|  | /* | 
|  | * arch/arm/kernel/kprobes.c | 
|  | * | 
|  | * Kprobes on ARM | 
|  | * | 
|  | * Abhishek Sagar <sagar.abhishek@gmail.com> | 
|  | * Copyright (C) 2006, 2007 Motorola Inc. | 
|  | * | 
|  | * Nicolas Pitre <nico@marvell.com> | 
|  | * Copyright (C) 2007 Marvell Ltd. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/stop_machine.h> | 
|  | #include <linux/stringify.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/cacheflush.h> | 
|  |  | 
|  | #define MIN_STACK_SIZE(addr) 				\ | 
|  | min((unsigned long)MAX_STACK_SIZE,		\ | 
|  | (unsigned long)current_thread_info() + THREAD_START_SP - (addr)) | 
|  |  | 
|  | #define flush_insns(addr, cnt) 				\ | 
|  | flush_icache_range((unsigned long)(addr),	\ | 
|  | (unsigned long)(addr) +	\ | 
|  | sizeof(kprobe_opcode_t) * (cnt)) | 
|  |  | 
|  | /* Used as a marker in ARM_pc to note when we're in a jprobe. */ | 
|  | #define JPROBE_MAGIC_ADDR		0xffffffff | 
|  |  | 
|  | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | 
|  | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
|  |  | 
|  |  | 
|  | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
|  | { | 
|  | kprobe_opcode_t insn; | 
|  | kprobe_opcode_t tmp_insn[MAX_INSN_SIZE]; | 
|  | unsigned long addr = (unsigned long)p->addr; | 
|  | int is; | 
|  |  | 
|  | if (addr & 0x3 || in_exception_text(addr)) | 
|  | return -EINVAL; | 
|  |  | 
|  | insn = *p->addr; | 
|  | p->opcode = insn; | 
|  | p->ainsn.insn = tmp_insn; | 
|  |  | 
|  | switch (arm_kprobe_decode_insn(insn, &p->ainsn)) { | 
|  | case INSN_REJECTED:	/* not supported */ | 
|  | return -EINVAL; | 
|  |  | 
|  | case INSN_GOOD:		/* instruction uses slot */ | 
|  | p->ainsn.insn = get_insn_slot(); | 
|  | if (!p->ainsn.insn) | 
|  | return -ENOMEM; | 
|  | for (is = 0; is < MAX_INSN_SIZE; ++is) | 
|  | p->ainsn.insn[is] = tmp_insn[is]; | 
|  | flush_insns(p->ainsn.insn, MAX_INSN_SIZE); | 
|  | break; | 
|  |  | 
|  | case INSN_GOOD_NO_SLOT:	/* instruction doesn't need insn slot */ | 
|  | p->ainsn.insn = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
|  | { | 
|  | *p->addr = KPROBE_BREAKPOINT_INSTRUCTION; | 
|  | flush_insns(p->addr, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The actual disarming is done here on each CPU and synchronized using | 
|  | * stop_machine. This synchronization is necessary on SMP to avoid removing | 
|  | * a probe between the moment the 'Undefined Instruction' exception is raised | 
|  | * and the moment the exception handler reads the faulting instruction from | 
|  | * memory. | 
|  | */ | 
|  | int __kprobes __arch_disarm_kprobe(void *p) | 
|  | { | 
|  | struct kprobe *kp = p; | 
|  | *kp->addr = kp->opcode; | 
|  | flush_insns(kp->addr, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
|  | { | 
|  | stop_machine(__arch_disarm_kprobe, p, &cpu_online_map); | 
|  | } | 
|  |  | 
|  | void __kprobes arch_remove_kprobe(struct kprobe *p) | 
|  | { | 
|  | if (p->ainsn.insn) { | 
|  | free_insn_slot(p->ainsn.insn, 0); | 
|  | p->ainsn.insn = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | kcb->prev_kprobe.kp = kprobe_running(); | 
|  | kcb->prev_kprobe.status = kcb->kprobe_status; | 
|  | } | 
|  |  | 
|  | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; | 
|  | kcb->kprobe_status = kcb->prev_kprobe.status; | 
|  | } | 
|  |  | 
|  | static void __kprobes set_current_kprobe(struct kprobe *p) | 
|  | { | 
|  | __get_cpu_var(current_kprobe) = p; | 
|  | } | 
|  |  | 
|  | static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs, | 
|  | struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | regs->ARM_pc += 4; | 
|  | if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) | 
|  | p->ainsn.insn_handler(p, regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with IRQs disabled. IRQs must remain disabled from that point | 
|  | * all the way until processing this kprobe is complete.  The current | 
|  | * kprobes implementation cannot process more than one nested level of | 
|  | * kprobe, and that level is reserved for user kprobe handlers, so we can't | 
|  | * risk encountering a new kprobe in an interrupt handler. | 
|  | */ | 
|  | void __kprobes kprobe_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe *p, *cur; | 
|  | struct kprobe_ctlblk *kcb; | 
|  | kprobe_opcode_t	*addr = (kprobe_opcode_t *)regs->ARM_pc; | 
|  |  | 
|  | kcb = get_kprobe_ctlblk(); | 
|  | cur = kprobe_running(); | 
|  | p = get_kprobe(addr); | 
|  |  | 
|  | if (p) { | 
|  | if (cur) { | 
|  | /* Kprobe is pending, so we're recursing. */ | 
|  | switch (kcb->kprobe_status) { | 
|  | case KPROBE_HIT_ACTIVE: | 
|  | case KPROBE_HIT_SSDONE: | 
|  | /* A pre- or post-handler probe got us here. */ | 
|  | kprobes_inc_nmissed_count(p); | 
|  | save_previous_kprobe(kcb); | 
|  | set_current_kprobe(p); | 
|  | kcb->kprobe_status = KPROBE_REENTER; | 
|  | singlestep(p, regs, kcb); | 
|  | restore_previous_kprobe(kcb); | 
|  | break; | 
|  | default: | 
|  | /* impossible cases */ | 
|  | BUG(); | 
|  | } | 
|  | } else { | 
|  | set_current_kprobe(p); | 
|  | kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
|  |  | 
|  | /* | 
|  | * If we have no pre-handler or it returned 0, we | 
|  | * continue with normal processing.  If we have a | 
|  | * pre-handler and it returned non-zero, it prepped | 
|  | * for calling the break_handler below on re-entry, | 
|  | * so get out doing nothing more here. | 
|  | */ | 
|  | if (!p->pre_handler || !p->pre_handler(p, regs)) { | 
|  | kcb->kprobe_status = KPROBE_HIT_SS; | 
|  | singlestep(p, regs, kcb); | 
|  | if (p->post_handler) { | 
|  | kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
|  | p->post_handler(p, regs, 0); | 
|  | } | 
|  | reset_current_kprobe(); | 
|  | } | 
|  | } | 
|  | } else if (cur) { | 
|  | /* We probably hit a jprobe.  Call its break handler. */ | 
|  | if (cur->break_handler && cur->break_handler(cur, regs)) { | 
|  | kcb->kprobe_status = KPROBE_HIT_SS; | 
|  | singlestep(cur, regs, kcb); | 
|  | if (cur->post_handler) { | 
|  | kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
|  | cur->post_handler(cur, regs, 0); | 
|  | } | 
|  | } | 
|  | reset_current_kprobe(); | 
|  | } else { | 
|  | /* | 
|  | * The probe was removed and a race is in progress. | 
|  | * There is nothing we can do about it.  Let's restart | 
|  | * the instruction.  By the time we can restart, the | 
|  | * real instruction will be there. | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr) | 
|  | { | 
|  | unsigned long flags; | 
|  | local_irq_save(flags); | 
|  | kprobe_handler(regs); | 
|  | local_irq_restore(flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) | 
|  | { | 
|  | struct kprobe *cur = kprobe_running(); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | switch (kcb->kprobe_status) { | 
|  | case KPROBE_HIT_SS: | 
|  | case KPROBE_REENTER: | 
|  | /* | 
|  | * We are here because the instruction being single | 
|  | * stepped caused a page fault. We reset the current | 
|  | * kprobe and the PC to point back to the probe address | 
|  | * and allow the page fault handler to continue as a | 
|  | * normal page fault. | 
|  | */ | 
|  | regs->ARM_pc = (long)cur->addr; | 
|  | if (kcb->kprobe_status == KPROBE_REENTER) { | 
|  | restore_previous_kprobe(kcb); | 
|  | } else { | 
|  | reset_current_kprobe(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case KPROBE_HIT_ACTIVE: | 
|  | case KPROBE_HIT_SSDONE: | 
|  | /* | 
|  | * We increment the nmissed count for accounting, | 
|  | * we can also use npre/npostfault count for accounting | 
|  | * these specific fault cases. | 
|  | */ | 
|  | kprobes_inc_nmissed_count(cur); | 
|  |  | 
|  | /* | 
|  | * We come here because instructions in the pre/post | 
|  | * handler caused the page_fault, this could happen | 
|  | * if handler tries to access user space by | 
|  | * copy_from_user(), get_user() etc. Let the | 
|  | * user-specified handler try to fix it. | 
|  | */ | 
|  | if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) | 
|  | return 1; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
|  | unsigned long val, void *data) | 
|  | { | 
|  | /* | 
|  | * notify_die() is currently never called on ARM, | 
|  | * so this callback is currently empty. | 
|  | */ | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a retprobed function returns, trampoline_handler() is called, | 
|  | * calling the kretprobe's handler. We construct a struct pt_regs to | 
|  | * give a view of registers r0-r11 to the user return-handler.  This is | 
|  | * not a complete pt_regs structure, but that should be plenty sufficient | 
|  | * for kretprobe handlers which should normally be interested in r0 only | 
|  | * anyway. | 
|  | */ | 
|  | void __naked __kprobes kretprobe_trampoline(void) | 
|  | { | 
|  | __asm__ __volatile__ ( | 
|  | "stmdb	sp!, {r0 - r11}		\n\t" | 
|  | "mov	r0, sp			\n\t" | 
|  | "bl	trampoline_handler	\n\t" | 
|  | "mov	lr, r0			\n\t" | 
|  | "ldmia	sp!, {r0 - r11}		\n\t" | 
|  | "mov	pc, lr			\n\t" | 
|  | : : : "memory"); | 
|  | } | 
|  |  | 
|  | /* Called from kretprobe_trampoline */ | 
|  | static __used __kprobes void *trampoline_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kretprobe_instance *ri = NULL; | 
|  | struct hlist_head *head, empty_rp; | 
|  | struct hlist_node *node, *tmp; | 
|  | unsigned long flags, orig_ret_address = 0; | 
|  | unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; | 
|  |  | 
|  | INIT_HLIST_HEAD(&empty_rp); | 
|  | kretprobe_hash_lock(current, &head, &flags); | 
|  |  | 
|  | /* | 
|  | * It is possible to have multiple instances associated with a given | 
|  | * task either because multiple functions in the call path have | 
|  | * a return probe installed on them, and/or more than one return | 
|  | * probe was registered for a target function. | 
|  | * | 
|  | * We can handle this because: | 
|  | *     - instances are always inserted at the head of the list | 
|  | *     - when multiple return probes are registered for the same | 
|  | *       function, the first instance's ret_addr will point to the | 
|  | *       real return address, and all the rest will point to | 
|  | *       kretprobe_trampoline | 
|  | */ | 
|  | hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | 
|  | if (ri->task != current) | 
|  | /* another task is sharing our hash bucket */ | 
|  | continue; | 
|  |  | 
|  | if (ri->rp && ri->rp->handler) { | 
|  | __get_cpu_var(current_kprobe) = &ri->rp->kp; | 
|  | get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; | 
|  | ri->rp->handler(ri, regs); | 
|  | __get_cpu_var(current_kprobe) = NULL; | 
|  | } | 
|  |  | 
|  | orig_ret_address = (unsigned long)ri->ret_addr; | 
|  | recycle_rp_inst(ri, &empty_rp); | 
|  |  | 
|  | if (orig_ret_address != trampoline_address) | 
|  | /* | 
|  | * This is the real return address. Any other | 
|  | * instances associated with this task are for | 
|  | * other calls deeper on the call stack | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | kretprobe_assert(ri, orig_ret_address, trampoline_address); | 
|  | kretprobe_hash_unlock(current, &flags); | 
|  |  | 
|  | hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { | 
|  | hlist_del(&ri->hlist); | 
|  | kfree(ri); | 
|  | } | 
|  |  | 
|  | return (void *)orig_ret_address; | 
|  | } | 
|  |  | 
|  | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr; | 
|  |  | 
|  | /* Replace the return addr with trampoline addr. */ | 
|  | regs->ARM_lr = (unsigned long)&kretprobe_trampoline; | 
|  | } | 
|  |  | 
|  | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct jprobe *jp = container_of(p, struct jprobe, kp); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | long sp_addr = regs->ARM_sp; | 
|  |  | 
|  | kcb->jprobe_saved_regs = *regs; | 
|  | memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr)); | 
|  | regs->ARM_pc = (long)jp->entry; | 
|  | regs->ARM_cpsr |= PSR_I_BIT; | 
|  | preempt_disable(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void __kprobes jprobe_return(void) | 
|  | { | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | __asm__ __volatile__ ( | 
|  | /* | 
|  | * Setup an empty pt_regs. Fill SP and PC fields as | 
|  | * they're needed by longjmp_break_handler. | 
|  | * | 
|  | * We allocate some slack between the original SP and start of | 
|  | * our fabricated regs. To be precise we want to have worst case | 
|  | * covered which is STMFD with all 16 regs so we allocate 2 * | 
|  | * sizeof(struct_pt_regs)). | 
|  | * | 
|  | * This is to prevent any simulated instruction from writing | 
|  | * over the regs when they are accessing the stack. | 
|  | */ | 
|  | "sub    sp, %0, %1		\n\t" | 
|  | "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t" | 
|  | "str    %0, [sp, %2]		\n\t" | 
|  | "str    r0, [sp, %3]		\n\t" | 
|  | "mov    r0, sp			\n\t" | 
|  | "bl     kprobe_handler		\n\t" | 
|  |  | 
|  | /* | 
|  | * Return to the context saved by setjmp_pre_handler | 
|  | * and restored by longjmp_break_handler. | 
|  | */ | 
|  | "ldr	r0, [sp, %4]		\n\t" | 
|  | "msr	cpsr_cxsf, r0		\n\t" | 
|  | "ldmia	sp, {r0 - pc}		\n\t" | 
|  | : | 
|  | : "r" (kcb->jprobe_saved_regs.ARM_sp), | 
|  | "I" (sizeof(struct pt_regs) * 2), | 
|  | "J" (offsetof(struct pt_regs, ARM_sp)), | 
|  | "J" (offsetof(struct pt_regs, ARM_pc)), | 
|  | "J" (offsetof(struct pt_regs, ARM_cpsr)) | 
|  | : "memory", "cc"); | 
|  | } | 
|  |  | 
|  | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | long stack_addr = kcb->jprobe_saved_regs.ARM_sp; | 
|  | long orig_sp = regs->ARM_sp; | 
|  | struct jprobe *jp = container_of(p, struct jprobe, kp); | 
|  |  | 
|  | if (regs->ARM_pc == JPROBE_MAGIC_ADDR) { | 
|  | if (orig_sp != stack_addr) { | 
|  | struct pt_regs *saved_regs = | 
|  | (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp; | 
|  | printk("current sp %lx does not match saved sp %lx\n", | 
|  | orig_sp, stack_addr); | 
|  | printk("Saved registers for jprobe %p\n", jp); | 
|  | show_regs(saved_regs); | 
|  | printk("Current registers\n"); | 
|  | show_regs(regs); | 
|  | BUG(); | 
|  | } | 
|  | *regs = kcb->jprobe_saved_regs; | 
|  | memcpy((void *)stack_addr, kcb->jprobes_stack, | 
|  | MIN_STACK_SIZE(stack_addr)); | 
|  | preempt_enable_no_resched(); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct undef_hook kprobes_break_hook = { | 
|  | .instr_mask	= 0xffffffff, | 
|  | .instr_val	= KPROBE_BREAKPOINT_INSTRUCTION, | 
|  | .cpsr_mask	= MODE_MASK, | 
|  | .cpsr_val	= SVC_MODE, | 
|  | .fn		= kprobe_trap_handler, | 
|  | }; | 
|  |  | 
|  | int __init arch_init_kprobes() | 
|  | { | 
|  | arm_kprobe_decode_init(); | 
|  | register_undef_hook(&kprobes_break_hook); | 
|  | return 0; | 
|  | } |