| /* |
| * Read-Copy Update definitions shared among RCU implementations. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, you can access it online at |
| * http://www.gnu.org/licenses/gpl-2.0.html. |
| * |
| * Copyright IBM Corporation, 2011 |
| * |
| * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com> |
| */ |
| |
| #ifndef __LINUX_RCU_H |
| #define __LINUX_RCU_H |
| |
| #include <trace/events/rcu.h> |
| #ifdef CONFIG_RCU_TRACE |
| #define RCU_TRACE(stmt) stmt |
| #else /* #ifdef CONFIG_RCU_TRACE */ |
| #define RCU_TRACE(stmt) |
| #endif /* #else #ifdef CONFIG_RCU_TRACE */ |
| |
| /* |
| * Process-level increment to ->dynticks_nesting field. This allows for |
| * architectures that use half-interrupts and half-exceptions from |
| * process context. |
| * |
| * DYNTICK_TASK_NEST_MASK defines a field of width DYNTICK_TASK_NEST_WIDTH |
| * that counts the number of process-based reasons why RCU cannot |
| * consider the corresponding CPU to be idle, and DYNTICK_TASK_NEST_VALUE |
| * is the value used to increment or decrement this field. |
| * |
| * The rest of the bits could in principle be used to count interrupts, |
| * but this would mean that a negative-one value in the interrupt |
| * field could incorrectly zero out the DYNTICK_TASK_NEST_MASK field. |
| * We therefore provide a two-bit guard field defined by DYNTICK_TASK_MASK |
| * that is set to DYNTICK_TASK_FLAG upon initial exit from idle. |
| * The DYNTICK_TASK_EXIT_IDLE value is thus the combined value used upon |
| * initial exit from idle. |
| */ |
| #define DYNTICK_TASK_NEST_WIDTH 7 |
| #define DYNTICK_TASK_NEST_VALUE ((LLONG_MAX >> DYNTICK_TASK_NEST_WIDTH) + 1) |
| #define DYNTICK_TASK_NEST_MASK (LLONG_MAX - DYNTICK_TASK_NEST_VALUE + 1) |
| #define DYNTICK_TASK_FLAG ((DYNTICK_TASK_NEST_VALUE / 8) * 2) |
| #define DYNTICK_TASK_MASK ((DYNTICK_TASK_NEST_VALUE / 8) * 3) |
| #define DYNTICK_TASK_EXIT_IDLE (DYNTICK_TASK_NEST_VALUE + \ |
| DYNTICK_TASK_FLAG) |
| |
| |
| /* |
| * Grace-period counter management. |
| */ |
| |
| #define RCU_SEQ_CTR_SHIFT 2 |
| #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1) |
| |
| /* |
| * Return the counter portion of a sequence number previously returned |
| * by rcu_seq_snap() or rcu_seq_current(). |
| */ |
| static inline unsigned long rcu_seq_ctr(unsigned long s) |
| { |
| return s >> RCU_SEQ_CTR_SHIFT; |
| } |
| |
| /* |
| * Return the state portion of a sequence number previously returned |
| * by rcu_seq_snap() or rcu_seq_current(). |
| */ |
| static inline int rcu_seq_state(unsigned long s) |
| { |
| return s & RCU_SEQ_STATE_MASK; |
| } |
| |
| /* |
| * Set the state portion of the pointed-to sequence number. |
| * The caller is responsible for preventing conflicting updates. |
| */ |
| static inline void rcu_seq_set_state(unsigned long *sp, int newstate) |
| { |
| WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK); |
| WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate); |
| } |
| |
| /* Adjust sequence number for start of update-side operation. */ |
| static inline void rcu_seq_start(unsigned long *sp) |
| { |
| WRITE_ONCE(*sp, *sp + 1); |
| smp_mb(); /* Ensure update-side operation after counter increment. */ |
| WARN_ON_ONCE(rcu_seq_state(*sp) != 1); |
| } |
| |
| /* Adjust sequence number for end of update-side operation. */ |
| static inline void rcu_seq_end(unsigned long *sp) |
| { |
| smp_mb(); /* Ensure update-side operation before counter increment. */ |
| WARN_ON_ONCE(!rcu_seq_state(*sp)); |
| WRITE_ONCE(*sp, (*sp | RCU_SEQ_STATE_MASK) + 1); |
| } |
| |
| /* Take a snapshot of the update side's sequence number. */ |
| static inline unsigned long rcu_seq_snap(unsigned long *sp) |
| { |
| unsigned long s; |
| |
| s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK; |
| smp_mb(); /* Above access must not bleed into critical section. */ |
| return s; |
| } |
| |
| /* Return the current value the update side's sequence number, no ordering. */ |
| static inline unsigned long rcu_seq_current(unsigned long *sp) |
| { |
| return READ_ONCE(*sp); |
| } |
| |
| /* |
| * Given a snapshot from rcu_seq_snap(), determine whether or not a |
| * full update-side operation has occurred. |
| */ |
| static inline bool rcu_seq_done(unsigned long *sp, unsigned long s) |
| { |
| return ULONG_CMP_GE(READ_ONCE(*sp), s); |
| } |
| |
| /* |
| * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally |
| * by call_rcu() and rcu callback execution, and are therefore not part of the |
| * RCU API. Leaving in rcupdate.h because they are used by all RCU flavors. |
| */ |
| |
| #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD |
| # define STATE_RCU_HEAD_READY 0 |
| # define STATE_RCU_HEAD_QUEUED 1 |
| |
| extern struct debug_obj_descr rcuhead_debug_descr; |
| |
| static inline int debug_rcu_head_queue(struct rcu_head *head) |
| { |
| int r1; |
| |
| r1 = debug_object_activate(head, &rcuhead_debug_descr); |
| debug_object_active_state(head, &rcuhead_debug_descr, |
| STATE_RCU_HEAD_READY, |
| STATE_RCU_HEAD_QUEUED); |
| return r1; |
| } |
| |
| static inline void debug_rcu_head_unqueue(struct rcu_head *head) |
| { |
| debug_object_active_state(head, &rcuhead_debug_descr, |
| STATE_RCU_HEAD_QUEUED, |
| STATE_RCU_HEAD_READY); |
| debug_object_deactivate(head, &rcuhead_debug_descr); |
| } |
| #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ |
| static inline int debug_rcu_head_queue(struct rcu_head *head) |
| { |
| return 0; |
| } |
| |
| static inline void debug_rcu_head_unqueue(struct rcu_head *head) |
| { |
| } |
| #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ |
| |
| void kfree(const void *); |
| |
| /* |
| * Reclaim the specified callback, either by invoking it (non-lazy case) |
| * or freeing it directly (lazy case). Return true if lazy, false otherwise. |
| */ |
| static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head) |
| { |
| unsigned long offset = (unsigned long)head->func; |
| |
| rcu_lock_acquire(&rcu_callback_map); |
| if (__is_kfree_rcu_offset(offset)) { |
| RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);) |
| kfree((void *)head - offset); |
| rcu_lock_release(&rcu_callback_map); |
| return true; |
| } else { |
| RCU_TRACE(trace_rcu_invoke_callback(rn, head);) |
| head->func(head); |
| rcu_lock_release(&rcu_callback_map); |
| return false; |
| } |
| } |
| |
| #ifdef CONFIG_RCU_STALL_COMMON |
| |
| extern int rcu_cpu_stall_suppress; |
| int rcu_jiffies_till_stall_check(void); |
| |
| #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ |
| |
| /* |
| * Strings used in tracepoints need to be exported via the |
| * tracing system such that tools like perf and trace-cmd can |
| * translate the string address pointers to actual text. |
| */ |
| #define TPS(x) tracepoint_string(x) |
| |
| void rcu_early_boot_tests(void); |
| void rcu_test_sync_prims(void); |
| |
| /* |
| * This function really isn't for public consumption, but RCU is special in |
| * that context switches can allow the state machine to make progress. |
| */ |
| extern void resched_cpu(int cpu); |
| |
| #if defined(SRCU) || !defined(TINY_RCU) |
| |
| #include <linux/rcu_node_tree.h> |
| |
| extern int rcu_num_lvls; |
| extern int num_rcu_lvl[]; |
| extern int rcu_num_nodes; |
| static bool rcu_fanout_exact; |
| static int rcu_fanout_leaf; |
| |
| /* |
| * Compute the per-level fanout, either using the exact fanout specified |
| * or balancing the tree, depending on the rcu_fanout_exact boot parameter. |
| */ |
| static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt) |
| { |
| int i; |
| |
| if (rcu_fanout_exact) { |
| levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; |
| for (i = rcu_num_lvls - 2; i >= 0; i--) |
| levelspread[i] = RCU_FANOUT; |
| } else { |
| int ccur; |
| int cprv; |
| |
| cprv = nr_cpu_ids; |
| for (i = rcu_num_lvls - 1; i >= 0; i--) { |
| ccur = levelcnt[i]; |
| levelspread[i] = (cprv + ccur - 1) / ccur; |
| cprv = ccur; |
| } |
| } |
| } |
| |
| /* |
| * Do a full breadth-first scan of the rcu_node structures for the |
| * specified rcu_state structure. |
| */ |
| #define rcu_for_each_node_breadth_first(rsp, rnp) \ |
| for ((rnp) = &(rsp)->node[0]; \ |
| (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++) |
| |
| /* |
| * Do a breadth-first scan of the non-leaf rcu_node structures for the |
| * specified rcu_state structure. Note that if there is a singleton |
| * rcu_node tree with but one rcu_node structure, this loop is a no-op. |
| */ |
| #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \ |
| for ((rnp) = &(rsp)->node[0]; \ |
| (rnp) < (rsp)->level[rcu_num_lvls - 1]; (rnp)++) |
| |
| /* |
| * Scan the leaves of the rcu_node hierarchy for the specified rcu_state |
| * structure. Note that if there is a singleton rcu_node tree with but |
| * one rcu_node structure, this loop -will- visit the rcu_node structure. |
| * It is still a leaf node, even if it is also the root node. |
| */ |
| #define rcu_for_each_leaf_node(rsp, rnp) \ |
| for ((rnp) = (rsp)->level[rcu_num_lvls - 1]; \ |
| (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++) |
| |
| /* |
| * Iterate over all possible CPUs in a leaf RCU node. |
| */ |
| #define for_each_leaf_node_possible_cpu(rnp, cpu) \ |
| for ((cpu) = cpumask_next(rnp->grplo - 1, cpu_possible_mask); \ |
| cpu <= rnp->grphi; \ |
| cpu = cpumask_next((cpu), cpu_possible_mask)) |
| |
| #endif /* #if defined(SRCU) || !defined(TINY_RCU) */ |
| |
| #endif /* __LINUX_RCU_H */ |