(&rbio->error) > max_errors) | 
|  | err = -EIO; | 
|  |  | 
|  | rbio_orig_end_io(rbio, err); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the read/modify/write code wants to use the original bio for | 
|  | * any pages it included, and then use the rbio for everything | 
|  | * else.  This function decides if a given index (stripe number) | 
|  | * and page number in that stripe fall inside the original bio | 
|  | * or the rbio. | 
|  | * | 
|  | * if you set bio_list_only, you'll get a NULL back for any ranges | 
|  | * that are outside the bio_list | 
|  | * | 
|  | * This doesn't take any refs on anything, you get a bare page pointer | 
|  | * and the caller must bump refs as required. | 
|  | * | 
|  | * You must call index_rbio_pages once before you can trust | 
|  | * the answers from this function. | 
|  | */ | 
|  | static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, | 
|  | int index, int pagenr, int bio_list_only) | 
|  | { | 
|  | int chunk_page; | 
|  | struct page *p = NULL; | 
|  |  | 
|  | chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; | 
|  |  | 
|  | spin_lock_irq(&rbio->bio_list_lock); | 
|  | p = rbio->bio_pages[chunk_page]; | 
|  | spin_unlock_irq(&rbio->bio_list_lock); | 
|  |  | 
|  | if (p || bio_list_only) | 
|  | return p; | 
|  |  | 
|  | return rbio->stripe_pages[chunk_page]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * number of pages we need for the entire stripe across all the | 
|  | * drives | 
|  | */ | 
|  | static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) | 
|  | { | 
|  | return DIV_ROUND_UP(stripe_len, PAGE_CACHE_SIZE) * nr_stripes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocation and initial setup for the btrfs_raid_bio.  Not | 
|  | * this does not allocate any pages for rbio->pages. | 
|  | */ | 
|  | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, | 
|  | struct btrfs_bio *bbio, u64 stripe_len) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  | int nr_data = 0; | 
|  | int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; | 
|  | int num_pages = rbio_nr_pages(stripe_len, real_stripes); | 
|  | int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); | 
|  | void *p; | 
|  |  | 
|  | rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + | 
|  | DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) * | 
|  | sizeof(long), GFP_NOFS); | 
|  | if (!rbio) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | bio_list_init(&rbio->bio_list); | 
|  | INIT_LIST_HEAD(&rbio->plug_list); | 
|  | spin_lock_init(&rbio->bio_list_lock); | 
|  | INIT_LIST_HEAD(&rbio->stripe_cache); | 
|  | INIT_LIST_HEAD(&rbio->hash_list); | 
|  | rbio->bbio = bbio; | 
|  | rbio->fs_info = root->fs_info; | 
|  | rbio->stripe_len = stripe_len; | 
|  | rbio->nr_pages = num_pages; | 
|  | rbio->real_stripes = real_stripes; | 
|  | rbio->stripe_npages = stripe_npages; | 
|  | rbio->faila = -1; | 
|  | rbio->failb = -1; | 
|  | atomic_set(&rbio->refs, 1); | 
|  | atomic_set(&rbio->error, 0); | 
|  | atomic_set(&rbio->stripes_pending, 0); | 
|  |  | 
|  | /* | 
|  | * the stripe_pages and bio_pages array point to the extra | 
|  | * memory we allocated past the end of the rbio | 
|  | */ | 
|  | p = rbio + 1; | 
|  | rbio->stripe_pages = p; | 
|  | rbio->bio_pages = p + sizeof(struct page *) * num_pages; | 
|  | rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; | 
|  |  | 
|  | if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) | 
|  | nr_data = real_stripes - 1; | 
|  | else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) | 
|  | nr_data = real_stripes - 2; | 
|  | else | 
|  | BUG(); | 
|  |  | 
|  | rbio->nr_data = nr_data; | 
|  | return rbio; | 
|  | } | 
|  |  | 
|  | /* allocate pages for all the stripes in the bio, including parity */ | 
|  | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int i; | 
|  | struct page *page; | 
|  |  | 
|  | for (i = 0; i < rbio->nr_pages; i++) { | 
|  | if (rbio->stripe_pages[i]) | 
|  | continue; | 
|  | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | rbio->stripe_pages[i] = page; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* only allocate pages for p/q stripes */ | 
|  | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int i; | 
|  | struct page *page; | 
|  |  | 
|  | i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); | 
|  |  | 
|  | for (; i < rbio->nr_pages; i++) { | 
|  | if (rbio->stripe_pages[i]) | 
|  | continue; | 
|  | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | rbio->stripe_pages[i] = page; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add a single page from a specific stripe into our list of bios for IO | 
|  | * this will try to merge into existing bios if possible, and returns | 
|  | * zero if all went well. | 
|  | */ | 
|  | static int rbio_add_io_page(struct btrfs_raid_bio *rbio, | 
|  | struct bio_list *bio_list, | 
|  | struct page *page, | 
|  | int stripe_nr, | 
|  | unsigned long page_index, | 
|  | unsigned long bio_max_len) | 
|  | { | 
|  | struct bio *last = bio_list->tail; | 
|  | u64 last_end = 0; | 
|  | int ret; | 
|  | struct bio *bio; | 
|  | struct btrfs_bio_stripe *stripe; | 
|  | u64 disk_start; | 
|  |  | 
|  | stripe = &rbio->bbio->stripes[stripe_nr]; | 
|  | disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT); | 
|  |  | 
|  | /* if the device is missing, just fail this stripe */ | 
|  | if (!stripe->dev->bdev) | 
|  | return fail_rbio_index(rbio, stripe_nr); | 
|  |  | 
|  | /* see if we can add this page onto our existing bio */ | 
|  | if (last) { | 
|  | last_end = (u64)last->bi_iter.bi_sector << 9; | 
|  | last_end += last->bi_iter.bi_size; | 
|  |  | 
|  | /* | 
|  | * we can't merge these if they are from different | 
|  | * devices or if they are not contiguous | 
|  | */ | 
|  | if (last_end == disk_start && stripe->dev->bdev && | 
|  | !last->bi_error && | 
|  | last->bi_bdev == stripe->dev->bdev) { | 
|  | ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0); | 
|  | if (ret == PAGE_CACHE_SIZE) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* put a new bio on the list */ | 
|  | bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); | 
|  | if (!bio) | 
|  | return -ENOMEM; | 
|  |  | 
|  | bio->bi_iter.bi_size = 0; | 
|  | bio->bi_bdev = stripe->dev->bdev; | 
|  | bio->bi_iter.bi_sector = disk_start >> 9; | 
|  |  | 
|  | bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); | 
|  | bio_list_add(bio_list, bio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * while we're doing the read/modify/write cycle, we could | 
|  | * have errors in reading pages off the disk.  This checks | 
|  | * for errors and if we're not able to read the page it'll | 
|  | * trigger parity reconstruction.  The rmw will be finished | 
|  | * after we've reconstructed the failed stripes | 
|  | */ | 
|  | static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | if (rbio->faila >= 0 || rbio->failb >= 0) { | 
|  | BUG_ON(rbio->faila == rbio->real_stripes - 1); | 
|  | __raid56_parity_recover(rbio); | 
|  | } else { | 
|  | finish_rmw(rbio); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to walk our bio list and populate the bio_pages array with | 
|  | * the result.  This seems expensive, but it is faster than constantly | 
|  | * searching through the bio list as we setup the IO in finish_rmw or stripe | 
|  | * reconstruction. | 
|  | * | 
|  | * This must be called before you trust the answers from page_in_rbio | 
|  | */ | 
|  | static void index_rbio_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct bio *bio; | 
|  | u64 start; | 
|  | unsigned long stripe_offset; | 
|  | unsigned long page_index; | 
|  | struct page *p; | 
|  | int i; | 
|  |  | 
|  | spin_lock_irq(&rbio->bio_list_lock); | 
|  | bio_list_for_each(bio, &rbio->bio_list) { | 
|  | start = (u64)bio->bi_iter.bi_sector << 9; | 
|  | stripe_offset = start - rbio->bbio->raid_map[0]; | 
|  | page_index = stripe_offset >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | for (i = 0; i < bio->bi_vcnt; i++) { | 
|  | p = bio->bi_io_vec[i].bv_page; | 
|  | rbio->bio_pages[page_index + i] = p; | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&rbio->bio_list_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is called from one of two situations.  We either | 
|  | * have a full stripe from the higher layers, or we've read all | 
|  | * the missing bits off disk. | 
|  | * | 
|  | * This will calculate the parity and then send down any | 
|  | * changed blocks. | 
|  | */ | 
|  | static noinline void finish_rmw(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct btrfs_bio *bbio = rbio->bbio; | 
|  | void *pointers[rbio->real_stripes]; | 
|  | int nr_data = rbio->nr_data; | 
|  | int stripe; | 
|  | int pagenr; | 
|  | int p_stripe = -1; | 
|  | int q_stripe = -1; | 
|  | struct bio_list bio_list; | 
|  | struct bio *bio; | 
|  | int ret; | 
|  |  | 
|  | bio_list_init(&bio_list); | 
|  |  | 
|  | if (rbio->real_stripes - rbio->nr_data == 1) { | 
|  | p_stripe = rbio->real_stripes - 1; | 
|  | } else if (rbio->real_stripes - rbio->nr_data == 2) { | 
|  | p_stripe = rbio->real_stripes - 2; | 
|  | q_stripe = rbio->real_stripes - 1; | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* at this point we either have a full stripe, | 
|  | * or we've read the full stripe from the drive. | 
|  | * recalculate the parity and write the new results. | 
|  | * | 
|  | * We're not allowed to add any new bios to the | 
|  | * bio list here, anyone else that wants to | 
|  | * change this stripe needs to do their own rmw. | 
|  | */ | 
|  | spin_lock_irq(&rbio->bio_list_lock); | 
|  | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
|  | spin_unlock_irq(&rbio->bio_list_lock); | 
|  |  | 
|  | atomic_set(&rbio->error, 0); | 
|  |  | 
|  | /* | 
|  | * now that we've set rmw_locked, run through the | 
|  | * bio list one last time and map the page pointers | 
|  | * | 
|  | * We don't cache full rbios because we're assuming | 
|  | * the higher layers are unlikely to use this area of | 
|  | * the disk again soon.  If they do use it again, | 
|  | * hopefully they will send another full bio. | 
|  | */ | 
|  | index_rbio_pages(rbio); | 
|  | if (!rbio_is_full(rbio)) | 
|  | cache_rbio_pages(rbio); | 
|  | else | 
|  | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  |  | 
|  | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { | 
|  | struct page *p; | 
|  | /* first collect one page from each data stripe */ | 
|  | for (stripe = 0; stripe < nr_data; stripe++) { | 
|  | p = page_in_rbio(rbio, stripe, pagenr, 0); | 
|  | pointers[stripe] = kmap(p); | 
|  | } | 
|  |  | 
|  | /* then add the parity stripe */ | 
|  | p = rbio_pstripe_page(rbio, pagenr); | 
|  | SetPageUptodate(p); | 
|  | pointers[stripe++] = kmap(p); | 
|  |  | 
|  | if (q_stripe != -1) { | 
|  |  | 
|  | /* | 
|  | * raid6, add the qstripe and call the | 
|  | * library function to fill in our p/q | 
|  | */ | 
|  | p = rbio_qstripe_page(rbio, pagenr); | 
|  | SetPageUptodate(p); | 
|  | pointers[stripe++] = kmap(p); | 
|  |  | 
|  | raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, | 
|  | pointers); | 
|  | } else { | 
|  | /* raid5 */ | 
|  | memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); | 
|  | run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); | 
|  | } | 
|  |  | 
|  |  | 
|  | for (stripe = 0; stripe < rbio->real_stripes; stripe++) | 
|  | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * time to start writing.  Make bios for everything from the | 
|  | * higher layers (the bio_list in our rbio) and our p/q.  Ignore | 
|  | * everything else. | 
|  | */ | 
|  | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
|  | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { | 
|  | struct page *page; | 
|  | if (stripe < rbio->nr_data) { | 
|  | page = page_in_rbio(rbio, stripe, pagenr, 1); | 
|  | if (!page) | 
|  | continue; | 
|  | } else { | 
|  | page = rbio_stripe_page(rbio, stripe, pagenr); | 
|  | } | 
|  |  | 
|  | ret = rbio_add_io_page(rbio, &bio_list, | 
|  | page, stripe, pagenr, rbio->stripe_len); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (likely(!bbio->num_tgtdevs)) | 
|  | goto write_data; | 
|  |  | 
|  | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
|  | if (!bbio->tgtdev_map[stripe]) | 
|  | continue; | 
|  |  | 
|  | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { | 
|  | struct page *page; | 
|  | if (stripe < rbio->nr_data) { | 
|  | page = page_in_rbio(rbio, stripe, pagenr, 1); | 
|  | if (!page) | 
|  | continue; | 
|  | } else { | 
|  | page = rbio_stripe_page(rbio, stripe, pagenr); | 
|  | } | 
|  |  | 
|  | ret = rbio_add_io_page(rbio, &bio_list, page, | 
|  | rbio->bbio->tgtdev_map[stripe], | 
|  | pagenr, rbio->stripe_len); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | write_data: | 
|  | atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); | 
|  | BUG_ON(atomic_read(&rbio->stripes_pending) == 0); | 
|  |  | 
|  | while (1) { | 
|  | bio = bio_list_pop(&bio_list); | 
|  | if (!bio) | 
|  | break; | 
|  |  | 
|  | bio->bi_private = rbio; | 
|  | bio->bi_end_io = raid_write_end_io; | 
|  | submit_bio(WRITE, bio); | 
|  | } | 
|  | return; | 
|  |  | 
|  | cleanup: | 
|  | rbio_orig_end_io(rbio, -EIO); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to find the stripe number for a given bio.  Used to figure out which | 
|  | * stripe has failed.  This expects the bio to correspond to a physical disk, | 
|  | * so it looks up based on physical sector numbers. | 
|  | */ | 
|  | static int find_bio_stripe(struct btrfs_raid_bio *rbio, | 
|  | struct bio *bio) | 
|  | { | 
|  | u64 physical = bio->bi_iter.bi_sector; | 
|  | u64 stripe_start; | 
|  | int i; | 
|  | struct btrfs_bio_stripe *stripe; | 
|  |  | 
|  | physical <<= 9; | 
|  |  | 
|  | for (i = 0; i < rbio->bbio->num_stripes; i++) { | 
|  | stripe = &rbio->bbio->stripes[i]; | 
|  | stripe_start = stripe->physical; | 
|  | if (physical >= stripe_start && | 
|  | physical < stripe_start + rbio->stripe_len && | 
|  | bio->bi_bdev == stripe->dev->bdev) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to find the stripe number for a given | 
|  | * bio (before mapping).  Used to figure out which stripe has | 
|  | * failed.  This looks up based on logical block numbers. | 
|  | */ | 
|  | static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, | 
|  | struct bio *bio) | 
|  | { | 
|  | u64 logical = bio->bi_iter.bi_sector; | 
|  | u64 stripe_start; | 
|  | int i; | 
|  |  | 
|  | logical <<= 9; | 
|  |  | 
|  | for (i = 0; i < rbio->nr_data; i++) { | 
|  | stripe_start = rbio->bbio->raid_map[i]; | 
|  | if (logical >= stripe_start && | 
|  | logical < stripe_start + rbio->stripe_len) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns -EIO if we had too many failures | 
|  | */ | 
|  | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock_irqsave(&rbio->bio_list_lock, flags); | 
|  |  | 
|  | /* we already know this stripe is bad, move on */ | 
|  | if (rbio->faila == failed || rbio->failb == failed) | 
|  | goto out; | 
|  |  | 
|  | if (rbio->faila == -1) { | 
|  | /* first failure on this rbio */ | 
|  | rbio->faila = failed; | 
|  | atomic_inc(&rbio->error); | 
|  | } else if (rbio->failb == -1) { | 
|  | /* second failure on this rbio */ | 
|  | rbio->failb = failed; | 
|  | atomic_inc(&rbio->error); | 
|  | } else { | 
|  | ret = -EIO; | 
|  | } | 
|  | out: | 
|  | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to fail a stripe based on a physical disk | 
|  | * bio. | 
|  | */ | 
|  | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, | 
|  | struct bio *bio) | 
|  | { | 
|  | int failed = find_bio_stripe(rbio, bio); | 
|  |  | 
|  | if (failed < 0) | 
|  | return -EIO; | 
|  |  | 
|  | return fail_rbio_index(rbio, failed); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this sets each page in the bio uptodate.  It should only be used on private | 
|  | * rbio pages, nothing that comes in from the higher layers | 
|  | */ | 
|  | static void set_bio_pages_uptodate(struct bio *bio) | 
|  | { | 
|  | int i; | 
|  | struct page *p; | 
|  |  | 
|  | for (i = 0; i < bio->bi_vcnt; i++) { | 
|  | p = bio->bi_io_vec[i].bv_page; | 
|  | SetPageUptodate(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * end io for the read phase of the rmw cycle.  All the bios here are physical | 
|  | * stripe bios we've read from the disk so we can recalculate the parity of the | 
|  | * stripe. | 
|  | * | 
|  | * This will usually kick off finish_rmw once all the bios are read in, but it | 
|  | * may trigger parity reconstruction if we had any errors along the way | 
|  | */ | 
|  | static void raid_rmw_end_io(struct bio *bio) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio = bio->bi_private; | 
|  |  | 
|  | if (bio->bi_error) | 
|  | fail_bio_stripe(rbio, bio); | 
|  | else | 
|  | set_bio_pages_uptodate(bio); | 
|  |  | 
|  | bio_put(bio); | 
|  |  | 
|  | if (!atomic_dec_and_test(&rbio->stripes_pending)) | 
|  | return; | 
|  |  | 
|  | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) | 
|  | goto cleanup; | 
|  |  | 
|  | /* | 
|  | * this will normally call finish_rmw to start our write | 
|  | * but if there are any failed stripes we'll reconstruct | 
|  | * from parity first | 
|  | */ | 
|  | validate_rbio_for_rmw(rbio); | 
|  | return; | 
|  |  | 
|  | cleanup: | 
|  |  | 
|  | rbio_orig_end_io(rbio, -EIO); | 
|  | } | 
|  |  | 
|  | static void async_rmw_stripe(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | btrfs_init_work(&rbio->work, btrfs_rmw_helper, | 
|  | rmw_work, NULL, NULL); | 
|  |  | 
|  | btrfs_queue_work(rbio->fs_info->rmw_workers, | 
|  | &rbio->work); | 
|  | } | 
|  |  | 
|  | static void async_read_rebuild(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | btrfs_init_work(&rbio->work, btrfs_rmw_helper, | 
|  | read_rebuild_work, NULL, NULL); | 
|  |  | 
|  | btrfs_queue_work(rbio->fs_info->rmw_workers, | 
|  | &rbio->work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the stripe must be locked by the caller.  It will | 
|  | * unlock after all the writes are done | 
|  | */ | 
|  | static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bios_to_read = 0; | 
|  | struct bio_list bio_list; | 
|  | int ret; | 
|  | int pagenr; | 
|  | int stripe; | 
|  | struct bio *bio; | 
|  |  | 
|  | bio_list_init(&bio_list); | 
|  |  | 
|  | ret = alloc_rbio_pages(rbio); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  |  | 
|  | index_rbio_pages(rbio); | 
|  |  | 
|  | atomic_set(&rbio->error, 0); | 
|  | /* | 
|  | * build a list of bios to read all the missing parts of this | 
|  | * stripe | 
|  | */ | 
|  | for (stripe = 0; stripe < rbio->nr_data; stripe++) { | 
|  | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { | 
|  | struct page *page; | 
|  | /* | 
|  | * we want to find all the pages missing from | 
|  | * the rbio and read them from the disk.  If | 
|  | * page_in_rbio finds a page in the bio list | 
|  | * we don't need to read it off the stripe. | 
|  | */ | 
|  | page = page_in_rbio(rbio, stripe, pagenr, 1); | 
|  | if (page) | 
|  | continue; | 
|  |  | 
|  | page = rbio_stripe_page(rbio, stripe, pagenr); | 
|  | /* | 
|  | * the bio cache may have handed us an uptodate | 
|  | * page.  If so, be happy and use it | 
|  | */ | 
|  | if (PageUptodate(page)) | 
|  | continue; | 
|  |  | 
|  | ret = rbio_add_io_page(rbio, &bio_list, page, | 
|  | stripe, pagenr, rbio->stripe_len); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | bios_to_read = bio_list_size(&bio_list); | 
|  | if (!bios_to_read) { | 
|  | /* | 
|  | * this can happen if others have merged with | 
|  | * us, it means there is nothing left to read. | 
|  | * But if there are missing devices it may not be | 
|  | * safe to do the full stripe write yet. | 
|  | */ | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the bbio may be freed once we submit the last bio.  Make sure | 
|  | * not to touch it after that | 
|  | */ | 
|  | atomic_set(&rbio->stripes_pending, bios_to_read); | 
|  | while (1) { | 
|  | bio = bio_list_pop(&bio_list); | 
|  | if (!bio) | 
|  | break; | 
|  |  | 
|  | bio->bi_private = rbio; | 
|  | bio->bi_end_io = raid_rmw_end_io; | 
|  |  | 
|  | btrfs_bio_wq_end_io(rbio->fs_info, bio, | 
|  | BTRFS_WQ_ENDIO_RAID56); | 
|  |  | 
|  | submit_bio(READ, bio); | 
|  | } | 
|  | /* the actual write will happen once the reads are done */ | 
|  | return 0; | 
|  |  | 
|  | cleanup: | 
|  | rbio_orig_end_io(rbio, -EIO); | 
|  | return -EIO; | 
|  |  | 
|  | finish: | 
|  | validate_rbio_for_rmw(rbio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if the upper layers pass in a full stripe, we thank them by only allocating | 
|  | * enough pages to hold the parity, and sending it all down quickly. | 
|  | */ | 
|  | static int full_stripe_write(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = alloc_rbio_parity_pages(rbio); | 
|  | if (ret) { | 
|  | __free_raid_bio(rbio); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = lock_stripe_add(rbio); | 
|  | if (ret == 0) | 
|  | finish_rmw(rbio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * partial stripe writes get handed over to async helpers. | 
|  | * We're really hoping to merge a few more writes into this | 
|  | * rbio before calculating new parity | 
|  | */ | 
|  | static int partial_stripe_write(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = lock_stripe_add(rbio); | 
|  | if (ret == 0) | 
|  | async_rmw_stripe(rbio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sometimes while we were reading from the drive to | 
|  | * recalculate parity, enough new bios come into create | 
|  | * a full stripe.  So we do a check here to see if we can | 
|  | * go directly to finish_rmw | 
|  | */ | 
|  | static int __raid56_parity_write(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | /* head off into rmw land if we don't have a full stripe */ | 
|  | if (!rbio_is_full(rbio)) | 
|  | return partial_stripe_write(rbio); | 
|  | return full_stripe_write(rbio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We use plugging call backs to collect full stripes. | 
|  | * Any time we get a partial stripe write while plugged | 
|  | * we collect it into a list.  When the unplug comes down, | 
|  | * we sort the list by logical block number and merge | 
|  | * everything we can into the same rbios | 
|  | */ | 
|  | struct btrfs_plug_cb { | 
|  | struct blk_plug_cb cb; | 
|  | struct btrfs_fs_info *info; | 
|  | struct list_head rbio_list; | 
|  | struct btrfs_work work; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * rbios on the plug list are sorted for easier merging. | 
|  | */ | 
|  | static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) | 
|  | { | 
|  | struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, | 
|  | plug_list); | 
|  | struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, | 
|  | plug_list); | 
|  | u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; | 
|  | u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; | 
|  |  | 
|  | if (a_sector < b_sector) | 
|  | return -1; | 
|  | if (a_sector > b_sector) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void run_plug(struct btrfs_plug_cb *plug) | 
|  | { | 
|  | struct btrfs_raid_bio *cur; | 
|  | struct btrfs_raid_bio *last = NULL; | 
|  |  | 
|  | /* | 
|  | * sort our plug list then try to merge | 
|  | * everything we can in hopes of creating full | 
|  | * stripes. | 
|  | */ | 
|  | list_sort(NULL, &plug->rbio_list, plug_cmp); | 
|  | while (!list_empty(&plug->rbio_list)) { | 
|  | cur = list_entry(plug->rbio_list.next, | 
|  | struct btrfs_raid_bio, plug_list); | 
|  | list_del_init(&cur->plug_list); | 
|  |  | 
|  | if (rbio_is_full(cur)) { | 
|  | /* we have a full stripe, send it down */ | 
|  | full_stripe_write(cur); | 
|  | continue; | 
|  | } | 
|  | if (last) { | 
|  | if (rbio_can_merge(last, cur)) { | 
|  | merge_rbio(last, cur); | 
|  | __free_raid_bio(cur); | 
|  | continue; | 
|  |  | 
|  | } | 
|  | __raid56_parity_write(last); | 
|  | } | 
|  | last = cur; | 
|  | } | 
|  | if (last) { | 
|  | __raid56_parity_write(last); | 
|  | } | 
|  | kfree(plug); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if the unplug comes from schedule, we have to push the | 
|  | * work off to a helper thread | 
|  | */ | 
|  | static void unplug_work(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_plug_cb *plug; | 
|  | plug = container_of(work, struct btrfs_plug_cb, work); | 
|  | run_plug(plug); | 
|  | } | 
|  |  | 
|  | static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) | 
|  | { | 
|  | struct btrfs_plug_cb *plug; | 
|  | plug = container_of(cb, struct btrfs_plug_cb, cb); | 
|  |  | 
|  | if (from_schedule) { | 
|  | btrfs_init_work(&plug->work, btrfs_rmw_helper, | 
|  | unplug_work, NULL, NULL); | 
|  | btrfs_queue_work(plug->info->rmw_workers, | 
|  | &plug->work); | 
|  | return; | 
|  | } | 
|  | run_plug(plug); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * our main entry point for writes from the rest of the FS. | 
|  | */ | 
|  | int raid56_parity_write(struct btrfs_root *root, struct bio *bio, | 
|  | struct btrfs_bio *bbio, u64 stripe_len) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  | struct btrfs_plug_cb *plug = NULL; | 
|  | struct blk_plug_cb *cb; | 
|  | int ret; | 
|  |  | 
|  | rbio = alloc_rbio(root, bbio, stripe_len); | 
|  | if (IS_ERR(rbio)) { | 
|  | btrfs_put_bbio(bbio); | 
|  | return PTR_ERR(rbio); | 
|  | } | 
|  | bio_list_add(&rbio->bio_list, bio); | 
|  | rbio->bio_list_bytes = bio->bi_iter.bi_size; | 
|  | rbio->operation = BTRFS_RBIO_WRITE; | 
|  |  | 
|  | btrfs_bio_counter_inc_noblocked(root->fs_info); | 
|  | rbio->generic_bio_cnt = 1; | 
|  |  | 
|  | /* | 
|  | * don't plug on full rbios, just get them out the door | 
|  | * as quickly as we can | 
|  | */ | 
|  | if (rbio_is_full(rbio)) { | 
|  | ret = full_stripe_write(rbio); | 
|  | if (ret) | 
|  | btrfs_bio_counter_dec(root->fs_info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info, | 
|  | sizeof(*plug)); | 
|  | if (cb) { | 
|  | plug = container_of(cb, struct btrfs_plug_cb, cb); | 
|  | if (!plug->info) { | 
|  | plug->info = root->fs_info; | 
|  | INIT_LIST_HEAD(&plug->rbio_list); | 
|  | } | 
|  | list_add_tail(&rbio->plug_list, &plug->rbio_list); | 
|  | ret = 0; | 
|  | } else { | 
|  | ret = __raid56_parity_write(rbio); | 
|  | if (ret) | 
|  | btrfs_bio_counter_dec(root->fs_info); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * all parity reconstruction happens here.  We've read in everything | 
|  | * we can find from the drives and this does the heavy lifting of | 
|  | * sorting the good from the bad. | 
|  | */ | 
|  | static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int pagenr, stripe; | 
|  | void **pointers; | 
|  | int faila = -1, failb = -1; | 
|  | struct page *page; | 
|  | int err; | 
|  | int i; | 
|  |  | 
|  | pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | 
|  | if (!pointers) { | 
|  | err = -ENOMEM; | 
|  | goto cleanup_io; | 
|  | } | 
|  |  | 
|  | faila = rbio->faila; | 
|  | failb = rbio->failb; | 
|  |  | 
|  | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
|  | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { | 
|  | spin_lock_irq(&rbio->bio_list_lock); | 
|  | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
|  | spin_unlock_irq(&rbio->bio_list_lock); | 
|  | } | 
|  |  | 
|  | index_rbio_pages(rbio); | 
|  |  | 
|  | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { | 
|  | /* | 
|  | * Now we just use bitmap to mark the horizontal stripes in | 
|  | * which we have data when doing parity scrub. | 
|  | */ | 
|  | if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && | 
|  | !test_bit(pagenr, rbio->dbitmap)) | 
|  | continue; | 
|  |  | 
|  | /* setup our array of pointers with pages | 
|  | * from each stripe | 
|  | */ | 
|  | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
|  | /* | 
|  | * if we're rebuilding a read, we have to use | 
|  | * pages from the bio list | 
|  | */ | 
|  | if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
|  | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && | 
|  | (stripe == faila || stripe == failb)) { | 
|  | page = page_in_rbio(rbio, stripe, pagenr, 0); | 
|  | } else { | 
|  | page = rbio_stripe_page(rbio, stripe, pagenr); | 
|  | } | 
|  | pointers[stripe] = kmap(page); | 
|  | } | 
|  |  | 
|  | /* all raid6 handling here */ | 
|  | if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { | 
|  | /* | 
|  | * single failure, rebuild from parity raid5 | 
|  | * style | 
|  | */ | 
|  | if (failb < 0) { | 
|  | if (faila == rbio->nr_data) { | 
|  | /* | 
|  | * Just the P stripe has failed, without | 
|  | * a bad data or Q stripe. | 
|  | * TODO, we should redo the xor here. | 
|  | */ | 
|  | err = -EIO; | 
|  | goto cleanup; | 
|  | } | 
|  | /* | 
|  | * a single failure in raid6 is rebuilt | 
|  | * in the pstripe code below | 
|  | */ | 
|  | goto pstripe; | 
|  | } | 
|  |  | 
|  | /* make sure our ps and qs are in order */ | 
|  | if (faila > failb) { | 
|  | int tmp = failb; | 
|  | failb = faila; | 
|  | faila = tmp; | 
|  | } | 
|  |  | 
|  | /* if the q stripe is failed, do a pstripe reconstruction | 
|  | * from the xors. | 
|  | * If both the q stripe and the P stripe are failed, we're | 
|  | * here due to a crc mismatch and we can't give them the | 
|  | * data they want | 
|  | */ | 
|  | if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { | 
|  | if (rbio->bbio->raid_map[faila] == | 
|  | RAID5_P_STRIPE) { | 
|  | err = -EIO; | 
|  | goto cleanup; | 
|  | } | 
|  | /* | 
|  | * otherwise we have one bad data stripe and | 
|  | * a good P stripe.  raid5! | 
|  | */ | 
|  | goto pstripe; | 
|  | } | 
|  |  | 
|  | if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { | 
|  | raid6_datap_recov(rbio->real_stripes, | 
|  | PAGE_SIZE, faila, pointers); | 
|  | } else { | 
|  | raid6_2data_recov(rbio->real_stripes, | 
|  | PAGE_SIZE, faila, failb, | 
|  | pointers); | 
|  | } | 
|  | } else { | 
|  | void *p; | 
|  |  | 
|  | /* rebuild from P stripe here (raid5 or raid6) */ | 
|  | BUG_ON(failb != -1); | 
|  | pstripe: | 
|  | /* Copy parity block into failed block to start with */ | 
|  | memcpy(pointers[faila], | 
|  | pointers[rbio->nr_data], | 
|  | PAGE_CACHE_SIZE); | 
|  |  | 
|  | /* rearrange the pointer array */ | 
|  | p = pointers[faila]; | 
|  | for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) | 
|  | pointers[stripe] = pointers[stripe + 1]; | 
|  | pointers[rbio->nr_data - 1] = p; | 
|  |  | 
|  | /* xor in the rest */ | 
|  | run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE); | 
|  | } | 
|  | /* if we're doing this rebuild as part of an rmw, go through | 
|  | * and set all of our private rbio pages in the | 
|  | * failed stripes as uptodate.  This way finish_rmw will | 
|  | * know they can be trusted.  If this was a read reconstruction, | 
|  | * other endio functions will fiddle the uptodate bits | 
|  | */ | 
|  | if (rbio->operation == BTRFS_RBIO_WRITE) { | 
|  | for (i = 0;  i < rbio->stripe_npages; i++) { | 
|  | if (faila != -1) { | 
|  | page = rbio_stripe_page(rbio, faila, i); | 
|  | SetPageUptodate(page); | 
|  | } | 
|  | if (failb != -1) { | 
|  | page = rbio_stripe_page(rbio, failb, i); | 
|  | SetPageUptodate(page); | 
|  | } | 
|  | } | 
|  | } | 
|  | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
|  | /* | 
|  | * if we're rebuilding a read, we have to use | 
|  | * pages from the bio list | 
|  | */ | 
|  | if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
|  | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && | 
|  | (stripe == faila || stripe == failb)) { | 
|  | page = page_in_rbio(rbio, stripe, pagenr, 0); | 
|  | } else { | 
|  | page = rbio_stripe_page(rbio, stripe, pagenr); | 
|  | } | 
|  | kunmap(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | cleanup: | 
|  | kfree(pointers); | 
|  |  | 
|  | cleanup_io: | 
|  | if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { | 
|  | if (err == 0) | 
|  | cache_rbio_pages(rbio); | 
|  | else | 
|  | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  |  | 
|  | rbio_orig_end_io(rbio, err); | 
|  | } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { | 
|  | rbio_orig_end_io(rbio, err); | 
|  | } else if (err == 0) { | 
|  | rbio->faila = -1; | 
|  | rbio->failb = -1; | 
|  |  | 
|  | if (rbio->operation == BTRFS_RBIO_WRITE) | 
|  | finish_rmw(rbio); | 
|  | else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) | 
|  | finish_parity_scrub(rbio, 0); | 
|  | else | 
|  | BUG(); | 
|  | } else { | 
|  | rbio_orig_end_io(rbio, err); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called only for stripes we've read from disk to | 
|  | * reconstruct the parity. | 
|  | */ | 
|  | static void raid_recover_end_io(struct bio *bio) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio = bio->bi_private; | 
|  |  | 
|  | /* | 
|  | * we only read stripe pages off the disk, set them | 
|  | * up to date if there were no errors | 
|  | */ | 
|  | if (bio->bi_error) | 
|  | fail_bio_stripe(rbio, bio); | 
|  | else | 
|  | set_bio_pages_uptodate(bio); | 
|  | bio_put(bio); | 
|  |  | 
|  | if (!atomic_dec_and_test(&rbio->stripes_pending)) | 
|  | return; | 
|  |  | 
|  | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) | 
|  | rbio_orig_end_io(rbio, -EIO); | 
|  | else | 
|  | __raid_recover_end_io(rbio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reads everything we need off the disk to reconstruct | 
|  | * the parity. endio handlers trigger final reconstruction | 
|  | * when the IO is done. | 
|  | * | 
|  | * This is used both for reads from the higher layers and for | 
|  | * parity construction required to finish a rmw cycle. | 
|  | */ | 
|  | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bios_to_read = 0; | 
|  | struct bio_list bio_list; | 
|  | int ret; | 
|  | int pagenr; | 
|  | int stripe; | 
|  | struct bio *bio; | 
|  |  | 
|  | bio_list_init(&bio_list); | 
|  |  | 
|  | ret = alloc_rbio_pages(rbio); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  |  | 
|  | atomic_set(&rbio->error, 0); | 
|  |  | 
|  | /* | 
|  | * read everything that hasn't failed.  Thanks to the | 
|  | * stripe cache, it is possible that some or all of these | 
|  | * pages are going to be uptodate. | 
|  | */ | 
|  | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
|  | if (rbio->faila == stripe || rbio->failb == stripe) { | 
|  | atomic_inc(&rbio->error); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { | 
|  | struct page *p; | 
|  |  | 
|  | /* | 
|  | * the rmw code may have already read this | 
|  | * page in | 
|  | */ | 
|  | p = rbio_stripe_page(rbio, stripe, pagenr); | 
|  | if (PageUptodate(p)) | 
|  | continue; | 
|  |  | 
|  | ret = rbio_add_io_page(rbio, &bio_list, | 
|  | rbio_stripe_page(rbio, stripe, pagenr), | 
|  | stripe, pagenr, rbio->stripe_len); | 
|  | if (ret < 0) | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | bios_to_read = bio_list_size(&bio_list); | 
|  | if (!bios_to_read) { | 
|  | /* | 
|  | * we might have no bios to read just because the pages | 
|  | * were up to date, or we might have no bios to read because | 
|  | * the devices were gone. | 
|  | */ | 
|  | if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { | 
|  | __raid_recover_end_io(rbio); | 
|  | goto out; | 
|  | } else { | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the bbio may be freed once we submit the last bio.  Make sure | 
|  | * not to touch it after that | 
|  | */ | 
|  | atomic_set(&rbio->stripes_pending, bios_to_read); | 
|  | while (1) { | 
|  | bio = bio_list_pop(&bio_list); | 
|  | if (!bio) | 
|  | break; | 
|  |  | 
|  | bio->bi_private = rbio; | 
|  | bio->bi_end_io = raid_recover_end_io; | 
|  |  | 
|  | btrfs_bio_wq_end_io(rbio->fs_info, bio, | 
|  | BTRFS_WQ_ENDIO_RAID56); | 
|  |  | 
|  | submit_bio(READ, bio); | 
|  | } | 
|  | out: | 
|  | return 0; | 
|  |  | 
|  | cleanup: | 
|  | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
|  | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) | 
|  | rbio_orig_end_io(rbio, -EIO); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the main entry point for reads from the higher layers.  This | 
|  | * is really only called when the normal read path had a failure, | 
|  | * so we assume the bio they send down corresponds to a failed part | 
|  | * of the drive. | 
|  | */ | 
|  | int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, | 
|  | struct btrfs_bio *bbio, u64 stripe_len, | 
|  | int mirror_num, int generic_io) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  | int ret; | 
|  |  | 
|  | rbio = alloc_rbio(root, bbio, stripe_len); | 
|  | if (IS_ERR(rbio)) { | 
|  | if (generic_io) | 
|  | btrfs_put_bbio(bbio); | 
|  | return PTR_ERR(rbio); | 
|  | } | 
|  |  | 
|  | rbio->operation = BTRFS_RBIO_READ_REBUILD; | 
|  | bio_list_add(&rbio->bio_list, bio); | 
|  | rbio->bio_list_bytes = bio->bi_iter.bi_size; | 
|  |  | 
|  | rbio->faila = find_logical_bio_stripe(rbio, bio); | 
|  | if (rbio->faila == -1) { | 
|  | BUG(); | 
|  | if (generic_io) | 
|  | btrfs_put_bbio(bbio); | 
|  | kfree(rbio); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (generic_io) { | 
|  | btrfs_bio_counter_inc_noblocked(root->fs_info); | 
|  | rbio->generic_bio_cnt = 1; | 
|  | } else { | 
|  | btrfs_get_bbio(bbio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reconstruct from the q stripe if they are | 
|  | * asking for mirror 3 | 
|  | */ | 
|  | if (mirror_num == 3) | 
|  | rbio->failb = rbio->real_stripes - 2; | 
|  |  | 
|  | ret = lock_stripe_add(rbio); | 
|  |  | 
|  | /* | 
|  | * __raid56_parity_recover will end the bio with | 
|  | * any errors it hits.  We don't want to return | 
|  | * its error value up the stack because our caller | 
|  | * will end up calling bio_endio with any nonzero | 
|  | * return | 
|  | */ | 
|  | if (ret == 0) | 
|  | __raid56_parity_recover(rbio); | 
|  | /* | 
|  | * our rbio has been added to the list of | 
|  | * rbios that will be handled after the | 
|  | * currently lock owner is done | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void rmw_work(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = container_of(work, struct btrfs_raid_bio, work); | 
|  | raid56_rmw_stripe(rbio); | 
|  | } | 
|  |  | 
|  | static void read_rebuild_work(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = container_of(work, struct btrfs_raid_bio, work); | 
|  | __raid56_parity_recover(rbio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following code is used to scrub/replace the parity stripe | 
|  | * | 
|  | * Note: We need make sure all the pages that add into the scrub/replace | 
|  | * raid bio are correct and not be changed during the scrub/replace. That | 
|  | * is those pages just hold metadata or file data with checksum. | 
|  | */ | 
|  |  | 
|  | struct btrfs_raid_bio * | 
|  | raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio, | 
|  | struct btrfs_bio *bbio, u64 stripe_len, | 
|  | struct btrfs_device *scrub_dev, | 
|  | unsigned long *dbitmap, int stripe_nsectors) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  | int i; | 
|  |  | 
|  | rbio = alloc_rbio(root, bbio, stripe_len); | 
|  | if (IS_ERR(rbio)) | 
|  | return NULL; | 
|  | bio_list_add(&rbio->bio_list, bio); | 
|  | /* | 
|  | * This is a special bio which is used to hold the completion handler | 
|  | * and make the scrub rbio is similar to the other types | 
|  | */ | 
|  | ASSERT(!bio->bi_iter.bi_size); | 
|  | rbio->operation = BTRFS_RBIO_PARITY_SCRUB; | 
|  |  | 
|  | for (i = 0; i < rbio->real_stripes; i++) { | 
|  | if (bbio->stripes[i].dev == scrub_dev) { | 
|  | rbio->scrubp = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now we just support the sectorsize equals to page size */ | 
|  | ASSERT(root->sectorsize == PAGE_SIZE); | 
|  | ASSERT(rbio->stripe_npages == stripe_nsectors); | 
|  | bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); | 
|  |  | 
|  | return rbio; | 
|  | } | 
|  |  | 
|  | /* Used for both parity scrub and missing. */ | 
|  | void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, | 
|  | u64 logical) | 
|  | { | 
|  | int stripe_offset; | 
|  | int index; | 
|  |  | 
|  | ASSERT(logical >= rbio->bbio->raid_map[0]); | 
|  | ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + | 
|  | rbio->stripe_len * rbio->nr_data); | 
|  | stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); | 
|  | index = stripe_offset >> PAGE_CACHE_SHIFT; | 
|  | rbio->bio_pages[index] = page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We just scrub the parity that we have correct data on the same horizontal, | 
|  | * so we needn't allocate all pages for all the stripes. | 
|  | */ | 
|  | static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int i; | 
|  | int bit; | 
|  | int index; | 
|  | struct page *page; | 
|  |  | 
|  | for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { | 
|  | for (i = 0; i < rbio->real_stripes; i++) { | 
|  | index = i * rbio->stripe_npages + bit; | 
|  | if (rbio->stripe_pages[index]) | 
|  | continue; | 
|  |  | 
|  | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | rbio->stripe_pages[index] = page; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, | 
|  | int need_check) | 
|  | { | 
|  | struct btrfs_bio *bbio = rbio->bbio; | 
|  | void *pointers[rbio->real_stripes]; | 
|  | DECLARE_BITMAP(pbitmap, rbio->stripe_npages); | 
|  | int nr_data = rbio->nr_data; | 
|  | int stripe; | 
|  | int pagenr; | 
|  | int p_stripe = -1; | 
|  | int q_stripe = -1; | 
|  | struct page *p_page = NULL; | 
|  | struct page *q_page = NULL; | 
|  | struct bio_list bio_list; | 
|  | struct bio *bio; | 
|  | int is_replace = 0; | 
|  | int ret; | 
|  |  | 
|  | bio_list_init(&bio_list); | 
|  |  | 
|  | if (rbio->real_stripes - rbio->nr_data == 1) { | 
|  | p_stripe = rbio->real_stripes - 1; | 
|  | } else if (rbio->real_stripes - rbio->nr_data == 2) { | 
|  | p_stripe = rbio->real_stripes - 2; | 
|  | q_stripe = rbio->real_stripes - 1; | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { | 
|  | is_replace = 1; | 
|  | bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because the higher layers(scrubber) are unlikely to | 
|  | * use this area of the disk again soon, so don't cache | 
|  | * it. | 
|  | */ | 
|  | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  |  | 
|  | if (!need_check) | 
|  | goto writeback; | 
|  |  | 
|  | p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
|  | if (!p_page) | 
|  | goto cleanup; | 
|  | SetPageUptodate(p_page); | 
|  |  | 
|  | if (q_stripe != -1) { | 
|  | q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
|  | if (!q_page) { | 
|  | __free_page(p_page); | 
|  | goto cleanup; | 
|  | } | 
|  | SetPageUptodate(q_page); | 
|  | } | 
|  |  | 
|  | atomic_set(&rbio->error, 0); | 
|  |  | 
|  | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { | 
|  | struct page *p; | 
|  | void *parity; | 
|  | /* first collect one page from each data stripe */ | 
|  | for (stripe = 0; stripe < nr_data; stripe++) { | 
|  | p = page_in_rbio(rbio, stripe, pagenr, 0); | 
|  | pointers[stripe] = kmap(p); | 
|  | } | 
|  |  | 
|  | /* then add the parity stripe */ | 
|  | pointers[stripe++] = kmap(p_page); | 
|  |  | 
|  | if (q_stripe != -1) { | 
|  |  | 
|  | /* | 
|  | * raid6, add the qstripe and call the | 
|  | * library function to fill in our p/q | 
|  | */ | 
|  | pointers[stripe++] = kmap(q_page); | 
|  |  | 
|  | raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, | 
|  | pointers); | 
|  | } else { | 
|  | /* raid5 */ | 
|  | memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); | 
|  | run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); | 
|  | } | 
|  |  | 
|  | /* Check scrubbing pairty and repair it */ | 
|  | p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | 
|  | parity = kmap(p); | 
|  | if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE)) | 
|  | memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE); | 
|  | else | 
|  | /* Parity is right, needn't writeback */ | 
|  | bitmap_clear(rbio->dbitmap, pagenr, 1); | 
|  | kunmap(p); | 
|  |  | 
|  | for (stripe = 0; stripe < rbio->real_stripes; stripe++) | 
|  | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); | 
|  | } | 
|  |  | 
|  | __free_page(p_page); | 
|  | if (q_page) | 
|  | __free_page(q_page); | 
|  |  | 
|  | writeback: | 
|  | /* | 
|  | * time to start writing.  Make bios for everything from the | 
|  | * higher layers (the bio_list in our rbio) and our p/q.  Ignore | 
|  | * everything else. | 
|  | */ | 
|  | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { | 
|  | struct page *page; | 
|  |  | 
|  | page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | 
|  | ret = rbio_add_io_page(rbio, &bio_list, | 
|  | page, rbio->scrubp, pagenr, rbio->stripe_len); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (!is_replace) | 
|  | goto submit_write; | 
|  |  | 
|  | for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { | 
|  | struct page *page; | 
|  |  | 
|  | page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | 
|  | ret = rbio_add_io_page(rbio, &bio_list, page, | 
|  | bbio->tgtdev_map[rbio->scrubp], | 
|  | pagenr, rbio->stripe_len); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | submit_write: | 
|  | nr_data = bio_list_size(&bio_list); | 
|  | if (!nr_data) { | 
|  | /* Every parity is right */ | 
|  | rbio_orig_end_io(rbio, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | atomic_set(&rbio->stripes_pending, nr_data); | 
|  |  | 
|  | while (1) { | 
|  | bio = bio_list_pop(&bio_list); | 
|  | if (!bio) | 
|  | break; | 
|  |  | 
|  | bio->bi_private = rbio; | 
|  | bio->bi_end_io = raid_write_end_io; | 
|  | submit_bio(WRITE, bio); | 
|  | } | 
|  | return; | 
|  |  | 
|  | cleanup: | 
|  | rbio_orig_end_io(rbio, -EIO); | 
|  | } | 
|  |  | 
|  | static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) | 
|  | { | 
|  | if (stripe >= 0 && stripe < rbio->nr_data) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While we're doing the parity check and repair, we could have errors | 
|  | * in reading pages off the disk.  This checks for errors and if we're | 
|  | * not able to read the page it'll trigger parity reconstruction.  The | 
|  | * parity scrub will be finished after we've reconstructed the failed | 
|  | * stripes | 
|  | */ | 
|  | static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) | 
|  | goto cleanup; | 
|  |  | 
|  | if (rbio->faila >= 0 || rbio->failb >= 0) { | 
|  | int dfail = 0, failp = -1; | 
|  |  | 
|  | if (is_data_stripe(rbio, rbio->faila)) | 
|  | dfail++; | 
|  | else if (is_parity_stripe(rbio->faila)) | 
|  | failp = rbio->faila; | 
|  |  | 
|  | if (is_data_stripe(rbio, rbio->failb)) | 
|  | dfail++; | 
|  | else if (is_parity_stripe(rbio->failb)) | 
|  | failp = rbio->failb; | 
|  |  | 
|  | /* | 
|  | * Because we can not use a scrubbing parity to repair | 
|  | * the data, so the capability of the repair is declined. | 
|  | * (In the case of RAID5, we can not repair anything) | 
|  | */ | 
|  | if (dfail > rbio->bbio->max_errors - 1) | 
|  | goto cleanup; | 
|  |  | 
|  | /* | 
|  | * If all data is good, only parity is correctly, just | 
|  | * repair the parity. | 
|  | */ | 
|  | if (dfail == 0) { | 
|  | finish_parity_scrub(rbio, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here means we got one corrupted data stripe and one | 
|  | * corrupted parity on RAID6, if the corrupted parity | 
|  | * is scrubbing parity, luckly, use the other one to repair | 
|  | * the data, or we can not repair the data stripe. | 
|  | */ | 
|  | if (failp != rbio->scrubp) | 
|  | goto cleanup; | 
|  |  | 
|  | __raid_recover_end_io(rbio); | 
|  | } else { | 
|  | finish_parity_scrub(rbio, 1); | 
|  | } | 
|  | return; | 
|  |  | 
|  | cleanup: | 
|  | rbio_orig_end_io(rbio, -EIO); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * end io for the read phase of the rmw cycle.  All the bios here are physical | 
|  | * stripe bios we've read from the disk so we can recalculate the parity of the | 
|  | * stripe. | 
|  | * | 
|  | * This will usually kick off finish_rmw once all the bios are read in, but it | 
|  | * may trigger parity reconstruction if we had any errors along the way | 
|  | */ | 
|  | static void raid56_parity_scrub_end_io(struct bio *bio) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio = bio->bi_private; | 
|  |  | 
|  | if (bio->bi_error) | 
|  | fail_bio_stripe(rbio, bio); | 
|  | else | 
|  | set_bio_pages_uptodate(bio); | 
|  |  | 
|  | bio_put(bio); | 
|  |  | 
|  | if (!atomic_dec_and_test(&rbio->stripes_pending)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * this will normally call finish_rmw to start our write | 
|  | * but if there are any failed stripes we'll reconstruct | 
|  | * from parity first | 
|  | */ | 
|  | validate_rbio_for_parity_scrub(rbio); | 
|  | } | 
|  |  | 
|  | static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bios_to_read = 0; | 
|  | struct bio_list bio_list; | 
|  | int ret; | 
|  | int pagenr; | 
|  | int stripe; | 
|  | struct bio *bio; | 
|  |  | 
|  | ret = alloc_rbio_essential_pages(rbio); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  |  | 
|  | bio_list_init(&bio_list); | 
|  |  | 
|  | atomic_set(&rbio->error, 0); | 
|  | /* | 
|  | * build a list of bios to read all the missing parts of this | 
|  | * stripe | 
|  | */ | 
|  | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
|  | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { | 
|  | struct page *page; | 
|  | /* | 
|  | * we want to find all the pages missing from | 
|  | * the rbio and read them from the disk.  If | 
|  | * page_in_rbio finds a page in the bio list | 
|  | * we don't need to read it off the stripe. | 
|  | */ | 
|  | page = page_in_rbio(rbio, stripe, pagenr, 1); | 
|  | if (page) | 
|  | continue; | 
|  |  | 
|  | page = rbio_stripe_page(rbio, stripe, pagenr); | 
|  | /* | 
|  | * the bio cache may have handed us an uptodate | 
|  | * page.  If so, be happy and use it | 
|  | */ | 
|  | if (PageUptodate(page)) | 
|  | continue; | 
|  |  | 
|  | ret = rbio_add_io_page(rbio, &bio_list, page, | 
|  | stripe, pagenr, rbio->stripe_len); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | bios_to_read = bio_list_size(&bio_list); | 
|  | if (!bios_to_read) { | 
|  | /* | 
|  | * this can happen if others have merged with | 
|  | * us, it means there is nothing left to read. | 
|  | * But if there are missing devices it may not be | 
|  | * safe to do the full stripe write yet. | 
|  | */ | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the bbio may be freed once we submit the last bio.  Make sure | 
|  | * not to touch it after that | 
|  | */ | 
|  | atomic_set(&rbio->stripes_pending, bios_to_read); | 
|  | while (1) { | 
|  | bio = bio_list_pop(&bio_list); | 
|  | if (!bio) | 
|  | break; | 
|  |  | 
|  | bio->bi_private = rbio; | 
|  | bio->bi_end_io = raid56_parity_scrub_end_io; | 
|  |  | 
|  | btrfs_bio_wq_end_io(rbio->fs_info, bio, | 
|  | BTRFS_WQ_ENDIO_RAID56); | 
|  |  | 
|  | submit_bio(READ, bio); | 
|  | } | 
|  | /* the actual write will happen once the reads are done */ | 
|  | return; | 
|  |  | 
|  | cleanup: | 
|  | rbio_orig_end_io(rbio, -EIO); | 
|  | return; | 
|  |  | 
|  | finish: | 
|  | validate_rbio_for_parity_scrub(rbio); | 
|  | } | 
|  |  | 
|  | static void scrub_parity_work(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = container_of(work, struct btrfs_raid_bio, work); | 
|  | raid56_parity_scrub_stripe(rbio); | 
|  | } | 
|  |  | 
|  | static void async_scrub_parity(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | btrfs_init_work(&rbio->work, btrfs_rmw_helper, | 
|  | scrub_parity_work, NULL, NULL); | 
|  |  | 
|  | btrfs_queue_work(rbio->fs_info->rmw_workers, | 
|  | &rbio->work); | 
|  | } | 
|  |  | 
|  | void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | if (!lock_stripe_add(rbio)) | 
|  | async_scrub_parity(rbio); | 
|  | } | 
|  |  | 
|  | /* The following code is used for dev replace of a missing RAID 5/6 device. */ | 
|  |  | 
|  | struct btrfs_raid_bio * | 
|  | raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio, | 
|  | struct btrfs_bio *bbio, u64 length) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = alloc_rbio(root, bbio, length); | 
|  | if (IS_ERR(rbio)) | 
|  | return NULL; | 
|  |  | 
|  | rbio->operation = BTRFS_RBIO_REBUILD_MISSING; | 
|  | bio_list_add(&rbio->bio_list, bio); | 
|  | /* | 
|  | * This is a special bio which is used to hold the completion handler | 
|  | * and make the scrub rbio is similar to the other types | 
|  | */ | 
|  | ASSERT(!bio->bi_iter.bi_size); | 
|  |  | 
|  | rbio->faila = find_logical_bio_stripe(rbio, bio); | 
|  | if (rbio->faila == -1) { | 
|  | BUG(); | 
|  | kfree(rbio); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return rbio; | 
|  | } | 
|  |  | 
|  | static void missing_raid56_work(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = container_of(work, struct btrfs_raid_bio, work); | 
|  | __raid56_parity_recover(rbio); | 
|  | } | 
|  |  | 
|  | static void async_missing_raid56(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | btrfs_init_work(&rbio->work, btrfs_rmw_helper, | 
|  | missing_raid56_work, NULL, NULL); | 
|  |  | 
|  | btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); | 
|  | } | 
|  |  | 
|  | void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | if (!lock_stripe_add(rbio)) | 
|  | async_missing_raid56(rbio); | 
|  | } |