| /* | 
 |  * Copyright 2012 Advanced Micro Devices, Inc. | 
 |  * | 
 |  * Permission is hereby granted, free of charge, to any person obtaining a | 
 |  * copy of this software and associated documentation files (the "Software"), | 
 |  * to deal in the Software without restriction, including without limitation | 
 |  * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
 |  * and/or sell copies of the Software, and to permit persons to whom the | 
 |  * Software is furnished to do so, subject to the following conditions: | 
 |  * | 
 |  * The above copyright notice and this permission notice shall be included in | 
 |  * all copies or substantial portions of the Software. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
 |  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR | 
 |  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | 
 |  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | 
 |  * OTHER DEALINGS IN THE SOFTWARE. | 
 |  * | 
 |  * Authors: Alex Deucher | 
 |  */ | 
 | #include <linux/firmware.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/module.h> | 
 | #include "drmP.h" | 
 | #include "radeon.h" | 
 | #include "radeon_asic.h" | 
 | #include "cikd.h" | 
 | #include "atom.h" | 
 | #include "cik_blit_shaders.h" | 
 |  | 
 | /* GFX */ | 
 | #define CIK_PFP_UCODE_SIZE 2144 | 
 | #define CIK_ME_UCODE_SIZE 2144 | 
 | #define CIK_CE_UCODE_SIZE 2144 | 
 | /* compute */ | 
 | #define CIK_MEC_UCODE_SIZE 4192 | 
 | /* interrupts */ | 
 | #define BONAIRE_RLC_UCODE_SIZE 2048 | 
 | #define KB_RLC_UCODE_SIZE 2560 | 
 | #define KV_RLC_UCODE_SIZE 2560 | 
 | /* gddr controller */ | 
 | #define CIK_MC_UCODE_SIZE 7866 | 
 | /* sdma */ | 
 | #define CIK_SDMA_UCODE_SIZE 1050 | 
 | #define CIK_SDMA_UCODE_VERSION 64 | 
 |  | 
 | MODULE_FIRMWARE("radeon/BONAIRE_pfp.bin"); | 
 | MODULE_FIRMWARE("radeon/BONAIRE_me.bin"); | 
 | MODULE_FIRMWARE("radeon/BONAIRE_ce.bin"); | 
 | MODULE_FIRMWARE("radeon/BONAIRE_mec.bin"); | 
 | MODULE_FIRMWARE("radeon/BONAIRE_mc.bin"); | 
 | MODULE_FIRMWARE("radeon/BONAIRE_rlc.bin"); | 
 | MODULE_FIRMWARE("radeon/BONAIRE_sdma.bin"); | 
 | MODULE_FIRMWARE("radeon/KAVERI_pfp.bin"); | 
 | MODULE_FIRMWARE("radeon/KAVERI_me.bin"); | 
 | MODULE_FIRMWARE("radeon/KAVERI_ce.bin"); | 
 | MODULE_FIRMWARE("radeon/KAVERI_mec.bin"); | 
 | MODULE_FIRMWARE("radeon/KAVERI_rlc.bin"); | 
 | MODULE_FIRMWARE("radeon/KAVERI_sdma.bin"); | 
 | MODULE_FIRMWARE("radeon/KABINI_pfp.bin"); | 
 | MODULE_FIRMWARE("radeon/KABINI_me.bin"); | 
 | MODULE_FIRMWARE("radeon/KABINI_ce.bin"); | 
 | MODULE_FIRMWARE("radeon/KABINI_mec.bin"); | 
 | MODULE_FIRMWARE("radeon/KABINI_rlc.bin"); | 
 | MODULE_FIRMWARE("radeon/KABINI_sdma.bin"); | 
 |  | 
 | extern int r600_ih_ring_alloc(struct radeon_device *rdev); | 
 | extern void r600_ih_ring_fini(struct radeon_device *rdev); | 
 | extern void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save); | 
 | extern void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save); | 
 | extern bool evergreen_is_display_hung(struct radeon_device *rdev); | 
 | extern void si_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc); | 
 | extern void si_rlc_fini(struct radeon_device *rdev); | 
 | extern int si_rlc_init(struct radeon_device *rdev); | 
 | static void cik_rlc_stop(struct radeon_device *rdev); | 
 |  | 
 | /* | 
 |  * Indirect registers accessor | 
 |  */ | 
 | u32 cik_pciep_rreg(struct radeon_device *rdev, u32 reg) | 
 | { | 
 | 	u32 r; | 
 |  | 
 | 	WREG32(PCIE_INDEX, reg); | 
 | 	(void)RREG32(PCIE_INDEX); | 
 | 	r = RREG32(PCIE_DATA); | 
 | 	return r; | 
 | } | 
 |  | 
 | void cik_pciep_wreg(struct radeon_device *rdev, u32 reg, u32 v) | 
 | { | 
 | 	WREG32(PCIE_INDEX, reg); | 
 | 	(void)RREG32(PCIE_INDEX); | 
 | 	WREG32(PCIE_DATA, v); | 
 | 	(void)RREG32(PCIE_DATA); | 
 | } | 
 |  | 
 | static const u32 bonaire_golden_spm_registers[] = | 
 | { | 
 | 	0x30800, 0xe0ffffff, 0xe0000000 | 
 | }; | 
 |  | 
 | static const u32 bonaire_golden_common_registers[] = | 
 | { | 
 | 	0xc770, 0xffffffff, 0x00000800, | 
 | 	0xc774, 0xffffffff, 0x00000800, | 
 | 	0xc798, 0xffffffff, 0x00007fbf, | 
 | 	0xc79c, 0xffffffff, 0x00007faf | 
 | }; | 
 |  | 
 | static const u32 bonaire_golden_registers[] = | 
 | { | 
 | 	0x3354, 0x00000333, 0x00000333, | 
 | 	0x3350, 0x000c0fc0, 0x00040200, | 
 | 	0x9a10, 0x00010000, 0x00058208, | 
 | 	0x3c000, 0xffff1fff, 0x00140000, | 
 | 	0x3c200, 0xfdfc0fff, 0x00000100, | 
 | 	0x3c234, 0x40000000, 0x40000200, | 
 | 	0x9830, 0xffffffff, 0x00000000, | 
 | 	0x9834, 0xf00fffff, 0x00000400, | 
 | 	0x9838, 0x0002021c, 0x00020200, | 
 | 	0xc78, 0x00000080, 0x00000000, | 
 | 	0x5bb0, 0x000000f0, 0x00000070, | 
 | 	0x5bc0, 0xf0311fff, 0x80300000, | 
 | 	0x98f8, 0x73773777, 0x12010001, | 
 | 	0x350c, 0x00810000, 0x408af000, | 
 | 	0x7030, 0x31000111, 0x00000011, | 
 | 	0x2f48, 0x73773777, 0x12010001, | 
 | 	0x220c, 0x00007fb6, 0x0021a1b1, | 
 | 	0x2210, 0x00007fb6, 0x002021b1, | 
 | 	0x2180, 0x00007fb6, 0x00002191, | 
 | 	0x2218, 0x00007fb6, 0x002121b1, | 
 | 	0x221c, 0x00007fb6, 0x002021b1, | 
 | 	0x21dc, 0x00007fb6, 0x00002191, | 
 | 	0x21e0, 0x00007fb6, 0x00002191, | 
 | 	0x3628, 0x0000003f, 0x0000000a, | 
 | 	0x362c, 0x0000003f, 0x0000000a, | 
 | 	0x2ae4, 0x00073ffe, 0x000022a2, | 
 | 	0x240c, 0x000007ff, 0x00000000, | 
 | 	0x8a14, 0xf000003f, 0x00000007, | 
 | 	0x8bf0, 0x00002001, 0x00000001, | 
 | 	0x8b24, 0xffffffff, 0x00ffffff, | 
 | 	0x30a04, 0x0000ff0f, 0x00000000, | 
 | 	0x28a4c, 0x07ffffff, 0x06000000, | 
 | 	0x4d8, 0x00000fff, 0x00000100, | 
 | 	0x3e78, 0x00000001, 0x00000002, | 
 | 	0x9100, 0x03000000, 0x0362c688, | 
 | 	0x8c00, 0x000000ff, 0x00000001, | 
 | 	0xe40, 0x00001fff, 0x00001fff, | 
 | 	0x9060, 0x0000007f, 0x00000020, | 
 | 	0x9508, 0x00010000, 0x00010000, | 
 | 	0xac14, 0x000003ff, 0x000000f3, | 
 | 	0xac0c, 0xffffffff, 0x00001032 | 
 | }; | 
 |  | 
 | static const u32 bonaire_mgcg_cgcg_init[] = | 
 | { | 
 | 	0xc420, 0xffffffff, 0xfffffffc, | 
 | 	0x30800, 0xffffffff, 0xe0000000, | 
 | 	0x3c2a0, 0xffffffff, 0x00000100, | 
 | 	0x3c208, 0xffffffff, 0x00000100, | 
 | 	0x3c2c0, 0xffffffff, 0xc0000100, | 
 | 	0x3c2c8, 0xffffffff, 0xc0000100, | 
 | 	0x3c2c4, 0xffffffff, 0xc0000100, | 
 | 	0x55e4, 0xffffffff, 0x00600100, | 
 | 	0x3c280, 0xffffffff, 0x00000100, | 
 | 	0x3c214, 0xffffffff, 0x06000100, | 
 | 	0x3c220, 0xffffffff, 0x00000100, | 
 | 	0x3c218, 0xffffffff, 0x06000100, | 
 | 	0x3c204, 0xffffffff, 0x00000100, | 
 | 	0x3c2e0, 0xffffffff, 0x00000100, | 
 | 	0x3c224, 0xffffffff, 0x00000100, | 
 | 	0x3c200, 0xffffffff, 0x00000100, | 
 | 	0x3c230, 0xffffffff, 0x00000100, | 
 | 	0x3c234, 0xffffffff, 0x00000100, | 
 | 	0x3c250, 0xffffffff, 0x00000100, | 
 | 	0x3c254, 0xffffffff, 0x00000100, | 
 | 	0x3c258, 0xffffffff, 0x00000100, | 
 | 	0x3c25c, 0xffffffff, 0x00000100, | 
 | 	0x3c260, 0xffffffff, 0x00000100, | 
 | 	0x3c27c, 0xffffffff, 0x00000100, | 
 | 	0x3c278, 0xffffffff, 0x00000100, | 
 | 	0x3c210, 0xffffffff, 0x06000100, | 
 | 	0x3c290, 0xffffffff, 0x00000100, | 
 | 	0x3c274, 0xffffffff, 0x00000100, | 
 | 	0x3c2b4, 0xffffffff, 0x00000100, | 
 | 	0x3c2b0, 0xffffffff, 0x00000100, | 
 | 	0x3c270, 0xffffffff, 0x00000100, | 
 | 	0x30800, 0xffffffff, 0xe0000000, | 
 | 	0x3c020, 0xffffffff, 0x00010000, | 
 | 	0x3c024, 0xffffffff, 0x00030002, | 
 | 	0x3c028, 0xffffffff, 0x00040007, | 
 | 	0x3c02c, 0xffffffff, 0x00060005, | 
 | 	0x3c030, 0xffffffff, 0x00090008, | 
 | 	0x3c034, 0xffffffff, 0x00010000, | 
 | 	0x3c038, 0xffffffff, 0x00030002, | 
 | 	0x3c03c, 0xffffffff, 0x00040007, | 
 | 	0x3c040, 0xffffffff, 0x00060005, | 
 | 	0x3c044, 0xffffffff, 0x00090008, | 
 | 	0x3c048, 0xffffffff, 0x00010000, | 
 | 	0x3c04c, 0xffffffff, 0x00030002, | 
 | 	0x3c050, 0xffffffff, 0x00040007, | 
 | 	0x3c054, 0xffffffff, 0x00060005, | 
 | 	0x3c058, 0xffffffff, 0x00090008, | 
 | 	0x3c05c, 0xffffffff, 0x00010000, | 
 | 	0x3c060, 0xffffffff, 0x00030002, | 
 | 	0x3c064, 0xffffffff, 0x00040007, | 
 | 	0x3c068, 0xffffffff, 0x00060005, | 
 | 	0x3c06c, 0xffffffff, 0x00090008, | 
 | 	0x3c070, 0xffffffff, 0x00010000, | 
 | 	0x3c074, 0xffffffff, 0x00030002, | 
 | 	0x3c078, 0xffffffff, 0x00040007, | 
 | 	0x3c07c, 0xffffffff, 0x00060005, | 
 | 	0x3c080, 0xffffffff, 0x00090008, | 
 | 	0x3c084, 0xffffffff, 0x00010000, | 
 | 	0x3c088, 0xffffffff, 0x00030002, | 
 | 	0x3c08c, 0xffffffff, 0x00040007, | 
 | 	0x3c090, 0xffffffff, 0x00060005, | 
 | 	0x3c094, 0xffffffff, 0x00090008, | 
 | 	0x3c098, 0xffffffff, 0x00010000, | 
 | 	0x3c09c, 0xffffffff, 0x00030002, | 
 | 	0x3c0a0, 0xffffffff, 0x00040007, | 
 | 	0x3c0a4, 0xffffffff, 0x00060005, | 
 | 	0x3c0a8, 0xffffffff, 0x00090008, | 
 | 	0x3c000, 0xffffffff, 0x96e00200, | 
 | 	0x8708, 0xffffffff, 0x00900100, | 
 | 	0xc424, 0xffffffff, 0x0020003f, | 
 | 	0x38, 0xffffffff, 0x0140001c, | 
 | 	0x3c, 0x000f0000, 0x000f0000, | 
 | 	0x220, 0xffffffff, 0xC060000C, | 
 | 	0x224, 0xc0000fff, 0x00000100, | 
 | 	0xf90, 0xffffffff, 0x00000100, | 
 | 	0xf98, 0x00000101, 0x00000000, | 
 | 	0x20a8, 0xffffffff, 0x00000104, | 
 | 	0x55e4, 0xff000fff, 0x00000100, | 
 | 	0x30cc, 0xc0000fff, 0x00000104, | 
 | 	0xc1e4, 0x00000001, 0x00000001, | 
 | 	0xd00c, 0xff000ff0, 0x00000100, | 
 | 	0xd80c, 0xff000ff0, 0x00000100 | 
 | }; | 
 |  | 
 | static const u32 spectre_golden_spm_registers[] = | 
 | { | 
 | 	0x30800, 0xe0ffffff, 0xe0000000 | 
 | }; | 
 |  | 
 | static const u32 spectre_golden_common_registers[] = | 
 | { | 
 | 	0xc770, 0xffffffff, 0x00000800, | 
 | 	0xc774, 0xffffffff, 0x00000800, | 
 | 	0xc798, 0xffffffff, 0x00007fbf, | 
 | 	0xc79c, 0xffffffff, 0x00007faf | 
 | }; | 
 |  | 
 | static const u32 spectre_golden_registers[] = | 
 | { | 
 | 	0x3c000, 0xffff1fff, 0x96940200, | 
 | 	0x3c00c, 0xffff0001, 0xff000000, | 
 | 	0x3c200, 0xfffc0fff, 0x00000100, | 
 | 	0x6ed8, 0x00010101, 0x00010000, | 
 | 	0x9834, 0xf00fffff, 0x00000400, | 
 | 	0x9838, 0xfffffffc, 0x00020200, | 
 | 	0x5bb0, 0x000000f0, 0x00000070, | 
 | 	0x5bc0, 0xf0311fff, 0x80300000, | 
 | 	0x98f8, 0x73773777, 0x12010001, | 
 | 	0x9b7c, 0x00ff0000, 0x00fc0000, | 
 | 	0x2f48, 0x73773777, 0x12010001, | 
 | 	0x8a14, 0xf000003f, 0x00000007, | 
 | 	0x8b24, 0xffffffff, 0x00ffffff, | 
 | 	0x28350, 0x3f3f3fff, 0x00000082, | 
 | 	0x28355, 0x0000003f, 0x00000000, | 
 | 	0x3e78, 0x00000001, 0x00000002, | 
 | 	0x913c, 0xffff03df, 0x00000004, | 
 | 	0xc768, 0x00000008, 0x00000008, | 
 | 	0x8c00, 0x000008ff, 0x00000800, | 
 | 	0x9508, 0x00010000, 0x00010000, | 
 | 	0xac0c, 0xffffffff, 0x54763210, | 
 | 	0x214f8, 0x01ff01ff, 0x00000002, | 
 | 	0x21498, 0x007ff800, 0x00200000, | 
 | 	0x2015c, 0xffffffff, 0x00000f40, | 
 | 	0x30934, 0xffffffff, 0x00000001 | 
 | }; | 
 |  | 
 | static const u32 spectre_mgcg_cgcg_init[] = | 
 | { | 
 | 	0xc420, 0xffffffff, 0xfffffffc, | 
 | 	0x30800, 0xffffffff, 0xe0000000, | 
 | 	0x3c2a0, 0xffffffff, 0x00000100, | 
 | 	0x3c208, 0xffffffff, 0x00000100, | 
 | 	0x3c2c0, 0xffffffff, 0x00000100, | 
 | 	0x3c2c8, 0xffffffff, 0x00000100, | 
 | 	0x3c2c4, 0xffffffff, 0x00000100, | 
 | 	0x55e4, 0xffffffff, 0x00600100, | 
 | 	0x3c280, 0xffffffff, 0x00000100, | 
 | 	0x3c214, 0xffffffff, 0x06000100, | 
 | 	0x3c220, 0xffffffff, 0x00000100, | 
 | 	0x3c218, 0xffffffff, 0x06000100, | 
 | 	0x3c204, 0xffffffff, 0x00000100, | 
 | 	0x3c2e0, 0xffffffff, 0x00000100, | 
 | 	0x3c224, 0xffffffff, 0x00000100, | 
 | 	0x3c200, 0xffffffff, 0x00000100, | 
 | 	0x3c230, 0xffffffff, 0x00000100, | 
 | 	0x3c234, 0xffffffff, 0x00000100, | 
 | 	0x3c250, 0xffffffff, 0x00000100, | 
 | 	0x3c254, 0xffffffff, 0x00000100, | 
 | 	0x3c258, 0xffffffff, 0x00000100, | 
 | 	0x3c25c, 0xffffffff, 0x00000100, | 
 | 	0x3c260, 0xffffffff, 0x00000100, | 
 | 	0x3c27c, 0xffffffff, 0x00000100, | 
 | 	0x3c278, 0xffffffff, 0x00000100, | 
 | 	0x3c210, 0xffffffff, 0x06000100, | 
 | 	0x3c290, 0xffffffff, 0x00000100, | 
 | 	0x3c274, 0xffffffff, 0x00000100, | 
 | 	0x3c2b4, 0xffffffff, 0x00000100, | 
 | 	0x3c2b0, 0xffffffff, 0x00000100, | 
 | 	0x3c270, 0xffffffff, 0x00000100, | 
 | 	0x30800, 0xffffffff, 0xe0000000, | 
 | 	0x3c020, 0xffffffff, 0x00010000, | 
 | 	0x3c024, 0xffffffff, 0x00030002, | 
 | 	0x3c028, 0xffffffff, 0x00040007, | 
 | 	0x3c02c, 0xffffffff, 0x00060005, | 
 | 	0x3c030, 0xffffffff, 0x00090008, | 
 | 	0x3c034, 0xffffffff, 0x00010000, | 
 | 	0x3c038, 0xffffffff, 0x00030002, | 
 | 	0x3c03c, 0xffffffff, 0x00040007, | 
 | 	0x3c040, 0xffffffff, 0x00060005, | 
 | 	0x3c044, 0xffffffff, 0x00090008, | 
 | 	0x3c048, 0xffffffff, 0x00010000, | 
 | 	0x3c04c, 0xffffffff, 0x00030002, | 
 | 	0x3c050, 0xffffffff, 0x00040007, | 
 | 	0x3c054, 0xffffffff, 0x00060005, | 
 | 	0x3c058, 0xffffffff, 0x00090008, | 
 | 	0x3c05c, 0xffffffff, 0x00010000, | 
 | 	0x3c060, 0xffffffff, 0x00030002, | 
 | 	0x3c064, 0xffffffff, 0x00040007, | 
 | 	0x3c068, 0xffffffff, 0x00060005, | 
 | 	0x3c06c, 0xffffffff, 0x00090008, | 
 | 	0x3c070, 0xffffffff, 0x00010000, | 
 | 	0x3c074, 0xffffffff, 0x00030002, | 
 | 	0x3c078, 0xffffffff, 0x00040007, | 
 | 	0x3c07c, 0xffffffff, 0x00060005, | 
 | 	0x3c080, 0xffffffff, 0x00090008, | 
 | 	0x3c084, 0xffffffff, 0x00010000, | 
 | 	0x3c088, 0xffffffff, 0x00030002, | 
 | 	0x3c08c, 0xffffffff, 0x00040007, | 
 | 	0x3c090, 0xffffffff, 0x00060005, | 
 | 	0x3c094, 0xffffffff, 0x00090008, | 
 | 	0x3c098, 0xffffffff, 0x00010000, | 
 | 	0x3c09c, 0xffffffff, 0x00030002, | 
 | 	0x3c0a0, 0xffffffff, 0x00040007, | 
 | 	0x3c0a4, 0xffffffff, 0x00060005, | 
 | 	0x3c0a8, 0xffffffff, 0x00090008, | 
 | 	0x3c0ac, 0xffffffff, 0x00010000, | 
 | 	0x3c0b0, 0xffffffff, 0x00030002, | 
 | 	0x3c0b4, 0xffffffff, 0x00040007, | 
 | 	0x3c0b8, 0xffffffff, 0x00060005, | 
 | 	0x3c0bc, 0xffffffff, 0x00090008, | 
 | 	0x3c000, 0xffffffff, 0x96e00200, | 
 | 	0x8708, 0xffffffff, 0x00900100, | 
 | 	0xc424, 0xffffffff, 0x0020003f, | 
 | 	0x38, 0xffffffff, 0x0140001c, | 
 | 	0x3c, 0x000f0000, 0x000f0000, | 
 | 	0x220, 0xffffffff, 0xC060000C, | 
 | 	0x224, 0xc0000fff, 0x00000100, | 
 | 	0xf90, 0xffffffff, 0x00000100, | 
 | 	0xf98, 0x00000101, 0x00000000, | 
 | 	0x20a8, 0xffffffff, 0x00000104, | 
 | 	0x55e4, 0xff000fff, 0x00000100, | 
 | 	0x30cc, 0xc0000fff, 0x00000104, | 
 | 	0xc1e4, 0x00000001, 0x00000001, | 
 | 	0xd00c, 0xff000ff0, 0x00000100, | 
 | 	0xd80c, 0xff000ff0, 0x00000100 | 
 | }; | 
 |  | 
 | static const u32 kalindi_golden_spm_registers[] = | 
 | { | 
 | 	0x30800, 0xe0ffffff, 0xe0000000 | 
 | }; | 
 |  | 
 | static const u32 kalindi_golden_common_registers[] = | 
 | { | 
 | 	0xc770, 0xffffffff, 0x00000800, | 
 | 	0xc774, 0xffffffff, 0x00000800, | 
 | 	0xc798, 0xffffffff, 0x00007fbf, | 
 | 	0xc79c, 0xffffffff, 0x00007faf | 
 | }; | 
 |  | 
 | static const u32 kalindi_golden_registers[] = | 
 | { | 
 | 	0x3c000, 0xffffdfff, 0x6e944040, | 
 | 	0x55e4, 0xff607fff, 0xfc000100, | 
 | 	0x3c220, 0xff000fff, 0x00000100, | 
 | 	0x3c224, 0xff000fff, 0x00000100, | 
 | 	0x3c200, 0xfffc0fff, 0x00000100, | 
 | 	0x6ed8, 0x00010101, 0x00010000, | 
 | 	0x9830, 0xffffffff, 0x00000000, | 
 | 	0x9834, 0xf00fffff, 0x00000400, | 
 | 	0x5bb0, 0x000000f0, 0x00000070, | 
 | 	0x5bc0, 0xf0311fff, 0x80300000, | 
 | 	0x98f8, 0x73773777, 0x12010001, | 
 | 	0x98fc, 0xffffffff, 0x00000010, | 
 | 	0x9b7c, 0x00ff0000, 0x00fc0000, | 
 | 	0x8030, 0x00001f0f, 0x0000100a, | 
 | 	0x2f48, 0x73773777, 0x12010001, | 
 | 	0x2408, 0x000fffff, 0x000c007f, | 
 | 	0x8a14, 0xf000003f, 0x00000007, | 
 | 	0x8b24, 0x3fff3fff, 0x00ffcfff, | 
 | 	0x30a04, 0x0000ff0f, 0x00000000, | 
 | 	0x28a4c, 0x07ffffff, 0x06000000, | 
 | 	0x4d8, 0x00000fff, 0x00000100, | 
 | 	0x3e78, 0x00000001, 0x00000002, | 
 | 	0xc768, 0x00000008, 0x00000008, | 
 | 	0x8c00, 0x000000ff, 0x00000003, | 
 | 	0x214f8, 0x01ff01ff, 0x00000002, | 
 | 	0x21498, 0x007ff800, 0x00200000, | 
 | 	0x2015c, 0xffffffff, 0x00000f40, | 
 | 	0x88c4, 0x001f3ae3, 0x00000082, | 
 | 	0x88d4, 0x0000001f, 0x00000010, | 
 | 	0x30934, 0xffffffff, 0x00000000 | 
 | }; | 
 |  | 
 | static const u32 kalindi_mgcg_cgcg_init[] = | 
 | { | 
 | 	0xc420, 0xffffffff, 0xfffffffc, | 
 | 	0x30800, 0xffffffff, 0xe0000000, | 
 | 	0x3c2a0, 0xffffffff, 0x00000100, | 
 | 	0x3c208, 0xffffffff, 0x00000100, | 
 | 	0x3c2c0, 0xffffffff, 0x00000100, | 
 | 	0x3c2c8, 0xffffffff, 0x00000100, | 
 | 	0x3c2c4, 0xffffffff, 0x00000100, | 
 | 	0x55e4, 0xffffffff, 0x00600100, | 
 | 	0x3c280, 0xffffffff, 0x00000100, | 
 | 	0x3c214, 0xffffffff, 0x06000100, | 
 | 	0x3c220, 0xffffffff, 0x00000100, | 
 | 	0x3c218, 0xffffffff, 0x06000100, | 
 | 	0x3c204, 0xffffffff, 0x00000100, | 
 | 	0x3c2e0, 0xffffffff, 0x00000100, | 
 | 	0x3c224, 0xffffffff, 0x00000100, | 
 | 	0x3c200, 0xffffffff, 0x00000100, | 
 | 	0x3c230, 0xffffffff, 0x00000100, | 
 | 	0x3c234, 0xffffffff, 0x00000100, | 
 | 	0x3c250, 0xffffffff, 0x00000100, | 
 | 	0x3c254, 0xffffffff, 0x00000100, | 
 | 	0x3c258, 0xffffffff, 0x00000100, | 
 | 	0x3c25c, 0xffffffff, 0x00000100, | 
 | 	0x3c260, 0xffffffff, 0x00000100, | 
 | 	0x3c27c, 0xffffffff, 0x00000100, | 
 | 	0x3c278, 0xffffffff, 0x00000100, | 
 | 	0x3c210, 0xffffffff, 0x06000100, | 
 | 	0x3c290, 0xffffffff, 0x00000100, | 
 | 	0x3c274, 0xffffffff, 0x00000100, | 
 | 	0x3c2b4, 0xffffffff, 0x00000100, | 
 | 	0x3c2b0, 0xffffffff, 0x00000100, | 
 | 	0x3c270, 0xffffffff, 0x00000100, | 
 | 	0x30800, 0xffffffff, 0xe0000000, | 
 | 	0x3c020, 0xffffffff, 0x00010000, | 
 | 	0x3c024, 0xffffffff, 0x00030002, | 
 | 	0x3c028, 0xffffffff, 0x00040007, | 
 | 	0x3c02c, 0xffffffff, 0x00060005, | 
 | 	0x3c030, 0xffffffff, 0x00090008, | 
 | 	0x3c034, 0xffffffff, 0x00010000, | 
 | 	0x3c038, 0xffffffff, 0x00030002, | 
 | 	0x3c03c, 0xffffffff, 0x00040007, | 
 | 	0x3c040, 0xffffffff, 0x00060005, | 
 | 	0x3c044, 0xffffffff, 0x00090008, | 
 | 	0x3c000, 0xffffffff, 0x96e00200, | 
 | 	0x8708, 0xffffffff, 0x00900100, | 
 | 	0xc424, 0xffffffff, 0x0020003f, | 
 | 	0x38, 0xffffffff, 0x0140001c, | 
 | 	0x3c, 0x000f0000, 0x000f0000, | 
 | 	0x220, 0xffffffff, 0xC060000C, | 
 | 	0x224, 0xc0000fff, 0x00000100, | 
 | 	0x20a8, 0xffffffff, 0x00000104, | 
 | 	0x55e4, 0xff000fff, 0x00000100, | 
 | 	0x30cc, 0xc0000fff, 0x00000104, | 
 | 	0xc1e4, 0x00000001, 0x00000001, | 
 | 	0xd00c, 0xff000ff0, 0x00000100, | 
 | 	0xd80c, 0xff000ff0, 0x00000100 | 
 | }; | 
 |  | 
 | static void cik_init_golden_registers(struct radeon_device *rdev) | 
 | { | 
 | 	switch (rdev->family) { | 
 | 	case CHIP_BONAIRE: | 
 | 		radeon_program_register_sequence(rdev, | 
 | 						 bonaire_mgcg_cgcg_init, | 
 | 						 (const u32)ARRAY_SIZE(bonaire_mgcg_cgcg_init)); | 
 | 		radeon_program_register_sequence(rdev, | 
 | 						 bonaire_golden_registers, | 
 | 						 (const u32)ARRAY_SIZE(bonaire_golden_registers)); | 
 | 		radeon_program_register_sequence(rdev, | 
 | 						 bonaire_golden_common_registers, | 
 | 						 (const u32)ARRAY_SIZE(bonaire_golden_common_registers)); | 
 | 		radeon_program_register_sequence(rdev, | 
 | 						 bonaire_golden_spm_registers, | 
 | 						 (const u32)ARRAY_SIZE(bonaire_golden_spm_registers)); | 
 | 		break; | 
 | 	case CHIP_KABINI: | 
 | 		radeon_program_register_sequence(rdev, | 
 | 						 kalindi_mgcg_cgcg_init, | 
 | 						 (const u32)ARRAY_SIZE(kalindi_mgcg_cgcg_init)); | 
 | 		radeon_program_register_sequence(rdev, | 
 | 						 kalindi_golden_registers, | 
 | 						 (const u32)ARRAY_SIZE(kalindi_golden_registers)); | 
 | 		radeon_program_register_sequence(rdev, | 
 | 						 kalindi_golden_common_registers, | 
 | 						 (const u32)ARRAY_SIZE(kalindi_golden_common_registers)); | 
 | 		radeon_program_register_sequence(rdev, | 
 | 						 kalindi_golden_spm_registers, | 
 | 						 (const u32)ARRAY_SIZE(kalindi_golden_spm_registers)); | 
 | 		break; | 
 | 	case CHIP_KAVERI: | 
 | 		radeon_program_register_sequence(rdev, | 
 | 						 spectre_mgcg_cgcg_init, | 
 | 						 (const u32)ARRAY_SIZE(spectre_mgcg_cgcg_init)); | 
 | 		radeon_program_register_sequence(rdev, | 
 | 						 spectre_golden_registers, | 
 | 						 (const u32)ARRAY_SIZE(spectre_golden_registers)); | 
 | 		radeon_program_register_sequence(rdev, | 
 | 						 spectre_golden_common_registers, | 
 | 						 (const u32)ARRAY_SIZE(spectre_golden_common_registers)); | 
 | 		radeon_program_register_sequence(rdev, | 
 | 						 spectre_golden_spm_registers, | 
 | 						 (const u32)ARRAY_SIZE(spectre_golden_spm_registers)); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cik_get_xclk - get the xclk | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Returns the reference clock used by the gfx engine | 
 |  * (CIK). | 
 |  */ | 
 | u32 cik_get_xclk(struct radeon_device *rdev) | 
 | { | 
 |         u32 reference_clock = rdev->clock.spll.reference_freq; | 
 |  | 
 | 	if (rdev->flags & RADEON_IS_IGP) { | 
 | 		if (RREG32_SMC(GENERAL_PWRMGT) & GPU_COUNTER_CLK) | 
 | 			return reference_clock / 2; | 
 | 	} else { | 
 | 		if (RREG32_SMC(CG_CLKPIN_CNTL) & XTALIN_DIVIDE) | 
 | 			return reference_clock / 4; | 
 | 	} | 
 | 	return reference_clock; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_mm_rdoorbell - read a doorbell dword | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @offset: byte offset into the aperture | 
 |  * | 
 |  * Returns the value in the doorbell aperture at the | 
 |  * requested offset (CIK). | 
 |  */ | 
 | u32 cik_mm_rdoorbell(struct radeon_device *rdev, u32 offset) | 
 | { | 
 | 	if (offset < rdev->doorbell.size) { | 
 | 		return readl(((void __iomem *)rdev->doorbell.ptr) + offset); | 
 | 	} else { | 
 | 		DRM_ERROR("reading beyond doorbell aperture: 0x%08x!\n", offset); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cik_mm_wdoorbell - write a doorbell dword | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @offset: byte offset into the aperture | 
 |  * @v: value to write | 
 |  * | 
 |  * Writes @v to the doorbell aperture at the | 
 |  * requested offset (CIK). | 
 |  */ | 
 | void cik_mm_wdoorbell(struct radeon_device *rdev, u32 offset, u32 v) | 
 | { | 
 | 	if (offset < rdev->doorbell.size) { | 
 | 		writel(v, ((void __iomem *)rdev->doorbell.ptr) + offset); | 
 | 	} else { | 
 | 		DRM_ERROR("writing beyond doorbell aperture: 0x%08x!\n", offset); | 
 | 	} | 
 | } | 
 |  | 
 | #define BONAIRE_IO_MC_REGS_SIZE 36 | 
 |  | 
 | static const u32 bonaire_io_mc_regs[BONAIRE_IO_MC_REGS_SIZE][2] = | 
 | { | 
 | 	{0x00000070, 0x04400000}, | 
 | 	{0x00000071, 0x80c01803}, | 
 | 	{0x00000072, 0x00004004}, | 
 | 	{0x00000073, 0x00000100}, | 
 | 	{0x00000074, 0x00ff0000}, | 
 | 	{0x00000075, 0x34000000}, | 
 | 	{0x00000076, 0x08000014}, | 
 | 	{0x00000077, 0x00cc08ec}, | 
 | 	{0x00000078, 0x00000400}, | 
 | 	{0x00000079, 0x00000000}, | 
 | 	{0x0000007a, 0x04090000}, | 
 | 	{0x0000007c, 0x00000000}, | 
 | 	{0x0000007e, 0x4408a8e8}, | 
 | 	{0x0000007f, 0x00000304}, | 
 | 	{0x00000080, 0x00000000}, | 
 | 	{0x00000082, 0x00000001}, | 
 | 	{0x00000083, 0x00000002}, | 
 | 	{0x00000084, 0xf3e4f400}, | 
 | 	{0x00000085, 0x052024e3}, | 
 | 	{0x00000087, 0x00000000}, | 
 | 	{0x00000088, 0x01000000}, | 
 | 	{0x0000008a, 0x1c0a0000}, | 
 | 	{0x0000008b, 0xff010000}, | 
 | 	{0x0000008d, 0xffffefff}, | 
 | 	{0x0000008e, 0xfff3efff}, | 
 | 	{0x0000008f, 0xfff3efbf}, | 
 | 	{0x00000092, 0xf7ffffff}, | 
 | 	{0x00000093, 0xffffff7f}, | 
 | 	{0x00000095, 0x00101101}, | 
 | 	{0x00000096, 0x00000fff}, | 
 | 	{0x00000097, 0x00116fff}, | 
 | 	{0x00000098, 0x60010000}, | 
 | 	{0x00000099, 0x10010000}, | 
 | 	{0x0000009a, 0x00006000}, | 
 | 	{0x0000009b, 0x00001000}, | 
 | 	{0x0000009f, 0x00b48000} | 
 | }; | 
 |  | 
 | /** | 
 |  * cik_srbm_select - select specific register instances | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @me: selected ME (micro engine) | 
 |  * @pipe: pipe | 
 |  * @queue: queue | 
 |  * @vmid: VMID | 
 |  * | 
 |  * Switches the currently active registers instances.  Some | 
 |  * registers are instanced per VMID, others are instanced per | 
 |  * me/pipe/queue combination. | 
 |  */ | 
 | static void cik_srbm_select(struct radeon_device *rdev, | 
 | 			    u32 me, u32 pipe, u32 queue, u32 vmid) | 
 | { | 
 | 	u32 srbm_gfx_cntl = (PIPEID(pipe & 0x3) | | 
 | 			     MEID(me & 0x3) | | 
 | 			     VMID(vmid & 0xf) | | 
 | 			     QUEUEID(queue & 0x7)); | 
 | 	WREG32(SRBM_GFX_CNTL, srbm_gfx_cntl); | 
 | } | 
 |  | 
 | /* ucode loading */ | 
 | /** | 
 |  * ci_mc_load_microcode - load MC ucode into the hw | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Load the GDDR MC ucode into the hw (CIK). | 
 |  * Returns 0 on success, error on failure. | 
 |  */ | 
 | static int ci_mc_load_microcode(struct radeon_device *rdev) | 
 | { | 
 | 	const __be32 *fw_data; | 
 | 	u32 running, blackout = 0; | 
 | 	u32 *io_mc_regs; | 
 | 	int i, ucode_size, regs_size; | 
 |  | 
 | 	if (!rdev->mc_fw) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (rdev->family) { | 
 | 	case CHIP_BONAIRE: | 
 | 	default: | 
 | 		io_mc_regs = (u32 *)&bonaire_io_mc_regs; | 
 | 		ucode_size = CIK_MC_UCODE_SIZE; | 
 | 		regs_size = BONAIRE_IO_MC_REGS_SIZE; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	running = RREG32(MC_SEQ_SUP_CNTL) & RUN_MASK; | 
 |  | 
 | 	if (running == 0) { | 
 | 		if (running) { | 
 | 			blackout = RREG32(MC_SHARED_BLACKOUT_CNTL); | 
 | 			WREG32(MC_SHARED_BLACKOUT_CNTL, blackout | 1); | 
 | 		} | 
 |  | 
 | 		/* reset the engine and set to writable */ | 
 | 		WREG32(MC_SEQ_SUP_CNTL, 0x00000008); | 
 | 		WREG32(MC_SEQ_SUP_CNTL, 0x00000010); | 
 |  | 
 | 		/* load mc io regs */ | 
 | 		for (i = 0; i < regs_size; i++) { | 
 | 			WREG32(MC_SEQ_IO_DEBUG_INDEX, io_mc_regs[(i << 1)]); | 
 | 			WREG32(MC_SEQ_IO_DEBUG_DATA, io_mc_regs[(i << 1) + 1]); | 
 | 		} | 
 | 		/* load the MC ucode */ | 
 | 		fw_data = (const __be32 *)rdev->mc_fw->data; | 
 | 		for (i = 0; i < ucode_size; i++) | 
 | 			WREG32(MC_SEQ_SUP_PGM, be32_to_cpup(fw_data++)); | 
 |  | 
 | 		/* put the engine back into the active state */ | 
 | 		WREG32(MC_SEQ_SUP_CNTL, 0x00000008); | 
 | 		WREG32(MC_SEQ_SUP_CNTL, 0x00000004); | 
 | 		WREG32(MC_SEQ_SUP_CNTL, 0x00000001); | 
 |  | 
 | 		/* wait for training to complete */ | 
 | 		for (i = 0; i < rdev->usec_timeout; i++) { | 
 | 			if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D0) | 
 | 				break; | 
 | 			udelay(1); | 
 | 		} | 
 | 		for (i = 0; i < rdev->usec_timeout; i++) { | 
 | 			if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D1) | 
 | 				break; | 
 | 			udelay(1); | 
 | 		} | 
 |  | 
 | 		if (running) | 
 | 			WREG32(MC_SHARED_BLACKOUT_CNTL, blackout); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_init_microcode - load ucode images from disk | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Use the firmware interface to load the ucode images into | 
 |  * the driver (not loaded into hw). | 
 |  * Returns 0 on success, error on failure. | 
 |  */ | 
 | static int cik_init_microcode(struct radeon_device *rdev) | 
 | { | 
 | 	const char *chip_name; | 
 | 	size_t pfp_req_size, me_req_size, ce_req_size, | 
 | 		mec_req_size, rlc_req_size, mc_req_size, | 
 | 		sdma_req_size; | 
 | 	char fw_name[30]; | 
 | 	int err; | 
 |  | 
 | 	DRM_DEBUG("\n"); | 
 |  | 
 | 	switch (rdev->family) { | 
 | 	case CHIP_BONAIRE: | 
 | 		chip_name = "BONAIRE"; | 
 | 		pfp_req_size = CIK_PFP_UCODE_SIZE * 4; | 
 | 		me_req_size = CIK_ME_UCODE_SIZE * 4; | 
 | 		ce_req_size = CIK_CE_UCODE_SIZE * 4; | 
 | 		mec_req_size = CIK_MEC_UCODE_SIZE * 4; | 
 | 		rlc_req_size = BONAIRE_RLC_UCODE_SIZE * 4; | 
 | 		mc_req_size = CIK_MC_UCODE_SIZE * 4; | 
 | 		sdma_req_size = CIK_SDMA_UCODE_SIZE * 4; | 
 | 		break; | 
 | 	case CHIP_KAVERI: | 
 | 		chip_name = "KAVERI"; | 
 | 		pfp_req_size = CIK_PFP_UCODE_SIZE * 4; | 
 | 		me_req_size = CIK_ME_UCODE_SIZE * 4; | 
 | 		ce_req_size = CIK_CE_UCODE_SIZE * 4; | 
 | 		mec_req_size = CIK_MEC_UCODE_SIZE * 4; | 
 | 		rlc_req_size = KV_RLC_UCODE_SIZE * 4; | 
 | 		sdma_req_size = CIK_SDMA_UCODE_SIZE * 4; | 
 | 		break; | 
 | 	case CHIP_KABINI: | 
 | 		chip_name = "KABINI"; | 
 | 		pfp_req_size = CIK_PFP_UCODE_SIZE * 4; | 
 | 		me_req_size = CIK_ME_UCODE_SIZE * 4; | 
 | 		ce_req_size = CIK_CE_UCODE_SIZE * 4; | 
 | 		mec_req_size = CIK_MEC_UCODE_SIZE * 4; | 
 | 		rlc_req_size = KB_RLC_UCODE_SIZE * 4; | 
 | 		sdma_req_size = CIK_SDMA_UCODE_SIZE * 4; | 
 | 		break; | 
 | 	default: BUG(); | 
 | 	} | 
 |  | 
 | 	DRM_INFO("Loading %s Microcode\n", chip_name); | 
 |  | 
 | 	snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name); | 
 | 	err = request_firmware(&rdev->pfp_fw, fw_name, rdev->dev); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	if (rdev->pfp_fw->size != pfp_req_size) { | 
 | 		printk(KERN_ERR | 
 | 		       "cik_cp: Bogus length %zu in firmware \"%s\"\n", | 
 | 		       rdev->pfp_fw->size, fw_name); | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name); | 
 | 	err = request_firmware(&rdev->me_fw, fw_name, rdev->dev); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	if (rdev->me_fw->size != me_req_size) { | 
 | 		printk(KERN_ERR | 
 | 		       "cik_cp: Bogus length %zu in firmware \"%s\"\n", | 
 | 		       rdev->me_fw->size, fw_name); | 
 | 		err = -EINVAL; | 
 | 	} | 
 |  | 
 | 	snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", chip_name); | 
 | 	err = request_firmware(&rdev->ce_fw, fw_name, rdev->dev); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	if (rdev->ce_fw->size != ce_req_size) { | 
 | 		printk(KERN_ERR | 
 | 		       "cik_cp: Bogus length %zu in firmware \"%s\"\n", | 
 | 		       rdev->ce_fw->size, fw_name); | 
 | 		err = -EINVAL; | 
 | 	} | 
 |  | 
 | 	snprintf(fw_name, sizeof(fw_name), "radeon/%s_mec.bin", chip_name); | 
 | 	err = request_firmware(&rdev->mec_fw, fw_name, rdev->dev); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	if (rdev->mec_fw->size != mec_req_size) { | 
 | 		printk(KERN_ERR | 
 | 		       "cik_cp: Bogus length %zu in firmware \"%s\"\n", | 
 | 		       rdev->mec_fw->size, fw_name); | 
 | 		err = -EINVAL; | 
 | 	} | 
 |  | 
 | 	snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", chip_name); | 
 | 	err = request_firmware(&rdev->rlc_fw, fw_name, rdev->dev); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	if (rdev->rlc_fw->size != rlc_req_size) { | 
 | 		printk(KERN_ERR | 
 | 		       "cik_rlc: Bogus length %zu in firmware \"%s\"\n", | 
 | 		       rdev->rlc_fw->size, fw_name); | 
 | 		err = -EINVAL; | 
 | 	} | 
 |  | 
 | 	snprintf(fw_name, sizeof(fw_name), "radeon/%s_sdma.bin", chip_name); | 
 | 	err = request_firmware(&rdev->sdma_fw, fw_name, rdev->dev); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	if (rdev->sdma_fw->size != sdma_req_size) { | 
 | 		printk(KERN_ERR | 
 | 		       "cik_sdma: Bogus length %zu in firmware \"%s\"\n", | 
 | 		       rdev->sdma_fw->size, fw_name); | 
 | 		err = -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* No MC ucode on APUs */ | 
 | 	if (!(rdev->flags & RADEON_IS_IGP)) { | 
 | 		snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", chip_name); | 
 | 		err = request_firmware(&rdev->mc_fw, fw_name, rdev->dev); | 
 | 		if (err) | 
 | 			goto out; | 
 | 		if (rdev->mc_fw->size != mc_req_size) { | 
 | 			printk(KERN_ERR | 
 | 			       "cik_mc: Bogus length %zu in firmware \"%s\"\n", | 
 | 			       rdev->mc_fw->size, fw_name); | 
 | 			err = -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (err) { | 
 | 		if (err != -EINVAL) | 
 | 			printk(KERN_ERR | 
 | 			       "cik_cp: Failed to load firmware \"%s\"\n", | 
 | 			       fw_name); | 
 | 		release_firmware(rdev->pfp_fw); | 
 | 		rdev->pfp_fw = NULL; | 
 | 		release_firmware(rdev->me_fw); | 
 | 		rdev->me_fw = NULL; | 
 | 		release_firmware(rdev->ce_fw); | 
 | 		rdev->ce_fw = NULL; | 
 | 		release_firmware(rdev->rlc_fw); | 
 | 		rdev->rlc_fw = NULL; | 
 | 		release_firmware(rdev->mc_fw); | 
 | 		rdev->mc_fw = NULL; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Core functions | 
 |  */ | 
 | /** | 
 |  * cik_tiling_mode_table_init - init the hw tiling table | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Starting with SI, the tiling setup is done globally in a | 
 |  * set of 32 tiling modes.  Rather than selecting each set of | 
 |  * parameters per surface as on older asics, we just select | 
 |  * which index in the tiling table we want to use, and the | 
 |  * surface uses those parameters (CIK). | 
 |  */ | 
 | static void cik_tiling_mode_table_init(struct radeon_device *rdev) | 
 | { | 
 | 	const u32 num_tile_mode_states = 32; | 
 | 	const u32 num_secondary_tile_mode_states = 16; | 
 | 	u32 reg_offset, gb_tile_moden, split_equal_to_row_size; | 
 | 	u32 num_pipe_configs; | 
 | 	u32 num_rbs = rdev->config.cik.max_backends_per_se * | 
 | 		rdev->config.cik.max_shader_engines; | 
 |  | 
 | 	switch (rdev->config.cik.mem_row_size_in_kb) { | 
 | 	case 1: | 
 | 		split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB; | 
 | 		break; | 
 | 	case 2: | 
 | 	default: | 
 | 		split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB; | 
 | 		break; | 
 | 	case 4: | 
 | 		split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	num_pipe_configs = rdev->config.cik.max_tile_pipes; | 
 | 	if (num_pipe_configs > 8) | 
 | 		num_pipe_configs = 8; /* ??? */ | 
 |  | 
 | 	if (num_pipe_configs == 8) { | 
 | 		for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { | 
 | 			switch (reg_offset) { | 
 | 			case 0: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B)); | 
 | 				break; | 
 | 			case 1: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B)); | 
 | 				break; | 
 | 			case 2: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); | 
 | 				break; | 
 | 			case 3: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B)); | 
 | 				break; | 
 | 			case 4: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 TILE_SPLIT(split_equal_to_row_size)); | 
 | 				break; | 
 | 			case 5: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); | 
 | 				break; | 
 | 			case 6: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); | 
 | 				break; | 
 | 			case 7: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 TILE_SPLIT(split_equal_to_row_size)); | 
 | 				break; | 
 | 			case 8: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16)); | 
 | 				break; | 
 | 			case 9: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); | 
 | 				break; | 
 | 			case 10: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 11: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 12: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 13: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); | 
 | 				break; | 
 | 			case 14: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 16: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 17: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 27: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); | 
 | 				break; | 
 | 			case 28: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 29: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 30: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			default: | 
 | 				gb_tile_moden = 0; | 
 | 				break; | 
 | 			} | 
 | 			rdev->config.cik.tile_mode_array[reg_offset] = gb_tile_moden; | 
 | 			WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); | 
 | 		} | 
 | 		for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) { | 
 | 			switch (reg_offset) { | 
 | 			case 0: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 1: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 2: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 3: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 4: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | | 
 | 						 NUM_BANKS(ADDR_SURF_8_BANK)); | 
 | 				break; | 
 | 			case 5: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | | 
 | 						 NUM_BANKS(ADDR_SURF_4_BANK)); | 
 | 				break; | 
 | 			case 6: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | | 
 | 						 NUM_BANKS(ADDR_SURF_2_BANK)); | 
 | 				break; | 
 | 			case 8: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 9: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 10: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 11: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 12: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | | 
 | 						 NUM_BANKS(ADDR_SURF_8_BANK)); | 
 | 				break; | 
 | 			case 13: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | | 
 | 						 NUM_BANKS(ADDR_SURF_4_BANK)); | 
 | 				break; | 
 | 			case 14: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | | 
 | 						 NUM_BANKS(ADDR_SURF_2_BANK)); | 
 | 				break; | 
 | 			default: | 
 | 				gb_tile_moden = 0; | 
 | 				break; | 
 | 			} | 
 | 			WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden); | 
 | 		} | 
 | 	} else if (num_pipe_configs == 4) { | 
 | 		if (num_rbs == 4) { | 
 | 			for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { | 
 | 				switch (reg_offset) { | 
 | 				case 0: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B)); | 
 | 					break; | 
 | 				case 1: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B)); | 
 | 					break; | 
 | 				case 2: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); | 
 | 					break; | 
 | 				case 3: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B)); | 
 | 					break; | 
 | 				case 4: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 TILE_SPLIT(split_equal_to_row_size)); | 
 | 					break; | 
 | 				case 5: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); | 
 | 					break; | 
 | 				case 6: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); | 
 | 					break; | 
 | 				case 7: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 TILE_SPLIT(split_equal_to_row_size)); | 
 | 					break; | 
 | 				case 8: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16)); | 
 | 					break; | 
 | 				case 9: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); | 
 | 					break; | 
 | 				case 10: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 11: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 12: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 13: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); | 
 | 					break; | 
 | 				case 14: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 16: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 17: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 27: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); | 
 | 					break; | 
 | 				case 28: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 29: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 30: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_16x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				default: | 
 | 					gb_tile_moden = 0; | 
 | 					break; | 
 | 				} | 
 | 				rdev->config.cik.tile_mode_array[reg_offset] = gb_tile_moden; | 
 | 				WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); | 
 | 			} | 
 | 		} else if (num_rbs < 4) { | 
 | 			for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { | 
 | 				switch (reg_offset) { | 
 | 				case 0: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B)); | 
 | 					break; | 
 | 				case 1: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B)); | 
 | 					break; | 
 | 				case 2: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); | 
 | 					break; | 
 | 				case 3: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B)); | 
 | 					break; | 
 | 				case 4: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 TILE_SPLIT(split_equal_to_row_size)); | 
 | 					break; | 
 | 				case 5: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); | 
 | 					break; | 
 | 				case 6: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); | 
 | 					break; | 
 | 				case 7: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 TILE_SPLIT(split_equal_to_row_size)); | 
 | 					break; | 
 | 				case 8: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P4_8x16)); | 
 | 					break; | 
 | 				case 9: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); | 
 | 					break; | 
 | 				case 10: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 11: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 12: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 13: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); | 
 | 					break; | 
 | 				case 14: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 16: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 17: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 27: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); | 
 | 					break; | 
 | 				case 28: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 29: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				case 30: | 
 | 					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | | 
 | 							 PIPE_CONFIG(ADDR_SURF_P4_8x16) | | 
 | 							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 					break; | 
 | 				default: | 
 | 					gb_tile_moden = 0; | 
 | 					break; | 
 | 				} | 
 | 				rdev->config.cik.tile_mode_array[reg_offset] = gb_tile_moden; | 
 | 				WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); | 
 | 			} | 
 | 		} | 
 | 		for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) { | 
 | 			switch (reg_offset) { | 
 | 			case 0: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 1: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 2: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 3: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 4: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 5: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_8_BANK)); | 
 | 				break; | 
 | 			case 6: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | | 
 | 						 NUM_BANKS(ADDR_SURF_4_BANK)); | 
 | 				break; | 
 | 			case 8: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 9: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 10: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 11: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 12: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 13: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_8_BANK)); | 
 | 				break; | 
 | 			case 14: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | | 
 | 						 NUM_BANKS(ADDR_SURF_4_BANK)); | 
 | 				break; | 
 | 			default: | 
 | 				gb_tile_moden = 0; | 
 | 				break; | 
 | 			} | 
 | 			WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden); | 
 | 		} | 
 | 	} else if (num_pipe_configs == 2) { | 
 | 		for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { | 
 | 			switch (reg_offset) { | 
 | 			case 0: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B)); | 
 | 				break; | 
 | 			case 1: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B)); | 
 | 				break; | 
 | 			case 2: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); | 
 | 				break; | 
 | 			case 3: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B)); | 
 | 				break; | 
 | 			case 4: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 TILE_SPLIT(split_equal_to_row_size)); | 
 | 				break; | 
 | 			case 5: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); | 
 | 				break; | 
 | 			case 6: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); | 
 | 				break; | 
 | 			case 7: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 TILE_SPLIT(split_equal_to_row_size)); | 
 | 				break; | 
 | 			case 8: | 
 | 				gb_tile_moden = ARRAY_MODE(ARRAY_LINEAR_ALIGNED); | 
 | 				break; | 
 | 			case 9: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); | 
 | 				break; | 
 | 			case 10: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 11: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 12: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 13: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); | 
 | 				break; | 
 | 			case 14: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 16: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 17: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 27: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); | 
 | 				break; | 
 | 			case 28: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 29: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			case 30: | 
 | 				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | | 
 | 						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | | 
 | 						 PIPE_CONFIG(ADDR_SURF_P2) | | 
 | 						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); | 
 | 				break; | 
 | 			default: | 
 | 				gb_tile_moden = 0; | 
 | 				break; | 
 | 			} | 
 | 			rdev->config.cik.tile_mode_array[reg_offset] = gb_tile_moden; | 
 | 			WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); | 
 | 		} | 
 | 		for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) { | 
 | 			switch (reg_offset) { | 
 | 			case 0: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 1: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 2: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 3: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 4: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 5: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 6: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_8_BANK)); | 
 | 				break; | 
 | 			case 8: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 9: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 10: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 11: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 12: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 13: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | | 
 | 						 NUM_BANKS(ADDR_SURF_16_BANK)); | 
 | 				break; | 
 | 			case 14: | 
 | 				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | | 
 | 						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | | 
 | 						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | | 
 | 						 NUM_BANKS(ADDR_SURF_8_BANK)); | 
 | 				break; | 
 | 			default: | 
 | 				gb_tile_moden = 0; | 
 | 				break; | 
 | 			} | 
 | 			WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden); | 
 | 		} | 
 | 	} else | 
 | 		DRM_ERROR("unknown num pipe config: 0x%x\n", num_pipe_configs); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_select_se_sh - select which SE, SH to address | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @se_num: shader engine to address | 
 |  * @sh_num: sh block to address | 
 |  * | 
 |  * Select which SE, SH combinations to address. Certain | 
 |  * registers are instanced per SE or SH.  0xffffffff means | 
 |  * broadcast to all SEs or SHs (CIK). | 
 |  */ | 
 | static void cik_select_se_sh(struct radeon_device *rdev, | 
 | 			     u32 se_num, u32 sh_num) | 
 | { | 
 | 	u32 data = INSTANCE_BROADCAST_WRITES; | 
 |  | 
 | 	if ((se_num == 0xffffffff) && (sh_num == 0xffffffff)) | 
 | 		data |= SH_BROADCAST_WRITES | SE_BROADCAST_WRITES; | 
 | 	else if (se_num == 0xffffffff) | 
 | 		data |= SE_BROADCAST_WRITES | SH_INDEX(sh_num); | 
 | 	else if (sh_num == 0xffffffff) | 
 | 		data |= SH_BROADCAST_WRITES | SE_INDEX(se_num); | 
 | 	else | 
 | 		data |= SH_INDEX(sh_num) | SE_INDEX(se_num); | 
 | 	WREG32(GRBM_GFX_INDEX, data); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_create_bitmask - create a bitmask | 
 |  * | 
 |  * @bit_width: length of the mask | 
 |  * | 
 |  * create a variable length bit mask (CIK). | 
 |  * Returns the bitmask. | 
 |  */ | 
 | static u32 cik_create_bitmask(u32 bit_width) | 
 | { | 
 | 	u32 i, mask = 0; | 
 |  | 
 | 	for (i = 0; i < bit_width; i++) { | 
 | 		mask <<= 1; | 
 | 		mask |= 1; | 
 | 	} | 
 | 	return mask; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_select_se_sh - select which SE, SH to address | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @max_rb_num: max RBs (render backends) for the asic | 
 |  * @se_num: number of SEs (shader engines) for the asic | 
 |  * @sh_per_se: number of SH blocks per SE for the asic | 
 |  * | 
 |  * Calculates the bitmask of disabled RBs (CIK). | 
 |  * Returns the disabled RB bitmask. | 
 |  */ | 
 | static u32 cik_get_rb_disabled(struct radeon_device *rdev, | 
 | 			      u32 max_rb_num, u32 se_num, | 
 | 			      u32 sh_per_se) | 
 | { | 
 | 	u32 data, mask; | 
 |  | 
 | 	data = RREG32(CC_RB_BACKEND_DISABLE); | 
 | 	if (data & 1) | 
 | 		data &= BACKEND_DISABLE_MASK; | 
 | 	else | 
 | 		data = 0; | 
 | 	data |= RREG32(GC_USER_RB_BACKEND_DISABLE); | 
 |  | 
 | 	data >>= BACKEND_DISABLE_SHIFT; | 
 |  | 
 | 	mask = cik_create_bitmask(max_rb_num / se_num / sh_per_se); | 
 |  | 
 | 	return data & mask; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_setup_rb - setup the RBs on the asic | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @se_num: number of SEs (shader engines) for the asic | 
 |  * @sh_per_se: number of SH blocks per SE for the asic | 
 |  * @max_rb_num: max RBs (render backends) for the asic | 
 |  * | 
 |  * Configures per-SE/SH RB registers (CIK). | 
 |  */ | 
 | static void cik_setup_rb(struct radeon_device *rdev, | 
 | 			 u32 se_num, u32 sh_per_se, | 
 | 			 u32 max_rb_num) | 
 | { | 
 | 	int i, j; | 
 | 	u32 data, mask; | 
 | 	u32 disabled_rbs = 0; | 
 | 	u32 enabled_rbs = 0; | 
 |  | 
 | 	for (i = 0; i < se_num; i++) { | 
 | 		for (j = 0; j < sh_per_se; j++) { | 
 | 			cik_select_se_sh(rdev, i, j); | 
 | 			data = cik_get_rb_disabled(rdev, max_rb_num, se_num, sh_per_se); | 
 | 			disabled_rbs |= data << ((i * sh_per_se + j) * CIK_RB_BITMAP_WIDTH_PER_SH); | 
 | 		} | 
 | 	} | 
 | 	cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); | 
 |  | 
 | 	mask = 1; | 
 | 	for (i = 0; i < max_rb_num; i++) { | 
 | 		if (!(disabled_rbs & mask)) | 
 | 			enabled_rbs |= mask; | 
 | 		mask <<= 1; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < se_num; i++) { | 
 | 		cik_select_se_sh(rdev, i, 0xffffffff); | 
 | 		data = 0; | 
 | 		for (j = 0; j < sh_per_se; j++) { | 
 | 			switch (enabled_rbs & 3) { | 
 | 			case 1: | 
 | 				data |= (RASTER_CONFIG_RB_MAP_0 << (i * sh_per_se + j) * 2); | 
 | 				break; | 
 | 			case 2: | 
 | 				data |= (RASTER_CONFIG_RB_MAP_3 << (i * sh_per_se + j) * 2); | 
 | 				break; | 
 | 			case 3: | 
 | 			default: | 
 | 				data |= (RASTER_CONFIG_RB_MAP_2 << (i * sh_per_se + j) * 2); | 
 | 				break; | 
 | 			} | 
 | 			enabled_rbs >>= 2; | 
 | 		} | 
 | 		WREG32(PA_SC_RASTER_CONFIG, data); | 
 | 	} | 
 | 	cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_gpu_init - setup the 3D engine | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Configures the 3D engine and tiling configuration | 
 |  * registers so that the 3D engine is usable. | 
 |  */ | 
 | static void cik_gpu_init(struct radeon_device *rdev) | 
 | { | 
 | 	u32 gb_addr_config = RREG32(GB_ADDR_CONFIG); | 
 | 	u32 mc_shared_chmap, mc_arb_ramcfg; | 
 | 	u32 hdp_host_path_cntl; | 
 | 	u32 tmp; | 
 | 	int i, j; | 
 |  | 
 | 	switch (rdev->family) { | 
 | 	case CHIP_BONAIRE: | 
 | 		rdev->config.cik.max_shader_engines = 2; | 
 | 		rdev->config.cik.max_tile_pipes = 4; | 
 | 		rdev->config.cik.max_cu_per_sh = 7; | 
 | 		rdev->config.cik.max_sh_per_se = 1; | 
 | 		rdev->config.cik.max_backends_per_se = 2; | 
 | 		rdev->config.cik.max_texture_channel_caches = 4; | 
 | 		rdev->config.cik.max_gprs = 256; | 
 | 		rdev->config.cik.max_gs_threads = 32; | 
 | 		rdev->config.cik.max_hw_contexts = 8; | 
 |  | 
 | 		rdev->config.cik.sc_prim_fifo_size_frontend = 0x20; | 
 | 		rdev->config.cik.sc_prim_fifo_size_backend = 0x100; | 
 | 		rdev->config.cik.sc_hiz_tile_fifo_size = 0x30; | 
 | 		rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130; | 
 | 		gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN; | 
 | 		break; | 
 | 	case CHIP_KAVERI: | 
 | 		/* TODO */ | 
 | 		break; | 
 | 	case CHIP_KABINI: | 
 | 	default: | 
 | 		rdev->config.cik.max_shader_engines = 1; | 
 | 		rdev->config.cik.max_tile_pipes = 2; | 
 | 		rdev->config.cik.max_cu_per_sh = 2; | 
 | 		rdev->config.cik.max_sh_per_se = 1; | 
 | 		rdev->config.cik.max_backends_per_se = 1; | 
 | 		rdev->config.cik.max_texture_channel_caches = 2; | 
 | 		rdev->config.cik.max_gprs = 256; | 
 | 		rdev->config.cik.max_gs_threads = 16; | 
 | 		rdev->config.cik.max_hw_contexts = 8; | 
 |  | 
 | 		rdev->config.cik.sc_prim_fifo_size_frontend = 0x20; | 
 | 		rdev->config.cik.sc_prim_fifo_size_backend = 0x100; | 
 | 		rdev->config.cik.sc_hiz_tile_fifo_size = 0x30; | 
 | 		rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130; | 
 | 		gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Initialize HDP */ | 
 | 	for (i = 0, j = 0; i < 32; i++, j += 0x18) { | 
 | 		WREG32((0x2c14 + j), 0x00000000); | 
 | 		WREG32((0x2c18 + j), 0x00000000); | 
 | 		WREG32((0x2c1c + j), 0x00000000); | 
 | 		WREG32((0x2c20 + j), 0x00000000); | 
 | 		WREG32((0x2c24 + j), 0x00000000); | 
 | 	} | 
 |  | 
 | 	WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff)); | 
 |  | 
 | 	WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN); | 
 |  | 
 | 	mc_shared_chmap = RREG32(MC_SHARED_CHMAP); | 
 | 	mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG); | 
 |  | 
 | 	rdev->config.cik.num_tile_pipes = rdev->config.cik.max_tile_pipes; | 
 | 	rdev->config.cik.mem_max_burst_length_bytes = 256; | 
 | 	tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT; | 
 | 	rdev->config.cik.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024; | 
 | 	if (rdev->config.cik.mem_row_size_in_kb > 4) | 
 | 		rdev->config.cik.mem_row_size_in_kb = 4; | 
 | 	/* XXX use MC settings? */ | 
 | 	rdev->config.cik.shader_engine_tile_size = 32; | 
 | 	rdev->config.cik.num_gpus = 1; | 
 | 	rdev->config.cik.multi_gpu_tile_size = 64; | 
 |  | 
 | 	/* fix up row size */ | 
 | 	gb_addr_config &= ~ROW_SIZE_MASK; | 
 | 	switch (rdev->config.cik.mem_row_size_in_kb) { | 
 | 	case 1: | 
 | 	default: | 
 | 		gb_addr_config |= ROW_SIZE(0); | 
 | 		break; | 
 | 	case 2: | 
 | 		gb_addr_config |= ROW_SIZE(1); | 
 | 		break; | 
 | 	case 4: | 
 | 		gb_addr_config |= ROW_SIZE(2); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* setup tiling info dword.  gb_addr_config is not adequate since it does | 
 | 	 * not have bank info, so create a custom tiling dword. | 
 | 	 * bits 3:0   num_pipes | 
 | 	 * bits 7:4   num_banks | 
 | 	 * bits 11:8  group_size | 
 | 	 * bits 15:12 row_size | 
 | 	 */ | 
 | 	rdev->config.cik.tile_config = 0; | 
 | 	switch (rdev->config.cik.num_tile_pipes) { | 
 | 	case 1: | 
 | 		rdev->config.cik.tile_config |= (0 << 0); | 
 | 		break; | 
 | 	case 2: | 
 | 		rdev->config.cik.tile_config |= (1 << 0); | 
 | 		break; | 
 | 	case 4: | 
 | 		rdev->config.cik.tile_config |= (2 << 0); | 
 | 		break; | 
 | 	case 8: | 
 | 	default: | 
 | 		/* XXX what about 12? */ | 
 | 		rdev->config.cik.tile_config |= (3 << 0); | 
 | 		break; | 
 | 	} | 
 | 	if ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT) | 
 | 		rdev->config.cik.tile_config |= 1 << 4; | 
 | 	else | 
 | 		rdev->config.cik.tile_config |= 0 << 4; | 
 | 	rdev->config.cik.tile_config |= | 
 | 		((gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT) << 8; | 
 | 	rdev->config.cik.tile_config |= | 
 | 		((gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT) << 12; | 
 |  | 
 | 	WREG32(GB_ADDR_CONFIG, gb_addr_config); | 
 | 	WREG32(HDP_ADDR_CONFIG, gb_addr_config); | 
 | 	WREG32(DMIF_ADDR_CALC, gb_addr_config); | 
 | 	WREG32(SDMA0_TILING_CONFIG + SDMA0_REGISTER_OFFSET, gb_addr_config & 0x70); | 
 | 	WREG32(SDMA0_TILING_CONFIG + SDMA1_REGISTER_OFFSET, gb_addr_config & 0x70); | 
 | 	WREG32(UVD_UDEC_ADDR_CONFIG, gb_addr_config); | 
 | 	WREG32(UVD_UDEC_DB_ADDR_CONFIG, gb_addr_config); | 
 | 	WREG32(UVD_UDEC_DBW_ADDR_CONFIG, gb_addr_config); | 
 |  | 
 | 	cik_tiling_mode_table_init(rdev); | 
 |  | 
 | 	cik_setup_rb(rdev, rdev->config.cik.max_shader_engines, | 
 | 		     rdev->config.cik.max_sh_per_se, | 
 | 		     rdev->config.cik.max_backends_per_se); | 
 |  | 
 | 	/* set HW defaults for 3D engine */ | 
 | 	WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60)); | 
 |  | 
 | 	WREG32(SX_DEBUG_1, 0x20); | 
 |  | 
 | 	WREG32(TA_CNTL_AUX, 0x00010000); | 
 |  | 
 | 	tmp = RREG32(SPI_CONFIG_CNTL); | 
 | 	tmp |= 0x03000000; | 
 | 	WREG32(SPI_CONFIG_CNTL, tmp); | 
 |  | 
 | 	WREG32(SQ_CONFIG, 1); | 
 |  | 
 | 	WREG32(DB_DEBUG, 0); | 
 |  | 
 | 	tmp = RREG32(DB_DEBUG2) & ~0xf00fffff; | 
 | 	tmp |= 0x00000400; | 
 | 	WREG32(DB_DEBUG2, tmp); | 
 |  | 
 | 	tmp = RREG32(DB_DEBUG3) & ~0x0002021c; | 
 | 	tmp |= 0x00020200; | 
 | 	WREG32(DB_DEBUG3, tmp); | 
 |  | 
 | 	tmp = RREG32(CB_HW_CONTROL) & ~0x00010000; | 
 | 	tmp |= 0x00018208; | 
 | 	WREG32(CB_HW_CONTROL, tmp); | 
 |  | 
 | 	WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4)); | 
 |  | 
 | 	WREG32(PA_SC_FIFO_SIZE, (SC_FRONTEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_frontend) | | 
 | 				 SC_BACKEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_backend) | | 
 | 				 SC_HIZ_TILE_FIFO_SIZE(rdev->config.cik.sc_hiz_tile_fifo_size) | | 
 | 				 SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.cik.sc_earlyz_tile_fifo_size))); | 
 |  | 
 | 	WREG32(VGT_NUM_INSTANCES, 1); | 
 |  | 
 | 	WREG32(CP_PERFMON_CNTL, 0); | 
 |  | 
 | 	WREG32(SQ_CONFIG, 0); | 
 |  | 
 | 	WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) | | 
 | 					  FORCE_EOV_MAX_REZ_CNT(255))); | 
 |  | 
 | 	WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) | | 
 | 	       AUTO_INVLD_EN(ES_AND_GS_AUTO)); | 
 |  | 
 | 	WREG32(VGT_GS_VERTEX_REUSE, 16); | 
 | 	WREG32(PA_SC_LINE_STIPPLE_STATE, 0); | 
 |  | 
 | 	tmp = RREG32(HDP_MISC_CNTL); | 
 | 	tmp |= HDP_FLUSH_INVALIDATE_CACHE; | 
 | 	WREG32(HDP_MISC_CNTL, tmp); | 
 |  | 
 | 	hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL); | 
 | 	WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl); | 
 |  | 
 | 	WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3)); | 
 | 	WREG32(PA_SC_ENHANCE, ENABLE_PA_SC_OUT_OF_ORDER); | 
 |  | 
 | 	udelay(50); | 
 | } | 
 |  | 
 | /* | 
 |  * GPU scratch registers helpers function. | 
 |  */ | 
 | /** | 
 |  * cik_scratch_init - setup driver info for CP scratch regs | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Set up the number and offset of the CP scratch registers. | 
 |  * NOTE: use of CP scratch registers is a legacy inferface and | 
 |  * is not used by default on newer asics (r6xx+).  On newer asics, | 
 |  * memory buffers are used for fences rather than scratch regs. | 
 |  */ | 
 | static void cik_scratch_init(struct radeon_device *rdev) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	rdev->scratch.num_reg = 7; | 
 | 	rdev->scratch.reg_base = SCRATCH_REG0; | 
 | 	for (i = 0; i < rdev->scratch.num_reg; i++) { | 
 | 		rdev->scratch.free[i] = true; | 
 | 		rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cik_ring_test - basic gfx ring test | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @ring: radeon_ring structure holding ring information | 
 |  * | 
 |  * Allocate a scratch register and write to it using the gfx ring (CIK). | 
 |  * Provides a basic gfx ring test to verify that the ring is working. | 
 |  * Used by cik_cp_gfx_resume(); | 
 |  * Returns 0 on success, error on failure. | 
 |  */ | 
 | int cik_ring_test(struct radeon_device *rdev, struct radeon_ring *ring) | 
 | { | 
 | 	uint32_t scratch; | 
 | 	uint32_t tmp = 0; | 
 | 	unsigned i; | 
 | 	int r; | 
 |  | 
 | 	r = radeon_scratch_get(rdev, &scratch); | 
 | 	if (r) { | 
 | 		DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 | 	WREG32(scratch, 0xCAFEDEAD); | 
 | 	r = radeon_ring_lock(rdev, ring, 3); | 
 | 	if (r) { | 
 | 		DRM_ERROR("radeon: cp failed to lock ring %d (%d).\n", ring->idx, r); | 
 | 		radeon_scratch_free(rdev, scratch); | 
 | 		return r; | 
 | 	} | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); | 
 | 	radeon_ring_write(ring, ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2)); | 
 | 	radeon_ring_write(ring, 0xDEADBEEF); | 
 | 	radeon_ring_unlock_commit(rdev, ring); | 
 |  | 
 | 	for (i = 0; i < rdev->usec_timeout; i++) { | 
 | 		tmp = RREG32(scratch); | 
 | 		if (tmp == 0xDEADBEEF) | 
 | 			break; | 
 | 		DRM_UDELAY(1); | 
 | 	} | 
 | 	if (i < rdev->usec_timeout) { | 
 | 		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); | 
 | 	} else { | 
 | 		DRM_ERROR("radeon: ring %d test failed (scratch(0x%04X)=0x%08X)\n", | 
 | 			  ring->idx, scratch, tmp); | 
 | 		r = -EINVAL; | 
 | 	} | 
 | 	radeon_scratch_free(rdev, scratch); | 
 | 	return r; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_fence_gfx_ring_emit - emit a fence on the gfx ring | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @fence: radeon fence object | 
 |  * | 
 |  * Emits a fence sequnce number on the gfx ring and flushes | 
 |  * GPU caches. | 
 |  */ | 
 | void cik_fence_gfx_ring_emit(struct radeon_device *rdev, | 
 | 			     struct radeon_fence *fence) | 
 | { | 
 | 	struct radeon_ring *ring = &rdev->ring[fence->ring]; | 
 | 	u64 addr = rdev->fence_drv[fence->ring].gpu_addr; | 
 |  | 
 | 	/* EVENT_WRITE_EOP - flush caches, send int */ | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4)); | 
 | 	radeon_ring_write(ring, (EOP_TCL1_ACTION_EN | | 
 | 				 EOP_TC_ACTION_EN | | 
 | 				 EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | | 
 | 				 EVENT_INDEX(5))); | 
 | 	radeon_ring_write(ring, addr & 0xfffffffc); | 
 | 	radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | DATA_SEL(1) | INT_SEL(2)); | 
 | 	radeon_ring_write(ring, fence->seq); | 
 | 	radeon_ring_write(ring, 0); | 
 | 	/* HDP flush */ | 
 | 	/* We should be using the new WAIT_REG_MEM special op packet here | 
 | 	 * but it causes the CP to hang | 
 | 	 */ | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); | 
 | 	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | | 
 | 				 WRITE_DATA_DST_SEL(0))); | 
 | 	radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2); | 
 | 	radeon_ring_write(ring, 0); | 
 | 	radeon_ring_write(ring, 0); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_fence_compute_ring_emit - emit a fence on the compute ring | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @fence: radeon fence object | 
 |  * | 
 |  * Emits a fence sequnce number on the compute ring and flushes | 
 |  * GPU caches. | 
 |  */ | 
 | void cik_fence_compute_ring_emit(struct radeon_device *rdev, | 
 | 				 struct radeon_fence *fence) | 
 | { | 
 | 	struct radeon_ring *ring = &rdev->ring[fence->ring]; | 
 | 	u64 addr = rdev->fence_drv[fence->ring].gpu_addr; | 
 |  | 
 | 	/* RELEASE_MEM - flush caches, send int */ | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 5)); | 
 | 	radeon_ring_write(ring, (EOP_TCL1_ACTION_EN | | 
 | 				 EOP_TC_ACTION_EN | | 
 | 				 EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | | 
 | 				 EVENT_INDEX(5))); | 
 | 	radeon_ring_write(ring, DATA_SEL(1) | INT_SEL(2)); | 
 | 	radeon_ring_write(ring, addr & 0xfffffffc); | 
 | 	radeon_ring_write(ring, upper_32_bits(addr)); | 
 | 	radeon_ring_write(ring, fence->seq); | 
 | 	radeon_ring_write(ring, 0); | 
 | 	/* HDP flush */ | 
 | 	/* We should be using the new WAIT_REG_MEM special op packet here | 
 | 	 * but it causes the CP to hang | 
 | 	 */ | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); | 
 | 	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | | 
 | 				 WRITE_DATA_DST_SEL(0))); | 
 | 	radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2); | 
 | 	radeon_ring_write(ring, 0); | 
 | 	radeon_ring_write(ring, 0); | 
 | } | 
 |  | 
 | void cik_semaphore_ring_emit(struct radeon_device *rdev, | 
 | 			     struct radeon_ring *ring, | 
 | 			     struct radeon_semaphore *semaphore, | 
 | 			     bool emit_wait) | 
 | { | 
 | 	uint64_t addr = semaphore->gpu_addr; | 
 | 	unsigned sel = emit_wait ? PACKET3_SEM_SEL_WAIT : PACKET3_SEM_SEL_SIGNAL; | 
 |  | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_MEM_SEMAPHORE, 1)); | 
 | 	radeon_ring_write(ring, addr & 0xffffffff); | 
 | 	radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | sel); | 
 | } | 
 |  | 
 | /* | 
 |  * IB stuff | 
 |  */ | 
 | /** | 
 |  * cik_ring_ib_execute - emit an IB (Indirect Buffer) on the gfx ring | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @ib: radeon indirect buffer object | 
 |  * | 
 |  * Emits an DE (drawing engine) or CE (constant engine) IB | 
 |  * on the gfx ring.  IBs are usually generated by userspace | 
 |  * acceleration drivers and submitted to the kernel for | 
 |  * sheduling on the ring.  This function schedules the IB | 
 |  * on the gfx ring for execution by the GPU. | 
 |  */ | 
 | void cik_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) | 
 | { | 
 | 	struct radeon_ring *ring = &rdev->ring[ib->ring]; | 
 | 	u32 header, control = INDIRECT_BUFFER_VALID; | 
 |  | 
 | 	if (ib->is_const_ib) { | 
 | 		/* set switch buffer packet before const IB */ | 
 | 		radeon_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); | 
 | 		radeon_ring_write(ring, 0); | 
 |  | 
 | 		header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2); | 
 | 	} else { | 
 | 		u32 next_rptr; | 
 | 		if (ring->rptr_save_reg) { | 
 | 			next_rptr = ring->wptr + 3 + 4; | 
 | 			radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); | 
 | 			radeon_ring_write(ring, ((ring->rptr_save_reg - | 
 | 						  PACKET3_SET_UCONFIG_REG_START) >> 2)); | 
 | 			radeon_ring_write(ring, next_rptr); | 
 | 		} else if (rdev->wb.enabled) { | 
 | 			next_rptr = ring->wptr + 5 + 4; | 
 | 			radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); | 
 | 			radeon_ring_write(ring, WRITE_DATA_DST_SEL(1)); | 
 | 			radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); | 
 | 			radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff); | 
 | 			radeon_ring_write(ring, next_rptr); | 
 | 		} | 
 |  | 
 | 		header = PACKET3(PACKET3_INDIRECT_BUFFER, 2); | 
 | 	} | 
 |  | 
 | 	control |= ib->length_dw | | 
 | 		(ib->vm ? (ib->vm->id << 24) : 0); | 
 |  | 
 | 	radeon_ring_write(ring, header); | 
 | 	radeon_ring_write(ring, | 
 | #ifdef __BIG_ENDIAN | 
 | 			  (2 << 0) | | 
 | #endif | 
 | 			  (ib->gpu_addr & 0xFFFFFFFC)); | 
 | 	radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF); | 
 | 	radeon_ring_write(ring, control); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_ib_test - basic gfx ring IB test | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @ring: radeon_ring structure holding ring information | 
 |  * | 
 |  * Allocate an IB and execute it on the gfx ring (CIK). | 
 |  * Provides a basic gfx ring test to verify that IBs are working. | 
 |  * Returns 0 on success, error on failure. | 
 |  */ | 
 | int cik_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) | 
 | { | 
 | 	struct radeon_ib ib; | 
 | 	uint32_t scratch; | 
 | 	uint32_t tmp = 0; | 
 | 	unsigned i; | 
 | 	int r; | 
 |  | 
 | 	r = radeon_scratch_get(rdev, &scratch); | 
 | 	if (r) { | 
 | 		DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 | 	WREG32(scratch, 0xCAFEDEAD); | 
 | 	r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256); | 
 | 	if (r) { | 
 | 		DRM_ERROR("radeon: failed to get ib (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 | 	ib.ptr[0] = PACKET3(PACKET3_SET_UCONFIG_REG, 1); | 
 | 	ib.ptr[1] = ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2); | 
 | 	ib.ptr[2] = 0xDEADBEEF; | 
 | 	ib.length_dw = 3; | 
 | 	r = radeon_ib_schedule(rdev, &ib, NULL); | 
 | 	if (r) { | 
 | 		radeon_scratch_free(rdev, scratch); | 
 | 		radeon_ib_free(rdev, &ib); | 
 | 		DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 | 	r = radeon_fence_wait(ib.fence, false); | 
 | 	if (r) { | 
 | 		DRM_ERROR("radeon: fence wait failed (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 | 	for (i = 0; i < rdev->usec_timeout; i++) { | 
 | 		tmp = RREG32(scratch); | 
 | 		if (tmp == 0xDEADBEEF) | 
 | 			break; | 
 | 		DRM_UDELAY(1); | 
 | 	} | 
 | 	if (i < rdev->usec_timeout) { | 
 | 		DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i); | 
 | 	} else { | 
 | 		DRM_ERROR("radeon: ib test failed (scratch(0x%04X)=0x%08X)\n", | 
 | 			  scratch, tmp); | 
 | 		r = -EINVAL; | 
 | 	} | 
 | 	radeon_scratch_free(rdev, scratch); | 
 | 	radeon_ib_free(rdev, &ib); | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * CP. | 
 |  * On CIK, gfx and compute now have independant command processors. | 
 |  * | 
 |  * GFX | 
 |  * Gfx consists of a single ring and can process both gfx jobs and | 
 |  * compute jobs.  The gfx CP consists of three microengines (ME): | 
 |  * PFP - Pre-Fetch Parser | 
 |  * ME - Micro Engine | 
 |  * CE - Constant Engine | 
 |  * The PFP and ME make up what is considered the Drawing Engine (DE). | 
 |  * The CE is an asynchronous engine used for updating buffer desciptors | 
 |  * used by the DE so that they can be loaded into cache in parallel | 
 |  * while the DE is processing state update packets. | 
 |  * | 
 |  * Compute | 
 |  * The compute CP consists of two microengines (ME): | 
 |  * MEC1 - Compute MicroEngine 1 | 
 |  * MEC2 - Compute MicroEngine 2 | 
 |  * Each MEC supports 4 compute pipes and each pipe supports 8 queues. | 
 |  * The queues are exposed to userspace and are programmed directly | 
 |  * by the compute runtime. | 
 |  */ | 
 | /** | 
 |  * cik_cp_gfx_enable - enable/disable the gfx CP MEs | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @enable: enable or disable the MEs | 
 |  * | 
 |  * Halts or unhalts the gfx MEs. | 
 |  */ | 
 | static void cik_cp_gfx_enable(struct radeon_device *rdev, bool enable) | 
 | { | 
 | 	if (enable) | 
 | 		WREG32(CP_ME_CNTL, 0); | 
 | 	else { | 
 | 		WREG32(CP_ME_CNTL, (CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT)); | 
 | 		rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; | 
 | 	} | 
 | 	udelay(50); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_cp_gfx_load_microcode - load the gfx CP ME ucode | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Loads the gfx PFP, ME, and CE ucode. | 
 |  * Returns 0 for success, -EINVAL if the ucode is not available. | 
 |  */ | 
 | static int cik_cp_gfx_load_microcode(struct radeon_device *rdev) | 
 | { | 
 | 	const __be32 *fw_data; | 
 | 	int i; | 
 |  | 
 | 	if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw) | 
 | 		return -EINVAL; | 
 |  | 
 | 	cik_cp_gfx_enable(rdev, false); | 
 |  | 
 | 	/* PFP */ | 
 | 	fw_data = (const __be32 *)rdev->pfp_fw->data; | 
 | 	WREG32(CP_PFP_UCODE_ADDR, 0); | 
 | 	for (i = 0; i < CIK_PFP_UCODE_SIZE; i++) | 
 | 		WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++)); | 
 | 	WREG32(CP_PFP_UCODE_ADDR, 0); | 
 |  | 
 | 	/* CE */ | 
 | 	fw_data = (const __be32 *)rdev->ce_fw->data; | 
 | 	WREG32(CP_CE_UCODE_ADDR, 0); | 
 | 	for (i = 0; i < CIK_CE_UCODE_SIZE; i++) | 
 | 		WREG32(CP_CE_UCODE_DATA, be32_to_cpup(fw_data++)); | 
 | 	WREG32(CP_CE_UCODE_ADDR, 0); | 
 |  | 
 | 	/* ME */ | 
 | 	fw_data = (const __be32 *)rdev->me_fw->data; | 
 | 	WREG32(CP_ME_RAM_WADDR, 0); | 
 | 	for (i = 0; i < CIK_ME_UCODE_SIZE; i++) | 
 | 		WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++)); | 
 | 	WREG32(CP_ME_RAM_WADDR, 0); | 
 |  | 
 | 	WREG32(CP_PFP_UCODE_ADDR, 0); | 
 | 	WREG32(CP_CE_UCODE_ADDR, 0); | 
 | 	WREG32(CP_ME_RAM_WADDR, 0); | 
 | 	WREG32(CP_ME_RAM_RADDR, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_cp_gfx_start - start the gfx ring | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Enables the ring and loads the clear state context and other | 
 |  * packets required to init the ring. | 
 |  * Returns 0 for success, error for failure. | 
 |  */ | 
 | static int cik_cp_gfx_start(struct radeon_device *rdev) | 
 | { | 
 | 	struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; | 
 | 	int r, i; | 
 |  | 
 | 	/* init the CP */ | 
 | 	WREG32(CP_MAX_CONTEXT, rdev->config.cik.max_hw_contexts - 1); | 
 | 	WREG32(CP_ENDIAN_SWAP, 0); | 
 | 	WREG32(CP_DEVICE_ID, 1); | 
 |  | 
 | 	cik_cp_gfx_enable(rdev, true); | 
 |  | 
 | 	r = radeon_ring_lock(rdev, ring, cik_default_size + 17); | 
 | 	if (r) { | 
 | 		DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	/* init the CE partitions.  CE only used for gfx on CIK */ | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2)); | 
 | 	radeon_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE)); | 
 | 	radeon_ring_write(ring, 0xc000); | 
 | 	radeon_ring_write(ring, 0xc000); | 
 |  | 
 | 	/* setup clear context state */ | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); | 
 | 	radeon_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); | 
 |  | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); | 
 | 	radeon_ring_write(ring, 0x80000000); | 
 | 	radeon_ring_write(ring, 0x80000000); | 
 |  | 
 | 	for (i = 0; i < cik_default_size; i++) | 
 | 		radeon_ring_write(ring, cik_default_state[i]); | 
 |  | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); | 
 | 	radeon_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE); | 
 |  | 
 | 	/* set clear context state */ | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); | 
 | 	radeon_ring_write(ring, 0); | 
 |  | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2)); | 
 | 	radeon_ring_write(ring, 0x00000316); | 
 | 	radeon_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */ | 
 | 	radeon_ring_write(ring, 0x00000010); /* VGT_OUT_DEALLOC_CNTL */ | 
 |  | 
 | 	radeon_ring_unlock_commit(rdev, ring); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_cp_gfx_fini - stop the gfx ring | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Stop the gfx ring and tear down the driver ring | 
 |  * info. | 
 |  */ | 
 | static void cik_cp_gfx_fini(struct radeon_device *rdev) | 
 | { | 
 | 	cik_cp_gfx_enable(rdev, false); | 
 | 	radeon_ring_fini(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_cp_gfx_resume - setup the gfx ring buffer registers | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Program the location and size of the gfx ring buffer | 
 |  * and test it to make sure it's working. | 
 |  * Returns 0 for success, error for failure. | 
 |  */ | 
 | static int cik_cp_gfx_resume(struct radeon_device *rdev) | 
 | { | 
 | 	struct radeon_ring *ring; | 
 | 	u32 tmp; | 
 | 	u32 rb_bufsz; | 
 | 	u64 rb_addr; | 
 | 	int r; | 
 |  | 
 | 	WREG32(CP_SEM_WAIT_TIMER, 0x0); | 
 | 	WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0); | 
 |  | 
 | 	/* Set the write pointer delay */ | 
 | 	WREG32(CP_RB_WPTR_DELAY, 0); | 
 |  | 
 | 	/* set the RB to use vmid 0 */ | 
 | 	WREG32(CP_RB_VMID, 0); | 
 |  | 
 | 	WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF); | 
 |  | 
 | 	/* ring 0 - compute and gfx */ | 
 | 	/* Set ring buffer size */ | 
 | 	ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; | 
 | 	rb_bufsz = drm_order(ring->ring_size / 8); | 
 | 	tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; | 
 | #ifdef __BIG_ENDIAN | 
 | 	tmp |= BUF_SWAP_32BIT; | 
 | #endif | 
 | 	WREG32(CP_RB0_CNTL, tmp); | 
 |  | 
 | 	/* Initialize the ring buffer's read and write pointers */ | 
 | 	WREG32(CP_RB0_CNTL, tmp | RB_RPTR_WR_ENA); | 
 | 	ring->wptr = 0; | 
 | 	WREG32(CP_RB0_WPTR, ring->wptr); | 
 |  | 
 | 	/* set the wb address wether it's enabled or not */ | 
 | 	WREG32(CP_RB0_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC); | 
 | 	WREG32(CP_RB0_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF); | 
 |  | 
 | 	/* scratch register shadowing is no longer supported */ | 
 | 	WREG32(SCRATCH_UMSK, 0); | 
 |  | 
 | 	if (!rdev->wb.enabled) | 
 | 		tmp |= RB_NO_UPDATE; | 
 |  | 
 | 	mdelay(1); | 
 | 	WREG32(CP_RB0_CNTL, tmp); | 
 |  | 
 | 	rb_addr = ring->gpu_addr >> 8; | 
 | 	WREG32(CP_RB0_BASE, rb_addr); | 
 | 	WREG32(CP_RB0_BASE_HI, upper_32_bits(rb_addr)); | 
 |  | 
 | 	ring->rptr = RREG32(CP_RB0_RPTR); | 
 |  | 
 | 	/* start the ring */ | 
 | 	cik_cp_gfx_start(rdev); | 
 | 	rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = true; | 
 | 	r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]); | 
 | 	if (r) { | 
 | 		rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; | 
 | 		return r; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | u32 cik_compute_ring_get_rptr(struct radeon_device *rdev, | 
 | 			      struct radeon_ring *ring) | 
 | { | 
 | 	u32 rptr; | 
 |  | 
 |  | 
 |  | 
 | 	if (rdev->wb.enabled) { | 
 | 		rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]); | 
 | 	} else { | 
 | 		cik_srbm_select(rdev, ring->me, ring->pipe, ring->queue, 0); | 
 | 		rptr = RREG32(CP_HQD_PQ_RPTR); | 
 | 		cik_srbm_select(rdev, 0, 0, 0, 0); | 
 | 	} | 
 | 	rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift; | 
 |  | 
 | 	return rptr; | 
 | } | 
 |  | 
 | u32 cik_compute_ring_get_wptr(struct radeon_device *rdev, | 
 | 			      struct radeon_ring *ring) | 
 | { | 
 | 	u32 wptr; | 
 |  | 
 | 	if (rdev->wb.enabled) { | 
 | 		wptr = le32_to_cpu(rdev->wb.wb[ring->wptr_offs/4]); | 
 | 	} else { | 
 | 		cik_srbm_select(rdev, ring->me, ring->pipe, ring->queue, 0); | 
 | 		wptr = RREG32(CP_HQD_PQ_WPTR); | 
 | 		cik_srbm_select(rdev, 0, 0, 0, 0); | 
 | 	} | 
 | 	wptr = (wptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift; | 
 |  | 
 | 	return wptr; | 
 | } | 
 |  | 
 | void cik_compute_ring_set_wptr(struct radeon_device *rdev, | 
 | 			       struct radeon_ring *ring) | 
 | { | 
 | 	u32 wptr = (ring->wptr << ring->ptr_reg_shift) & ring->ptr_reg_mask; | 
 |  | 
 | 	rdev->wb.wb[ring->wptr_offs/4] = cpu_to_le32(wptr); | 
 | 	WDOORBELL32(ring->doorbell_offset, wptr); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_cp_compute_enable - enable/disable the compute CP MEs | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @enable: enable or disable the MEs | 
 |  * | 
 |  * Halts or unhalts the compute MEs. | 
 |  */ | 
 | static void cik_cp_compute_enable(struct radeon_device *rdev, bool enable) | 
 | { | 
 | 	if (enable) | 
 | 		WREG32(CP_MEC_CNTL, 0); | 
 | 	else | 
 | 		WREG32(CP_MEC_CNTL, (MEC_ME1_HALT | MEC_ME2_HALT)); | 
 | 	udelay(50); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_cp_compute_load_microcode - load the compute CP ME ucode | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Loads the compute MEC1&2 ucode. | 
 |  * Returns 0 for success, -EINVAL if the ucode is not available. | 
 |  */ | 
 | static int cik_cp_compute_load_microcode(struct radeon_device *rdev) | 
 | { | 
 | 	const __be32 *fw_data; | 
 | 	int i; | 
 |  | 
 | 	if (!rdev->mec_fw) | 
 | 		return -EINVAL; | 
 |  | 
 | 	cik_cp_compute_enable(rdev, false); | 
 |  | 
 | 	/* MEC1 */ | 
 | 	fw_data = (const __be32 *)rdev->mec_fw->data; | 
 | 	WREG32(CP_MEC_ME1_UCODE_ADDR, 0); | 
 | 	for (i = 0; i < CIK_MEC_UCODE_SIZE; i++) | 
 | 		WREG32(CP_MEC_ME1_UCODE_DATA, be32_to_cpup(fw_data++)); | 
 | 	WREG32(CP_MEC_ME1_UCODE_ADDR, 0); | 
 |  | 
 | 	if (rdev->family == CHIP_KAVERI) { | 
 | 		/* MEC2 */ | 
 | 		fw_data = (const __be32 *)rdev->mec_fw->data; | 
 | 		WREG32(CP_MEC_ME2_UCODE_ADDR, 0); | 
 | 		for (i = 0; i < CIK_MEC_UCODE_SIZE; i++) | 
 | 			WREG32(CP_MEC_ME2_UCODE_DATA, be32_to_cpup(fw_data++)); | 
 | 		WREG32(CP_MEC_ME2_UCODE_ADDR, 0); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_cp_compute_start - start the compute queues | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Enable the compute queues. | 
 |  * Returns 0 for success, error for failure. | 
 |  */ | 
 | static int cik_cp_compute_start(struct radeon_device *rdev) | 
 | { | 
 | 	cik_cp_compute_enable(rdev, true); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_cp_compute_fini - stop the compute queues | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Stop the compute queues and tear down the driver queue | 
 |  * info. | 
 |  */ | 
 | static void cik_cp_compute_fini(struct radeon_device *rdev) | 
 | { | 
 | 	int i, idx, r; | 
 |  | 
 | 	cik_cp_compute_enable(rdev, false); | 
 |  | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		if (i == 0) | 
 | 			idx = CAYMAN_RING_TYPE_CP1_INDEX; | 
 | 		else | 
 | 			idx = CAYMAN_RING_TYPE_CP2_INDEX; | 
 |  | 
 | 		if (rdev->ring[idx].mqd_obj) { | 
 | 			r = radeon_bo_reserve(rdev->ring[idx].mqd_obj, false); | 
 | 			if (unlikely(r != 0)) | 
 | 				dev_warn(rdev->dev, "(%d) reserve MQD bo failed\n", r); | 
 |  | 
 | 			radeon_bo_unpin(rdev->ring[idx].mqd_obj); | 
 | 			radeon_bo_unreserve(rdev->ring[idx].mqd_obj); | 
 |  | 
 | 			radeon_bo_unref(&rdev->ring[idx].mqd_obj); | 
 | 			rdev->ring[idx].mqd_obj = NULL; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void cik_mec_fini(struct radeon_device *rdev) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (rdev->mec.hpd_eop_obj) { | 
 | 		r = radeon_bo_reserve(rdev->mec.hpd_eop_obj, false); | 
 | 		if (unlikely(r != 0)) | 
 | 			dev_warn(rdev->dev, "(%d) reserve HPD EOP bo failed\n", r); | 
 | 		radeon_bo_unpin(rdev->mec.hpd_eop_obj); | 
 | 		radeon_bo_unreserve(rdev->mec.hpd_eop_obj); | 
 |  | 
 | 		radeon_bo_unref(&rdev->mec.hpd_eop_obj); | 
 | 		rdev->mec.hpd_eop_obj = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | #define MEC_HPD_SIZE 2048 | 
 |  | 
 | static int cik_mec_init(struct radeon_device *rdev) | 
 | { | 
 | 	int r; | 
 | 	u32 *hpd; | 
 |  | 
 | 	/* | 
 | 	 * KV:    2 MEC, 4 Pipes/MEC, 8 Queues/Pipe - 64 Queues total | 
 | 	 * CI/KB: 1 MEC, 4 Pipes/MEC, 8 Queues/Pipe - 32 Queues total | 
 | 	 */ | 
 | 	if (rdev->family == CHIP_KAVERI) | 
 | 		rdev->mec.num_mec = 2; | 
 | 	else | 
 | 		rdev->mec.num_mec = 1; | 
 | 	rdev->mec.num_pipe = 4; | 
 | 	rdev->mec.num_queue = rdev->mec.num_mec * rdev->mec.num_pipe * 8; | 
 |  | 
 | 	if (rdev->mec.hpd_eop_obj == NULL) { | 
 | 		r = radeon_bo_create(rdev, | 
 | 				     rdev->mec.num_mec *rdev->mec.num_pipe * MEC_HPD_SIZE * 2, | 
 | 				     PAGE_SIZE, true, | 
 | 				     RADEON_GEM_DOMAIN_GTT, NULL, | 
 | 				     &rdev->mec.hpd_eop_obj); | 
 | 		if (r) { | 
 | 			dev_warn(rdev->dev, "(%d) create HDP EOP bo failed\n", r); | 
 | 			return r; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	r = radeon_bo_reserve(rdev->mec.hpd_eop_obj, false); | 
 | 	if (unlikely(r != 0)) { | 
 | 		cik_mec_fini(rdev); | 
 | 		return r; | 
 | 	} | 
 | 	r = radeon_bo_pin(rdev->mec.hpd_eop_obj, RADEON_GEM_DOMAIN_GTT, | 
 | 			  &rdev->mec.hpd_eop_gpu_addr); | 
 | 	if (r) { | 
 | 		dev_warn(rdev->dev, "(%d) pin HDP EOP bo failed\n", r); | 
 | 		cik_mec_fini(rdev); | 
 | 		return r; | 
 | 	} | 
 | 	r = radeon_bo_kmap(rdev->mec.hpd_eop_obj, (void **)&hpd); | 
 | 	if (r) { | 
 | 		dev_warn(rdev->dev, "(%d) map HDP EOP bo failed\n", r); | 
 | 		cik_mec_fini(rdev); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	/* clear memory.  Not sure if this is required or not */ | 
 | 	memset(hpd, 0, rdev->mec.num_mec *rdev->mec.num_pipe * MEC_HPD_SIZE * 2); | 
 |  | 
 | 	radeon_bo_kunmap(rdev->mec.hpd_eop_obj); | 
 | 	radeon_bo_unreserve(rdev->mec.hpd_eop_obj); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct hqd_registers | 
 | { | 
 | 	u32 cp_mqd_base_addr; | 
 | 	u32 cp_mqd_base_addr_hi; | 
 | 	u32 cp_hqd_active; | 
 | 	u32 cp_hqd_vmid; | 
 | 	u32 cp_hqd_persistent_state; | 
 | 	u32 cp_hqd_pipe_priority; | 
 | 	u32 cp_hqd_queue_priority; | 
 | 	u32 cp_hqd_quantum; | 
 | 	u32 cp_hqd_pq_base; | 
 | 	u32 cp_hqd_pq_base_hi; | 
 | 	u32 cp_hqd_pq_rptr; | 
 | 	u32 cp_hqd_pq_rptr_report_addr; | 
 | 	u32 cp_hqd_pq_rptr_report_addr_hi; | 
 | 	u32 cp_hqd_pq_wptr_poll_addr; | 
 | 	u32 cp_hqd_pq_wptr_poll_addr_hi; | 
 | 	u32 cp_hqd_pq_doorbell_control; | 
 | 	u32 cp_hqd_pq_wptr; | 
 | 	u32 cp_hqd_pq_control; | 
 | 	u32 cp_hqd_ib_base_addr; | 
 | 	u32 cp_hqd_ib_base_addr_hi; | 
 | 	u32 cp_hqd_ib_rptr; | 
 | 	u32 cp_hqd_ib_control; | 
 | 	u32 cp_hqd_iq_timer; | 
 | 	u32 cp_hqd_iq_rptr; | 
 | 	u32 cp_hqd_dequeue_request; | 
 | 	u32 cp_hqd_dma_offload; | 
 | 	u32 cp_hqd_sema_cmd; | 
 | 	u32 cp_hqd_msg_type; | 
 | 	u32 cp_hqd_atomic0_preop_lo; | 
 | 	u32 cp_hqd_atomic0_preop_hi; | 
 | 	u32 cp_hqd_atomic1_preop_lo; | 
 | 	u32 cp_hqd_atomic1_preop_hi; | 
 | 	u32 cp_hqd_hq_scheduler0; | 
 | 	u32 cp_hqd_hq_scheduler1; | 
 | 	u32 cp_mqd_control; | 
 | }; | 
 |  | 
 | struct bonaire_mqd | 
 | { | 
 | 	u32 header; | 
 | 	u32 dispatch_initiator; | 
 | 	u32 dimensions[3]; | 
 | 	u32 start_idx[3]; | 
 | 	u32 num_threads[3]; | 
 | 	u32 pipeline_stat_enable; | 
 | 	u32 perf_counter_enable; | 
 | 	u32 pgm[2]; | 
 | 	u32 tba[2]; | 
 | 	u32 tma[2]; | 
 | 	u32 pgm_rsrc[2]; | 
 | 	u32 vmid; | 
 | 	u32 resource_limits; | 
 | 	u32 static_thread_mgmt01[2]; | 
 | 	u32 tmp_ring_size; | 
 | 	u32 static_thread_mgmt23[2]; | 
 | 	u32 restart[3]; | 
 | 	u32 thread_trace_enable; | 
 | 	u32 reserved1; | 
 | 	u32 user_data[16]; | 
 | 	u32 vgtcs_invoke_count[2]; | 
 | 	struct hqd_registers queue_state; | 
 | 	u32 dequeue_cntr; | 
 | 	u32 interrupt_queue[64]; | 
 | }; | 
 |  | 
 | /** | 
 |  * cik_cp_compute_resume - setup the compute queue registers | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Program the compute queues and test them to make sure they | 
 |  * are working. | 
 |  * Returns 0 for success, error for failure. | 
 |  */ | 
 | static int cik_cp_compute_resume(struct radeon_device *rdev) | 
 | { | 
 | 	int r, i, idx; | 
 | 	u32 tmp; | 
 | 	bool use_doorbell = true; | 
 | 	u64 hqd_gpu_addr; | 
 | 	u64 mqd_gpu_addr; | 
 | 	u64 eop_gpu_addr; | 
 | 	u64 wb_gpu_addr; | 
 | 	u32 *buf; | 
 | 	struct bonaire_mqd *mqd; | 
 |  | 
 | 	r = cik_cp_compute_start(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* fix up chicken bits */ | 
 | 	tmp = RREG32(CP_CPF_DEBUG); | 
 | 	tmp |= (1 << 23); | 
 | 	WREG32(CP_CPF_DEBUG, tmp); | 
 |  | 
 | 	/* init the pipes */ | 
 | 	for (i = 0; i < (rdev->mec.num_pipe * rdev->mec.num_mec); i++) { | 
 | 		int me = (i < 4) ? 1 : 2; | 
 | 		int pipe = (i < 4) ? i : (i - 4); | 
 |  | 
 | 		eop_gpu_addr = rdev->mec.hpd_eop_gpu_addr + (i * MEC_HPD_SIZE * 2); | 
 |  | 
 | 		cik_srbm_select(rdev, me, pipe, 0, 0); | 
 |  | 
 | 		/* write the EOP addr */ | 
 | 		WREG32(CP_HPD_EOP_BASE_ADDR, eop_gpu_addr >> 8); | 
 | 		WREG32(CP_HPD_EOP_BASE_ADDR_HI, upper_32_bits(eop_gpu_addr) >> 8); | 
 |  | 
 | 		/* set the VMID assigned */ | 
 | 		WREG32(CP_HPD_EOP_VMID, 0); | 
 |  | 
 | 		/* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */ | 
 | 		tmp = RREG32(CP_HPD_EOP_CONTROL); | 
 | 		tmp &= ~EOP_SIZE_MASK; | 
 | 		tmp |= drm_order(MEC_HPD_SIZE / 8); | 
 | 		WREG32(CP_HPD_EOP_CONTROL, tmp); | 
 | 	} | 
 | 	cik_srbm_select(rdev, 0, 0, 0, 0); | 
 |  | 
 | 	/* init the queues.  Just two for now. */ | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		if (i == 0) | 
 | 			idx = CAYMAN_RING_TYPE_CP1_INDEX; | 
 | 		else | 
 | 			idx = CAYMAN_RING_TYPE_CP2_INDEX; | 
 |  | 
 | 		if (rdev->ring[idx].mqd_obj == NULL) { | 
 | 			r = radeon_bo_create(rdev, | 
 | 					     sizeof(struct bonaire_mqd), | 
 | 					     PAGE_SIZE, true, | 
 | 					     RADEON_GEM_DOMAIN_GTT, NULL, | 
 | 					     &rdev->ring[idx].mqd_obj); | 
 | 			if (r) { | 
 | 				dev_warn(rdev->dev, "(%d) create MQD bo failed\n", r); | 
 | 				return r; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		r = radeon_bo_reserve(rdev->ring[idx].mqd_obj, false); | 
 | 		if (unlikely(r != 0)) { | 
 | 			cik_cp_compute_fini(rdev); | 
 | 			return r; | 
 | 		} | 
 | 		r = radeon_bo_pin(rdev->ring[idx].mqd_obj, RADEON_GEM_DOMAIN_GTT, | 
 | 				  &mqd_gpu_addr); | 
 | 		if (r) { | 
 | 			dev_warn(rdev->dev, "(%d) pin MQD bo failed\n", r); | 
 | 			cik_cp_compute_fini(rdev); | 
 | 			return r; | 
 | 		} | 
 | 		r = radeon_bo_kmap(rdev->ring[idx].mqd_obj, (void **)&buf); | 
 | 		if (r) { | 
 | 			dev_warn(rdev->dev, "(%d) map MQD bo failed\n", r); | 
 | 			cik_cp_compute_fini(rdev); | 
 | 			return r; | 
 | 		} | 
 |  | 
 | 		/* doorbell offset */ | 
 | 		rdev->ring[idx].doorbell_offset = | 
 | 			(rdev->ring[idx].doorbell_page_num * PAGE_SIZE) + 0; | 
 |  | 
 | 		/* init the mqd struct */ | 
 | 		memset(buf, 0, sizeof(struct bonaire_mqd)); | 
 |  | 
 | 		mqd = (struct bonaire_mqd *)buf; | 
 | 		mqd->header = 0xC0310800; | 
 | 		mqd->static_thread_mgmt01[0] = 0xffffffff; | 
 | 		mqd->static_thread_mgmt01[1] = 0xffffffff; | 
 | 		mqd->static_thread_mgmt23[0] = 0xffffffff; | 
 | 		mqd->static_thread_mgmt23[1] = 0xffffffff; | 
 |  | 
 | 		cik_srbm_select(rdev, rdev->ring[idx].me, | 
 | 				rdev->ring[idx].pipe, | 
 | 				rdev->ring[idx].queue, 0); | 
 |  | 
 | 		/* disable wptr polling */ | 
 | 		tmp = RREG32(CP_PQ_WPTR_POLL_CNTL); | 
 | 		tmp &= ~WPTR_POLL_EN; | 
 | 		WREG32(CP_PQ_WPTR_POLL_CNTL, tmp); | 
 |  | 
 | 		/* enable doorbell? */ | 
 | 		mqd->queue_state.cp_hqd_pq_doorbell_control = | 
 | 			RREG32(CP_HQD_PQ_DOORBELL_CONTROL); | 
 | 		if (use_doorbell) | 
 | 			mqd->queue_state.cp_hqd_pq_doorbell_control |= DOORBELL_EN; | 
 | 		else | 
 | 			mqd->queue_state.cp_hqd_pq_doorbell_control &= ~DOORBELL_EN; | 
 | 		WREG32(CP_HQD_PQ_DOORBELL_CONTROL, | 
 | 		       mqd->queue_state.cp_hqd_pq_doorbell_control); | 
 |  | 
 | 		/* disable the queue if it's active */ | 
 | 		mqd->queue_state.cp_hqd_dequeue_request = 0; | 
 | 		mqd->queue_state.cp_hqd_pq_rptr = 0; | 
 | 		mqd->queue_state.cp_hqd_pq_wptr= 0; | 
 | 		if (RREG32(CP_HQD_ACTIVE) & 1) { | 
 | 			WREG32(CP_HQD_DEQUEUE_REQUEST, 1); | 
 | 			for (i = 0; i < rdev->usec_timeout; i++) { | 
 | 				if (!(RREG32(CP_HQD_ACTIVE) & 1)) | 
 | 					break; | 
 | 				udelay(1); | 
 | 			} | 
 | 			WREG32(CP_HQD_DEQUEUE_REQUEST, mqd->queue_state.cp_hqd_dequeue_request); | 
 | 			WREG32(CP_HQD_PQ_RPTR, mqd->queue_state.cp_hqd_pq_rptr); | 
 | 			WREG32(CP_HQD_PQ_WPTR, mqd->queue_state.cp_hqd_pq_wptr); | 
 | 		} | 
 |  | 
 | 		/* set the pointer to the MQD */ | 
 | 		mqd->queue_state.cp_mqd_base_addr = mqd_gpu_addr & 0xfffffffc; | 
 | 		mqd->queue_state.cp_mqd_base_addr_hi = upper_32_bits(mqd_gpu_addr); | 
 | 		WREG32(CP_MQD_BASE_ADDR, mqd->queue_state.cp_mqd_base_addr); | 
 | 		WREG32(CP_MQD_BASE_ADDR_HI, mqd->queue_state.cp_mqd_base_addr_hi); | 
 | 		/* set MQD vmid to 0 */ | 
 | 		mqd->queue_state.cp_mqd_control = RREG32(CP_MQD_CONTROL); | 
 | 		mqd->queue_state.cp_mqd_control &= ~MQD_VMID_MASK; | 
 | 		WREG32(CP_MQD_CONTROL, mqd->queue_state.cp_mqd_control); | 
 |  | 
 | 		/* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */ | 
 | 		hqd_gpu_addr = rdev->ring[idx].gpu_addr >> 8; | 
 | 		mqd->queue_state.cp_hqd_pq_base = hqd_gpu_addr; | 
 | 		mqd->queue_state.cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr); | 
 | 		WREG32(CP_HQD_PQ_BASE, mqd->queue_state.cp_hqd_pq_base); | 
 | 		WREG32(CP_HQD_PQ_BASE_HI, mqd->queue_state.cp_hqd_pq_base_hi); | 
 |  | 
 | 		/* set up the HQD, this is similar to CP_RB0_CNTL */ | 
 | 		mqd->queue_state.cp_hqd_pq_control = RREG32(CP_HQD_PQ_CONTROL); | 
 | 		mqd->queue_state.cp_hqd_pq_control &= | 
 | 			~(QUEUE_SIZE_MASK | RPTR_BLOCK_SIZE_MASK); | 
 |  | 
 | 		mqd->queue_state.cp_hqd_pq_control |= | 
 | 			drm_order(rdev->ring[idx].ring_size / 8); | 
 | 		mqd->queue_state.cp_hqd_pq_control |= | 
 | 			(drm_order(RADEON_GPU_PAGE_SIZE/8) << 8); | 
 | #ifdef __BIG_ENDIAN | 
 | 		mqd->queue_state.cp_hqd_pq_control |= BUF_SWAP_32BIT; | 
 | #endif | 
 | 		mqd->queue_state.cp_hqd_pq_control &= | 
 | 			~(UNORD_DISPATCH | ROQ_PQ_IB_FLIP | PQ_VOLATILE); | 
 | 		mqd->queue_state.cp_hqd_pq_control |= | 
 | 			PRIV_STATE | KMD_QUEUE; /* assuming kernel queue control */ | 
 | 		WREG32(CP_HQD_PQ_CONTROL, mqd->queue_state.cp_hqd_pq_control); | 
 |  | 
 | 		/* only used if CP_PQ_WPTR_POLL_CNTL.WPTR_POLL_EN=1 */ | 
 | 		if (i == 0) | 
 | 			wb_gpu_addr = rdev->wb.gpu_addr + CIK_WB_CP1_WPTR_OFFSET; | 
 | 		else | 
 | 			wb_gpu_addr = rdev->wb.gpu_addr + CIK_WB_CP2_WPTR_OFFSET; | 
 | 		mqd->queue_state.cp_hqd_pq_wptr_poll_addr = wb_gpu_addr & 0xfffffffc; | 
 | 		mqd->queue_state.cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; | 
 | 		WREG32(CP_HQD_PQ_WPTR_POLL_ADDR, mqd->queue_state.cp_hqd_pq_wptr_poll_addr); | 
 | 		WREG32(CP_HQD_PQ_WPTR_POLL_ADDR_HI, | 
 | 		       mqd->queue_state.cp_hqd_pq_wptr_poll_addr_hi); | 
 |  | 
 | 		/* set the wb address wether it's enabled or not */ | 
 | 		if (i == 0) | 
 | 			wb_gpu_addr = rdev->wb.gpu_addr + RADEON_WB_CP1_RPTR_OFFSET; | 
 | 		else | 
 | 			wb_gpu_addr = rdev->wb.gpu_addr + RADEON_WB_CP2_RPTR_OFFSET; | 
 | 		mqd->queue_state.cp_hqd_pq_rptr_report_addr = wb_gpu_addr & 0xfffffffc; | 
 | 		mqd->queue_state.cp_hqd_pq_rptr_report_addr_hi = | 
 | 			upper_32_bits(wb_gpu_addr) & 0xffff; | 
 | 		WREG32(CP_HQD_PQ_RPTR_REPORT_ADDR, | 
 | 		       mqd->queue_state.cp_hqd_pq_rptr_report_addr); | 
 | 		WREG32(CP_HQD_PQ_RPTR_REPORT_ADDR_HI, | 
 | 		       mqd->queue_state.cp_hqd_pq_rptr_report_addr_hi); | 
 |  | 
 | 		/* enable the doorbell if requested */ | 
 | 		if (use_doorbell) { | 
 | 			mqd->queue_state.cp_hqd_pq_doorbell_control = | 
 | 				RREG32(CP_HQD_PQ_DOORBELL_CONTROL); | 
 | 			mqd->queue_state.cp_hqd_pq_doorbell_control &= ~DOORBELL_OFFSET_MASK; | 
 | 			mqd->queue_state.cp_hqd_pq_doorbell_control |= | 
 | 				DOORBELL_OFFSET(rdev->ring[idx].doorbell_offset / 4); | 
 | 			mqd->queue_state.cp_hqd_pq_doorbell_control |= DOORBELL_EN; | 
 | 			mqd->queue_state.cp_hqd_pq_doorbell_control &= | 
 | 				~(DOORBELL_SOURCE | DOORBELL_HIT); | 
 |  | 
 | 		} else { | 
 | 			mqd->queue_state.cp_hqd_pq_doorbell_control = 0; | 
 | 		} | 
 | 		WREG32(CP_HQD_PQ_DOORBELL_CONTROL, | 
 | 		       mqd->queue_state.cp_hqd_pq_doorbell_control); | 
 |  | 
 | 		/* read and write pointers, similar to CP_RB0_WPTR/_RPTR */ | 
 | 		rdev->ring[idx].wptr = 0; | 
 | 		mqd->queue_state.cp_hqd_pq_wptr = rdev->ring[idx].wptr; | 
 | 		WREG32(CP_HQD_PQ_WPTR, mqd->queue_state.cp_hqd_pq_wptr); | 
 | 		rdev->ring[idx].rptr = RREG32(CP_HQD_PQ_RPTR); | 
 | 		mqd->queue_state.cp_hqd_pq_rptr = rdev->ring[idx].rptr; | 
 |  | 
 | 		/* set the vmid for the queue */ | 
 | 		mqd->queue_state.cp_hqd_vmid = 0; | 
 | 		WREG32(CP_HQD_VMID, mqd->queue_state.cp_hqd_vmid); | 
 |  | 
 | 		/* activate the queue */ | 
 | 		mqd->queue_state.cp_hqd_active = 1; | 
 | 		WREG32(CP_HQD_ACTIVE, mqd->queue_state.cp_hqd_active); | 
 |  | 
 | 		cik_srbm_select(rdev, 0, 0, 0, 0); | 
 |  | 
 | 		radeon_bo_kunmap(rdev->ring[idx].mqd_obj); | 
 | 		radeon_bo_unreserve(rdev->ring[idx].mqd_obj); | 
 |  | 
 | 		rdev->ring[idx].ready = true; | 
 | 		r = radeon_ring_test(rdev, idx, &rdev->ring[idx]); | 
 | 		if (r) | 
 | 			rdev->ring[idx].ready = false; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cik_cp_enable(struct radeon_device *rdev, bool enable) | 
 | { | 
 | 	cik_cp_gfx_enable(rdev, enable); | 
 | 	cik_cp_compute_enable(rdev, enable); | 
 | } | 
 |  | 
 | static int cik_cp_load_microcode(struct radeon_device *rdev) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = cik_cp_gfx_load_microcode(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 | 	r = cik_cp_compute_load_microcode(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cik_cp_fini(struct radeon_device *rdev) | 
 | { | 
 | 	cik_cp_gfx_fini(rdev); | 
 | 	cik_cp_compute_fini(rdev); | 
 | } | 
 |  | 
 | static int cik_cp_resume(struct radeon_device *rdev) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	/* Reset all cp blocks */ | 
 | 	WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP); | 
 | 	RREG32(GRBM_SOFT_RESET); | 
 | 	mdelay(15); | 
 | 	WREG32(GRBM_SOFT_RESET, 0); | 
 | 	RREG32(GRBM_SOFT_RESET); | 
 |  | 
 | 	r = cik_cp_load_microcode(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = cik_cp_gfx_resume(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 | 	r = cik_cp_compute_resume(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * sDMA - System DMA | 
 |  * Starting with CIK, the GPU has new asynchronous | 
 |  * DMA engines.  These engines are used for compute | 
 |  * and gfx.  There are two DMA engines (SDMA0, SDMA1) | 
 |  * and each one supports 1 ring buffer used for gfx | 
 |  * and 2 queues used for compute. | 
 |  * | 
 |  * The programming model is very similar to the CP | 
 |  * (ring buffer, IBs, etc.), but sDMA has it's own | 
 |  * packet format that is different from the PM4 format | 
 |  * used by the CP. sDMA supports copying data, writing | 
 |  * embedded data, solid fills, and a number of other | 
 |  * things.  It also has support for tiling/detiling of | 
 |  * buffers. | 
 |  */ | 
 | /** | 
 |  * cik_sdma_ring_ib_execute - Schedule an IB on the DMA engine | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @ib: IB object to schedule | 
 |  * | 
 |  * Schedule an IB in the DMA ring (CIK). | 
 |  */ | 
 | void cik_sdma_ring_ib_execute(struct radeon_device *rdev, | 
 | 			      struct radeon_ib *ib) | 
 | { | 
 | 	struct radeon_ring *ring = &rdev->ring[ib->ring]; | 
 | 	u32 extra_bits = (ib->vm ? ib->vm->id : 0) & 0xf; | 
 |  | 
 | 	if (rdev->wb.enabled) { | 
 | 		u32 next_rptr = ring->wptr + 5; | 
 | 		while ((next_rptr & 7) != 4) | 
 | 			next_rptr++; | 
 | 		next_rptr += 4; | 
 | 		radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); | 
 | 		radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); | 
 | 		radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff); | 
 | 		radeon_ring_write(ring, 1); /* number of DWs to follow */ | 
 | 		radeon_ring_write(ring, next_rptr); | 
 | 	} | 
 |  | 
 | 	/* IB packet must end on a 8 DW boundary */ | 
 | 	while ((ring->wptr & 7) != 4) | 
 | 		radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0)); | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits)); | 
 | 	radeon_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */ | 
 | 	radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xffffffff); | 
 | 	radeon_ring_write(ring, ib->length_dw); | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_fence_ring_emit - emit a fence on the DMA ring | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @fence: radeon fence object | 
 |  * | 
 |  * Add a DMA fence packet to the ring to write | 
 |  * the fence seq number and DMA trap packet to generate | 
 |  * an interrupt if needed (CIK). | 
 |  */ | 
 | void cik_sdma_fence_ring_emit(struct radeon_device *rdev, | 
 | 			      struct radeon_fence *fence) | 
 | { | 
 | 	struct radeon_ring *ring = &rdev->ring[fence->ring]; | 
 | 	u64 addr = rdev->fence_drv[fence->ring].gpu_addr; | 
 | 	u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) | | 
 | 			  SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */ | 
 | 	u32 ref_and_mask; | 
 |  | 
 | 	if (fence->ring == R600_RING_TYPE_DMA_INDEX) | 
 | 		ref_and_mask = SDMA0; | 
 | 	else | 
 | 		ref_and_mask = SDMA1; | 
 |  | 
 | 	/* write the fence */ | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0)); | 
 | 	radeon_ring_write(ring, addr & 0xffffffff); | 
 | 	radeon_ring_write(ring, upper_32_bits(addr) & 0xffffffff); | 
 | 	radeon_ring_write(ring, fence->seq); | 
 | 	/* generate an interrupt */ | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0)); | 
 | 	/* flush HDP */ | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); | 
 | 	radeon_ring_write(ring, GPU_HDP_FLUSH_DONE); | 
 | 	radeon_ring_write(ring, GPU_HDP_FLUSH_REQ); | 
 | 	radeon_ring_write(ring, ref_and_mask); /* REFERENCE */ | 
 | 	radeon_ring_write(ring, ref_and_mask); /* MASK */ | 
 | 	radeon_ring_write(ring, (4 << 16) | 10); /* RETRY_COUNT, POLL_INTERVAL */ | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_semaphore_ring_emit - emit a semaphore on the dma ring | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @ring: radeon_ring structure holding ring information | 
 |  * @semaphore: radeon semaphore object | 
 |  * @emit_wait: wait or signal semaphore | 
 |  * | 
 |  * Add a DMA semaphore packet to the ring wait on or signal | 
 |  * other rings (CIK). | 
 |  */ | 
 | void cik_sdma_semaphore_ring_emit(struct radeon_device *rdev, | 
 | 				  struct radeon_ring *ring, | 
 | 				  struct radeon_semaphore *semaphore, | 
 | 				  bool emit_wait) | 
 | { | 
 | 	u64 addr = semaphore->gpu_addr; | 
 | 	u32 extra_bits = emit_wait ? 0 : SDMA_SEMAPHORE_EXTRA_S; | 
 |  | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SEMAPHORE, 0, extra_bits)); | 
 | 	radeon_ring_write(ring, addr & 0xfffffff8); | 
 | 	radeon_ring_write(ring, upper_32_bits(addr) & 0xffffffff); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_gfx_stop - stop the gfx async dma engines | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Stop the gfx async dma ring buffers (CIK). | 
 |  */ | 
 | static void cik_sdma_gfx_stop(struct radeon_device *rdev) | 
 | { | 
 | 	u32 rb_cntl, reg_offset; | 
 | 	int i; | 
 |  | 
 | 	radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); | 
 |  | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		if (i == 0) | 
 | 			reg_offset = SDMA0_REGISTER_OFFSET; | 
 | 		else | 
 | 			reg_offset = SDMA1_REGISTER_OFFSET; | 
 | 		rb_cntl = RREG32(SDMA0_GFX_RB_CNTL + reg_offset); | 
 | 		rb_cntl &= ~SDMA_RB_ENABLE; | 
 | 		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl); | 
 | 		WREG32(SDMA0_GFX_IB_CNTL + reg_offset, 0); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_rlc_stop - stop the compute async dma engines | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Stop the compute async dma queues (CIK). | 
 |  */ | 
 | static void cik_sdma_rlc_stop(struct radeon_device *rdev) | 
 | { | 
 | 	/* XXX todo */ | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_enable - stop the async dma engines | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @enable: enable/disable the DMA MEs. | 
 |  * | 
 |  * Halt or unhalt the async dma engines (CIK). | 
 |  */ | 
 | static void cik_sdma_enable(struct radeon_device *rdev, bool enable) | 
 | { | 
 | 	u32 me_cntl, reg_offset; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		if (i == 0) | 
 | 			reg_offset = SDMA0_REGISTER_OFFSET; | 
 | 		else | 
 | 			reg_offset = SDMA1_REGISTER_OFFSET; | 
 | 		me_cntl = RREG32(SDMA0_ME_CNTL + reg_offset); | 
 | 		if (enable) | 
 | 			me_cntl &= ~SDMA_HALT; | 
 | 		else | 
 | 			me_cntl |= SDMA_HALT; | 
 | 		WREG32(SDMA0_ME_CNTL + reg_offset, me_cntl); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_gfx_resume - setup and start the async dma engines | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Set up the gfx DMA ring buffers and enable them (CIK). | 
 |  * Returns 0 for success, error for failure. | 
 |  */ | 
 | static int cik_sdma_gfx_resume(struct radeon_device *rdev) | 
 | { | 
 | 	struct radeon_ring *ring; | 
 | 	u32 rb_cntl, ib_cntl; | 
 | 	u32 rb_bufsz; | 
 | 	u32 reg_offset, wb_offset; | 
 | 	int i, r; | 
 |  | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		if (i == 0) { | 
 | 			ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; | 
 | 			reg_offset = SDMA0_REGISTER_OFFSET; | 
 | 			wb_offset = R600_WB_DMA_RPTR_OFFSET; | 
 | 		} else { | 
 | 			ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; | 
 | 			reg_offset = SDMA1_REGISTER_OFFSET; | 
 | 			wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET; | 
 | 		} | 
 |  | 
 | 		WREG32(SDMA0_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0); | 
 | 		WREG32(SDMA0_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0); | 
 |  | 
 | 		/* Set ring buffer size in dwords */ | 
 | 		rb_bufsz = drm_order(ring->ring_size / 4); | 
 | 		rb_cntl = rb_bufsz << 1; | 
 | #ifdef __BIG_ENDIAN | 
 | 		rb_cntl |= SDMA_RB_SWAP_ENABLE | SDMA_RPTR_WRITEBACK_SWAP_ENABLE; | 
 | #endif | 
 | 		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl); | 
 |  | 
 | 		/* Initialize the ring buffer's read and write pointers */ | 
 | 		WREG32(SDMA0_GFX_RB_RPTR + reg_offset, 0); | 
 | 		WREG32(SDMA0_GFX_RB_WPTR + reg_offset, 0); | 
 |  | 
 | 		/* set the wb address whether it's enabled or not */ | 
 | 		WREG32(SDMA0_GFX_RB_RPTR_ADDR_HI + reg_offset, | 
 | 		       upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); | 
 | 		WREG32(SDMA0_GFX_RB_RPTR_ADDR_LO + reg_offset, | 
 | 		       ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC)); | 
 |  | 
 | 		if (rdev->wb.enabled) | 
 | 			rb_cntl |= SDMA_RPTR_WRITEBACK_ENABLE; | 
 |  | 
 | 		WREG32(SDMA0_GFX_RB_BASE + reg_offset, ring->gpu_addr >> 8); | 
 | 		WREG32(SDMA0_GFX_RB_BASE_HI + reg_offset, ring->gpu_addr >> 40); | 
 |  | 
 | 		ring->wptr = 0; | 
 | 		WREG32(SDMA0_GFX_RB_WPTR + reg_offset, ring->wptr << 2); | 
 |  | 
 | 		ring->rptr = RREG32(SDMA0_GFX_RB_RPTR + reg_offset) >> 2; | 
 |  | 
 | 		/* enable DMA RB */ | 
 | 		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl | SDMA_RB_ENABLE); | 
 |  | 
 | 		ib_cntl = SDMA_IB_ENABLE; | 
 | #ifdef __BIG_ENDIAN | 
 | 		ib_cntl |= SDMA_IB_SWAP_ENABLE; | 
 | #endif | 
 | 		/* enable DMA IBs */ | 
 | 		WREG32(SDMA0_GFX_IB_CNTL + reg_offset, ib_cntl); | 
 |  | 
 | 		ring->ready = true; | 
 |  | 
 | 		r = radeon_ring_test(rdev, ring->idx, ring); | 
 | 		if (r) { | 
 | 			ring->ready = false; | 
 | 			return r; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_rlc_resume - setup and start the async dma engines | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Set up the compute DMA queues and enable them (CIK). | 
 |  * Returns 0 for success, error for failure. | 
 |  */ | 
 | static int cik_sdma_rlc_resume(struct radeon_device *rdev) | 
 | { | 
 | 	/* XXX todo */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_load_microcode - load the sDMA ME ucode | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Loads the sDMA0/1 ucode. | 
 |  * Returns 0 for success, -EINVAL if the ucode is not available. | 
 |  */ | 
 | static int cik_sdma_load_microcode(struct radeon_device *rdev) | 
 | { | 
 | 	const __be32 *fw_data; | 
 | 	int i; | 
 |  | 
 | 	if (!rdev->sdma_fw) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* stop the gfx rings and rlc compute queues */ | 
 | 	cik_sdma_gfx_stop(rdev); | 
 | 	cik_sdma_rlc_stop(rdev); | 
 |  | 
 | 	/* halt the MEs */ | 
 | 	cik_sdma_enable(rdev, false); | 
 |  | 
 | 	/* sdma0 */ | 
 | 	fw_data = (const __be32 *)rdev->sdma_fw->data; | 
 | 	WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); | 
 | 	for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++) | 
 | 		WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, be32_to_cpup(fw_data++)); | 
 | 	WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); | 
 |  | 
 | 	/* sdma1 */ | 
 | 	fw_data = (const __be32 *)rdev->sdma_fw->data; | 
 | 	WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); | 
 | 	for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++) | 
 | 		WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, be32_to_cpup(fw_data++)); | 
 | 	WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); | 
 |  | 
 | 	WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); | 
 | 	WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_resume - setup and start the async dma engines | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Set up the DMA engines and enable them (CIK). | 
 |  * Returns 0 for success, error for failure. | 
 |  */ | 
 | static int cik_sdma_resume(struct radeon_device *rdev) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	/* Reset dma */ | 
 | 	WREG32(SRBM_SOFT_RESET, SOFT_RESET_SDMA | SOFT_RESET_SDMA1); | 
 | 	RREG32(SRBM_SOFT_RESET); | 
 | 	udelay(50); | 
 | 	WREG32(SRBM_SOFT_RESET, 0); | 
 | 	RREG32(SRBM_SOFT_RESET); | 
 |  | 
 | 	r = cik_sdma_load_microcode(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* unhalt the MEs */ | 
 | 	cik_sdma_enable(rdev, true); | 
 |  | 
 | 	/* start the gfx rings and rlc compute queues */ | 
 | 	r = cik_sdma_gfx_resume(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 | 	r = cik_sdma_rlc_resume(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_fini - tear down the async dma engines | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Stop the async dma engines and free the rings (CIK). | 
 |  */ | 
 | static void cik_sdma_fini(struct radeon_device *rdev) | 
 | { | 
 | 	/* stop the gfx rings and rlc compute queues */ | 
 | 	cik_sdma_gfx_stop(rdev); | 
 | 	cik_sdma_rlc_stop(rdev); | 
 | 	/* halt the MEs */ | 
 | 	cik_sdma_enable(rdev, false); | 
 | 	radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]); | 
 | 	radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]); | 
 | 	/* XXX - compute dma queue tear down */ | 
 | } | 
 |  | 
 | /** | 
 |  * cik_copy_dma - copy pages using the DMA engine | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @src_offset: src GPU address | 
 |  * @dst_offset: dst GPU address | 
 |  * @num_gpu_pages: number of GPU pages to xfer | 
 |  * @fence: radeon fence object | 
 |  * | 
 |  * Copy GPU paging using the DMA engine (CIK). | 
 |  * Used by the radeon ttm implementation to move pages if | 
 |  * registered as the asic copy callback. | 
 |  */ | 
 | int cik_copy_dma(struct radeon_device *rdev, | 
 | 		 uint64_t src_offset, uint64_t dst_offset, | 
 | 		 unsigned num_gpu_pages, | 
 | 		 struct radeon_fence **fence) | 
 | { | 
 | 	struct radeon_semaphore *sem = NULL; | 
 | 	int ring_index = rdev->asic->copy.dma_ring_index; | 
 | 	struct radeon_ring *ring = &rdev->ring[ring_index]; | 
 | 	u32 size_in_bytes, cur_size_in_bytes; | 
 | 	int i, num_loops; | 
 | 	int r = 0; | 
 |  | 
 | 	r = radeon_semaphore_create(rdev, &sem); | 
 | 	if (r) { | 
 | 		DRM_ERROR("radeon: moving bo (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	size_in_bytes = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT); | 
 | 	num_loops = DIV_ROUND_UP(size_in_bytes, 0x1fffff); | 
 | 	r = radeon_ring_lock(rdev, ring, num_loops * 7 + 14); | 
 | 	if (r) { | 
 | 		DRM_ERROR("radeon: moving bo (%d).\n", r); | 
 | 		radeon_semaphore_free(rdev, &sem, NULL); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	if (radeon_fence_need_sync(*fence, ring->idx)) { | 
 | 		radeon_semaphore_sync_rings(rdev, sem, (*fence)->ring, | 
 | 					    ring->idx); | 
 | 		radeon_fence_note_sync(*fence, ring->idx); | 
 | 	} else { | 
 | 		radeon_semaphore_free(rdev, &sem, NULL); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < num_loops; i++) { | 
 | 		cur_size_in_bytes = size_in_bytes; | 
 | 		if (cur_size_in_bytes > 0x1fffff) | 
 | 			cur_size_in_bytes = 0x1fffff; | 
 | 		size_in_bytes -= cur_size_in_bytes; | 
 | 		radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0)); | 
 | 		radeon_ring_write(ring, cur_size_in_bytes); | 
 | 		radeon_ring_write(ring, 0); /* src/dst endian swap */ | 
 | 		radeon_ring_write(ring, src_offset & 0xffffffff); | 
 | 		radeon_ring_write(ring, upper_32_bits(src_offset) & 0xffffffff); | 
 | 		radeon_ring_write(ring, dst_offset & 0xfffffffc); | 
 | 		radeon_ring_write(ring, upper_32_bits(dst_offset) & 0xffffffff); | 
 | 		src_offset += cur_size_in_bytes; | 
 | 		dst_offset += cur_size_in_bytes; | 
 | 	} | 
 |  | 
 | 	r = radeon_fence_emit(rdev, fence, ring->idx); | 
 | 	if (r) { | 
 | 		radeon_ring_unlock_undo(rdev, ring); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	radeon_ring_unlock_commit(rdev, ring); | 
 | 	radeon_semaphore_free(rdev, &sem, *fence); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_ring_test - simple async dma engine test | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @ring: radeon_ring structure holding ring information | 
 |  * | 
 |  * Test the DMA engine by writing using it to write an | 
 |  * value to memory. (CIK). | 
 |  * Returns 0 for success, error for failure. | 
 |  */ | 
 | int cik_sdma_ring_test(struct radeon_device *rdev, | 
 | 		       struct radeon_ring *ring) | 
 | { | 
 | 	unsigned i; | 
 | 	int r; | 
 | 	void __iomem *ptr = (void *)rdev->vram_scratch.ptr; | 
 | 	u32 tmp; | 
 |  | 
 | 	if (!ptr) { | 
 | 		DRM_ERROR("invalid vram scratch pointer\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	tmp = 0xCAFEDEAD; | 
 | 	writel(tmp, ptr); | 
 |  | 
 | 	r = radeon_ring_lock(rdev, ring, 4); | 
 | 	if (r) { | 
 | 		DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r); | 
 | 		return r; | 
 | 	} | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); | 
 | 	radeon_ring_write(ring, rdev->vram_scratch.gpu_addr & 0xfffffffc); | 
 | 	radeon_ring_write(ring, upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xffffffff); | 
 | 	radeon_ring_write(ring, 1); /* number of DWs to follow */ | 
 | 	radeon_ring_write(ring, 0xDEADBEEF); | 
 | 	radeon_ring_unlock_commit(rdev, ring); | 
 |  | 
 | 	for (i = 0; i < rdev->usec_timeout; i++) { | 
 | 		tmp = readl(ptr); | 
 | 		if (tmp == 0xDEADBEEF) | 
 | 			break; | 
 | 		DRM_UDELAY(1); | 
 | 	} | 
 |  | 
 | 	if (i < rdev->usec_timeout) { | 
 | 		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); | 
 | 	} else { | 
 | 		DRM_ERROR("radeon: ring %d test failed (0x%08X)\n", | 
 | 			  ring->idx, tmp); | 
 | 		r = -EINVAL; | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_ib_test - test an IB on the DMA engine | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @ring: radeon_ring structure holding ring information | 
 |  * | 
 |  * Test a simple IB in the DMA ring (CIK). | 
 |  * Returns 0 on success, error on failure. | 
 |  */ | 
 | int cik_sdma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) | 
 | { | 
 | 	struct radeon_ib ib; | 
 | 	unsigned i; | 
 | 	int r; | 
 | 	void __iomem *ptr = (void *)rdev->vram_scratch.ptr; | 
 | 	u32 tmp = 0; | 
 |  | 
 | 	if (!ptr) { | 
 | 		DRM_ERROR("invalid vram scratch pointer\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	tmp = 0xCAFEDEAD; | 
 | 	writel(tmp, ptr); | 
 |  | 
 | 	r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256); | 
 | 	if (r) { | 
 | 		DRM_ERROR("radeon: failed to get ib (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); | 
 | 	ib.ptr[1] = rdev->vram_scratch.gpu_addr & 0xfffffffc; | 
 | 	ib.ptr[2] = upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xffffffff; | 
 | 	ib.ptr[3] = 1; | 
 | 	ib.ptr[4] = 0xDEADBEEF; | 
 | 	ib.length_dw = 5; | 
 |  | 
 | 	r = radeon_ib_schedule(rdev, &ib, NULL); | 
 | 	if (r) { | 
 | 		radeon_ib_free(rdev, &ib); | 
 | 		DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 | 	r = radeon_fence_wait(ib.fence, false); | 
 | 	if (r) { | 
 | 		DRM_ERROR("radeon: fence wait failed (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 | 	for (i = 0; i < rdev->usec_timeout; i++) { | 
 | 		tmp = readl(ptr); | 
 | 		if (tmp == 0xDEADBEEF) | 
 | 			break; | 
 | 		DRM_UDELAY(1); | 
 | 	} | 
 | 	if (i < rdev->usec_timeout) { | 
 | 		DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i); | 
 | 	} else { | 
 | 		DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp); | 
 | 		r = -EINVAL; | 
 | 	} | 
 | 	radeon_ib_free(rdev, &ib); | 
 | 	return r; | 
 | } | 
 |  | 
 |  | 
 | static void cik_print_gpu_status_regs(struct radeon_device *rdev) | 
 | { | 
 | 	dev_info(rdev->dev, "  GRBM_STATUS=0x%08X\n", | 
 | 		RREG32(GRBM_STATUS)); | 
 | 	dev_info(rdev->dev, "  GRBM_STATUS2=0x%08X\n", | 
 | 		RREG32(GRBM_STATUS2)); | 
 | 	dev_info(rdev->dev, "  GRBM_STATUS_SE0=0x%08X\n", | 
 | 		RREG32(GRBM_STATUS_SE0)); | 
 | 	dev_info(rdev->dev, "  GRBM_STATUS_SE1=0x%08X\n", | 
 | 		RREG32(GRBM_STATUS_SE1)); | 
 | 	dev_info(rdev->dev, "  GRBM_STATUS_SE2=0x%08X\n", | 
 | 		RREG32(GRBM_STATUS_SE2)); | 
 | 	dev_info(rdev->dev, "  GRBM_STATUS_SE3=0x%08X\n", | 
 | 		RREG32(GRBM_STATUS_SE3)); | 
 | 	dev_info(rdev->dev, "  SRBM_STATUS=0x%08X\n", | 
 | 		RREG32(SRBM_STATUS)); | 
 | 	dev_info(rdev->dev, "  SRBM_STATUS2=0x%08X\n", | 
 | 		RREG32(SRBM_STATUS2)); | 
 | 	dev_info(rdev->dev, "  SDMA0_STATUS_REG   = 0x%08X\n", | 
 | 		RREG32(SDMA0_STATUS_REG + SDMA0_REGISTER_OFFSET)); | 
 | 	dev_info(rdev->dev, "  SDMA1_STATUS_REG   = 0x%08X\n", | 
 | 		 RREG32(SDMA0_STATUS_REG + SDMA1_REGISTER_OFFSET)); | 
 | 	dev_info(rdev->dev, "  CP_STAT = 0x%08x\n", RREG32(CP_STAT)); | 
 | 	dev_info(rdev->dev, "  CP_STALLED_STAT1 = 0x%08x\n", | 
 | 		 RREG32(CP_STALLED_STAT1)); | 
 | 	dev_info(rdev->dev, "  CP_STALLED_STAT2 = 0x%08x\n", | 
 | 		 RREG32(CP_STALLED_STAT2)); | 
 | 	dev_info(rdev->dev, "  CP_STALLED_STAT3 = 0x%08x\n", | 
 | 		 RREG32(CP_STALLED_STAT3)); | 
 | 	dev_info(rdev->dev, "  CP_CPF_BUSY_STAT = 0x%08x\n", | 
 | 		 RREG32(CP_CPF_BUSY_STAT)); | 
 | 	dev_info(rdev->dev, "  CP_CPF_STALLED_STAT1 = 0x%08x\n", | 
 | 		 RREG32(CP_CPF_STALLED_STAT1)); | 
 | 	dev_info(rdev->dev, "  CP_CPF_STATUS = 0x%08x\n", RREG32(CP_CPF_STATUS)); | 
 | 	dev_info(rdev->dev, "  CP_CPC_BUSY_STAT = 0x%08x\n", RREG32(CP_CPC_BUSY_STAT)); | 
 | 	dev_info(rdev->dev, "  CP_CPC_STALLED_STAT1 = 0x%08x\n", | 
 | 		 RREG32(CP_CPC_STALLED_STAT1)); | 
 | 	dev_info(rdev->dev, "  CP_CPC_STATUS = 0x%08x\n", RREG32(CP_CPC_STATUS)); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_gpu_check_soft_reset - check which blocks are busy | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Check which blocks are busy and return the relevant reset | 
 |  * mask to be used by cik_gpu_soft_reset(). | 
 |  * Returns a mask of the blocks to be reset. | 
 |  */ | 
 | static u32 cik_gpu_check_soft_reset(struct radeon_device *rdev) | 
 | { | 
 | 	u32 reset_mask = 0; | 
 | 	u32 tmp; | 
 |  | 
 | 	/* GRBM_STATUS */ | 
 | 	tmp = RREG32(GRBM_STATUS); | 
 | 	if (tmp & (PA_BUSY | SC_BUSY | | 
 | 		   BCI_BUSY | SX_BUSY | | 
 | 		   TA_BUSY | VGT_BUSY | | 
 | 		   DB_BUSY | CB_BUSY | | 
 | 		   GDS_BUSY | SPI_BUSY | | 
 | 		   IA_BUSY | IA_BUSY_NO_DMA)) | 
 | 		reset_mask |= RADEON_RESET_GFX; | 
 |  | 
 | 	if (tmp & (CP_BUSY | CP_COHERENCY_BUSY)) | 
 | 		reset_mask |= RADEON_RESET_CP; | 
 |  | 
 | 	/* GRBM_STATUS2 */ | 
 | 	tmp = RREG32(GRBM_STATUS2); | 
 | 	if (tmp & RLC_BUSY) | 
 | 		reset_mask |= RADEON_RESET_RLC; | 
 |  | 
 | 	/* SDMA0_STATUS_REG */ | 
 | 	tmp = RREG32(SDMA0_STATUS_REG + SDMA0_REGISTER_OFFSET); | 
 | 	if (!(tmp & SDMA_IDLE)) | 
 | 		reset_mask |= RADEON_RESET_DMA; | 
 |  | 
 | 	/* SDMA1_STATUS_REG */ | 
 | 	tmp = RREG32(SDMA0_STATUS_REG + SDMA1_REGISTER_OFFSET); | 
 | 	if (!(tmp & SDMA_IDLE)) | 
 | 		reset_mask |= RADEON_RESET_DMA1; | 
 |  | 
 | 	/* SRBM_STATUS2 */ | 
 | 	tmp = RREG32(SRBM_STATUS2); | 
 | 	if (tmp & SDMA_BUSY) | 
 | 		reset_mask |= RADEON_RESET_DMA; | 
 |  | 
 | 	if (tmp & SDMA1_BUSY) | 
 | 		reset_mask |= RADEON_RESET_DMA1; | 
 |  | 
 | 	/* SRBM_STATUS */ | 
 | 	tmp = RREG32(SRBM_STATUS); | 
 |  | 
 | 	if (tmp & IH_BUSY) | 
 | 		reset_mask |= RADEON_RESET_IH; | 
 |  | 
 | 	if (tmp & SEM_BUSY) | 
 | 		reset_mask |= RADEON_RESET_SEM; | 
 |  | 
 | 	if (tmp & GRBM_RQ_PENDING) | 
 | 		reset_mask |= RADEON_RESET_GRBM; | 
 |  | 
 | 	if (tmp & VMC_BUSY) | 
 | 		reset_mask |= RADEON_RESET_VMC; | 
 |  | 
 | 	if (tmp & (MCB_BUSY | MCB_NON_DISPLAY_BUSY | | 
 | 		   MCC_BUSY | MCD_BUSY)) | 
 | 		reset_mask |= RADEON_RESET_MC; | 
 |  | 
 | 	if (evergreen_is_display_hung(rdev)) | 
 | 		reset_mask |= RADEON_RESET_DISPLAY; | 
 |  | 
 | 	/* Skip MC reset as it's mostly likely not hung, just busy */ | 
 | 	if (reset_mask & RADEON_RESET_MC) { | 
 | 		DRM_DEBUG("MC busy: 0x%08X, clearing.\n", reset_mask); | 
 | 		reset_mask &= ~RADEON_RESET_MC; | 
 | 	} | 
 |  | 
 | 	return reset_mask; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_gpu_soft_reset - soft reset GPU | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @reset_mask: mask of which blocks to reset | 
 |  * | 
 |  * Soft reset the blocks specified in @reset_mask. | 
 |  */ | 
 | static void cik_gpu_soft_reset(struct radeon_device *rdev, u32 reset_mask) | 
 | { | 
 | 	struct evergreen_mc_save save; | 
 | 	u32 grbm_soft_reset = 0, srbm_soft_reset = 0; | 
 | 	u32 tmp; | 
 |  | 
 | 	if (reset_mask == 0) | 
 | 		return; | 
 |  | 
 | 	dev_info(rdev->dev, "GPU softreset: 0x%08X\n", reset_mask); | 
 |  | 
 | 	cik_print_gpu_status_regs(rdev); | 
 | 	dev_info(rdev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_ADDR   0x%08X\n", | 
 | 		 RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR)); | 
 | 	dev_info(rdev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", | 
 | 		 RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS)); | 
 |  | 
 | 	/* stop the rlc */ | 
 | 	cik_rlc_stop(rdev); | 
 |  | 
 | 	/* Disable GFX parsing/prefetching */ | 
 | 	WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT); | 
 |  | 
 | 	/* Disable MEC parsing/prefetching */ | 
 | 	WREG32(CP_MEC_CNTL, MEC_ME1_HALT | MEC_ME2_HALT); | 
 |  | 
 | 	if (reset_mask & RADEON_RESET_DMA) { | 
 | 		/* sdma0 */ | 
 | 		tmp = RREG32(SDMA0_ME_CNTL + SDMA0_REGISTER_OFFSET); | 
 | 		tmp |= SDMA_HALT; | 
 | 		WREG32(SDMA0_ME_CNTL + SDMA0_REGISTER_OFFSET, tmp); | 
 | 	} | 
 | 	if (reset_mask & RADEON_RESET_DMA1) { | 
 | 		/* sdma1 */ | 
 | 		tmp = RREG32(SDMA0_ME_CNTL + SDMA1_REGISTER_OFFSET); | 
 | 		tmp |= SDMA_HALT; | 
 | 		WREG32(SDMA0_ME_CNTL + SDMA1_REGISTER_OFFSET, tmp); | 
 | 	} | 
 |  | 
 | 	evergreen_mc_stop(rdev, &save); | 
 | 	if (evergreen_mc_wait_for_idle(rdev)) { | 
 | 		dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); | 
 | 	} | 
 |  | 
 | 	if (reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE | RADEON_RESET_CP)) | 
 | 		grbm_soft_reset = SOFT_RESET_CP | SOFT_RESET_GFX; | 
 |  | 
 | 	if (reset_mask & RADEON_RESET_CP) { | 
 | 		grbm_soft_reset |= SOFT_RESET_CP; | 
 |  | 
 | 		srbm_soft_reset |= SOFT_RESET_GRBM; | 
 | 	} | 
 |  | 
 | 	if (reset_mask & RADEON_RESET_DMA) | 
 | 		srbm_soft_reset |= SOFT_RESET_SDMA; | 
 |  | 
 | 	if (reset_mask & RADEON_RESET_DMA1) | 
 | 		srbm_soft_reset |= SOFT_RESET_SDMA1; | 
 |  | 
 | 	if (reset_mask & RADEON_RESET_DISPLAY) | 
 | 		srbm_soft_reset |= SOFT_RESET_DC; | 
 |  | 
 | 	if (reset_mask & RADEON_RESET_RLC) | 
 | 		grbm_soft_reset |= SOFT_RESET_RLC; | 
 |  | 
 | 	if (reset_mask & RADEON_RESET_SEM) | 
 | 		srbm_soft_reset |= SOFT_RESET_SEM; | 
 |  | 
 | 	if (reset_mask & RADEON_RESET_IH) | 
 | 		srbm_soft_reset |= SOFT_RESET_IH; | 
 |  | 
 | 	if (reset_mask & RADEON_RESET_GRBM) | 
 | 		srbm_soft_reset |= SOFT_RESET_GRBM; | 
 |  | 
 | 	if (reset_mask & RADEON_RESET_VMC) | 
 | 		srbm_soft_reset |= SOFT_RESET_VMC; | 
 |  | 
 | 	if (!(rdev->flags & RADEON_IS_IGP)) { | 
 | 		if (reset_mask & RADEON_RESET_MC) | 
 | 			srbm_soft_reset |= SOFT_RESET_MC; | 
 | 	} | 
 |  | 
 | 	if (grbm_soft_reset) { | 
 | 		tmp = RREG32(GRBM_SOFT_RESET); | 
 | 		tmp |= grbm_soft_reset; | 
 | 		dev_info(rdev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp); | 
 | 		WREG32(GRBM_SOFT_RESET, tmp); | 
 | 		tmp = RREG32(GRBM_SOFT_RESET); | 
 |  | 
 | 		udelay(50); | 
 |  | 
 | 		tmp &= ~grbm_soft_reset; | 
 | 		WREG32(GRBM_SOFT_RESET, tmp); | 
 | 		tmp = RREG32(GRBM_SOFT_RESET); | 
 | 	} | 
 |  | 
 | 	if (srbm_soft_reset) { | 
 | 		tmp = RREG32(SRBM_SOFT_RESET); | 
 | 		tmp |= srbm_soft_reset; | 
 | 		dev_info(rdev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); | 
 | 		WREG32(SRBM_SOFT_RESET, tmp); | 
 | 		tmp = RREG32(SRBM_SOFT_RESET); | 
 |  | 
 | 		udelay(50); | 
 |  | 
 | 		tmp &= ~srbm_soft_reset; | 
 | 		WREG32(SRBM_SOFT_RESET, tmp); | 
 | 		tmp = RREG32(SRBM_SOFT_RESET); | 
 | 	} | 
 |  | 
 | 	/* Wait a little for things to settle down */ | 
 | 	udelay(50); | 
 |  | 
 | 	evergreen_mc_resume(rdev, &save); | 
 | 	udelay(50); | 
 |  | 
 | 	cik_print_gpu_status_regs(rdev); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_asic_reset - soft reset GPU | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Look up which blocks are hung and attempt | 
 |  * to reset them. | 
 |  * Returns 0 for success. | 
 |  */ | 
 | int cik_asic_reset(struct radeon_device *rdev) | 
 | { | 
 | 	u32 reset_mask; | 
 |  | 
 | 	reset_mask = cik_gpu_check_soft_reset(rdev); | 
 |  | 
 | 	if (reset_mask) | 
 | 		r600_set_bios_scratch_engine_hung(rdev, true); | 
 |  | 
 | 	cik_gpu_soft_reset(rdev, reset_mask); | 
 |  | 
 | 	reset_mask = cik_gpu_check_soft_reset(rdev); | 
 |  | 
 | 	if (!reset_mask) | 
 | 		r600_set_bios_scratch_engine_hung(rdev, false); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_gfx_is_lockup - check if the 3D engine is locked up | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @ring: radeon_ring structure holding ring information | 
 |  * | 
 |  * Check if the 3D engine is locked up (CIK). | 
 |  * Returns true if the engine is locked, false if not. | 
 |  */ | 
 | bool cik_gfx_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) | 
 | { | 
 | 	u32 reset_mask = cik_gpu_check_soft_reset(rdev); | 
 |  | 
 | 	if (!(reset_mask & (RADEON_RESET_GFX | | 
 | 			    RADEON_RESET_COMPUTE | | 
 | 			    RADEON_RESET_CP))) { | 
 | 		radeon_ring_lockup_update(ring); | 
 | 		return false; | 
 | 	} | 
 | 	/* force CP activities */ | 
 | 	radeon_ring_force_activity(rdev, ring); | 
 | 	return radeon_ring_test_lockup(rdev, ring); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_sdma_is_lockup - Check if the DMA engine is locked up | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @ring: radeon_ring structure holding ring information | 
 |  * | 
 |  * Check if the async DMA engine is locked up (CIK). | 
 |  * Returns true if the engine appears to be locked up, false if not. | 
 |  */ | 
 | bool cik_sdma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) | 
 | { | 
 | 	u32 reset_mask = cik_gpu_check_soft_reset(rdev); | 
 | 	u32 mask; | 
 |  | 
 | 	if (ring->idx == R600_RING_TYPE_DMA_INDEX) | 
 | 		mask = RADEON_RESET_DMA; | 
 | 	else | 
 | 		mask = RADEON_RESET_DMA1; | 
 |  | 
 | 	if (!(reset_mask & mask)) { | 
 | 		radeon_ring_lockup_update(ring); | 
 | 		return false; | 
 | 	} | 
 | 	/* force ring activities */ | 
 | 	radeon_ring_force_activity(rdev, ring); | 
 | 	return radeon_ring_test_lockup(rdev, ring); | 
 | } | 
 |  | 
 | /* MC */ | 
 | /** | 
 |  * cik_mc_program - program the GPU memory controller | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Set the location of vram, gart, and AGP in the GPU's | 
 |  * physical address space (CIK). | 
 |  */ | 
 | static void cik_mc_program(struct radeon_device *rdev) | 
 | { | 
 | 	struct evergreen_mc_save save; | 
 | 	u32 tmp; | 
 | 	int i, j; | 
 |  | 
 | 	/* Initialize HDP */ | 
 | 	for (i = 0, j = 0; i < 32; i++, j += 0x18) { | 
 | 		WREG32((0x2c14 + j), 0x00000000); | 
 | 		WREG32((0x2c18 + j), 0x00000000); | 
 | 		WREG32((0x2c1c + j), 0x00000000); | 
 | 		WREG32((0x2c20 + j), 0x00000000); | 
 | 		WREG32((0x2c24 + j), 0x00000000); | 
 | 	} | 
 | 	WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0); | 
 |  | 
 | 	evergreen_mc_stop(rdev, &save); | 
 | 	if (radeon_mc_wait_for_idle(rdev)) { | 
 | 		dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); | 
 | 	} | 
 | 	/* Lockout access through VGA aperture*/ | 
 | 	WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE); | 
 | 	/* Update configuration */ | 
 | 	WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, | 
 | 	       rdev->mc.vram_start >> 12); | 
 | 	WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, | 
 | 	       rdev->mc.vram_end >> 12); | 
 | 	WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, | 
 | 	       rdev->vram_scratch.gpu_addr >> 12); | 
 | 	tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16; | 
 | 	tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF); | 
 | 	WREG32(MC_VM_FB_LOCATION, tmp); | 
 | 	/* XXX double check these! */ | 
 | 	WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8)); | 
 | 	WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30)); | 
 | 	WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF); | 
 | 	WREG32(MC_VM_AGP_BASE, 0); | 
 | 	WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF); | 
 | 	WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF); | 
 | 	if (radeon_mc_wait_for_idle(rdev)) { | 
 | 		dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); | 
 | 	} | 
 | 	evergreen_mc_resume(rdev, &save); | 
 | 	/* we need to own VRAM, so turn off the VGA renderer here | 
 | 	 * to stop it overwriting our objects */ | 
 | 	rv515_vga_render_disable(rdev); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_mc_init - initialize the memory controller driver params | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Look up the amount of vram, vram width, and decide how to place | 
 |  * vram and gart within the GPU's physical address space (CIK). | 
 |  * Returns 0 for success. | 
 |  */ | 
 | static int cik_mc_init(struct radeon_device *rdev) | 
 | { | 
 | 	u32 tmp; | 
 | 	int chansize, numchan; | 
 |  | 
 | 	/* Get VRAM informations */ | 
 | 	rdev->mc.vram_is_ddr = true; | 
 | 	tmp = RREG32(MC_ARB_RAMCFG); | 
 | 	if (tmp & CHANSIZE_MASK) { | 
 | 		chansize = 64; | 
 | 	} else { | 
 | 		chansize = 32; | 
 | 	} | 
 | 	tmp = RREG32(MC_SHARED_CHMAP); | 
 | 	switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { | 
 | 	case 0: | 
 | 	default: | 
 | 		numchan = 1; | 
 | 		break; | 
 | 	case 1: | 
 | 		numchan = 2; | 
 | 		break; | 
 | 	case 2: | 
 | 		numchan = 4; | 
 | 		break; | 
 | 	case 3: | 
 | 		numchan = 8; | 
 | 		break; | 
 | 	case 4: | 
 | 		numchan = 3; | 
 | 		break; | 
 | 	case 5: | 
 | 		numchan = 6; | 
 | 		break; | 
 | 	case 6: | 
 | 		numchan = 10; | 
 | 		break; | 
 | 	case 7: | 
 | 		numchan = 12; | 
 | 		break; | 
 | 	case 8: | 
 | 		numchan = 16; | 
 | 		break; | 
 | 	} | 
 | 	rdev->mc.vram_width = numchan * chansize; | 
 | 	/* Could aper size report 0 ? */ | 
 | 	rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0); | 
 | 	rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0); | 
 | 	/* size in MB on si */ | 
 | 	rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024; | 
 | 	rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024; | 
 | 	rdev->mc.visible_vram_size = rdev->mc.aper_size; | 
 | 	si_vram_gtt_location(rdev, &rdev->mc); | 
 | 	radeon_update_bandwidth_info(rdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * GART | 
 |  * VMID 0 is the physical GPU addresses as used by the kernel. | 
 |  * VMIDs 1-15 are used for userspace clients and are handled | 
 |  * by the radeon vm/hsa code. | 
 |  */ | 
 | /** | 
 |  * cik_pcie_gart_tlb_flush - gart tlb flush callback | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Flush the TLB for the VMID 0 page table (CIK). | 
 |  */ | 
 | void cik_pcie_gart_tlb_flush(struct radeon_device *rdev) | 
 | { | 
 | 	/* flush hdp cache */ | 
 | 	WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0); | 
 |  | 
 | 	/* bits 0-15 are the VM contexts0-15 */ | 
 | 	WREG32(VM_INVALIDATE_REQUEST, 0x1); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_pcie_gart_enable - gart enable | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * This sets up the TLBs, programs the page tables for VMID0, | 
 |  * sets up the hw for VMIDs 1-15 which are allocated on | 
 |  * demand, and sets up the global locations for the LDS, GDS, | 
 |  * and GPUVM for FSA64 clients (CIK). | 
 |  * Returns 0 for success, errors for failure. | 
 |  */ | 
 | static int cik_pcie_gart_enable(struct radeon_device *rdev) | 
 | { | 
 | 	int r, i; | 
 |  | 
 | 	if (rdev->gart.robj == NULL) { | 
 | 		dev_err(rdev->dev, "No VRAM object for PCIE GART.\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	r = radeon_gart_table_vram_pin(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 | 	radeon_gart_restore(rdev); | 
 | 	/* Setup TLB control */ | 
 | 	WREG32(MC_VM_MX_L1_TLB_CNTL, | 
 | 	       (0xA << 7) | | 
 | 	       ENABLE_L1_TLB | | 
 | 	       SYSTEM_ACCESS_MODE_NOT_IN_SYS | | 
 | 	       ENABLE_ADVANCED_DRIVER_MODEL | | 
 | 	       SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU); | 
 | 	/* Setup L2 cache */ | 
 | 	WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | | 
 | 	       ENABLE_L2_FRAGMENT_PROCESSING | | 
 | 	       ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | | 
 | 	       ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE | | 
 | 	       EFFECTIVE_L2_QUEUE_SIZE(7) | | 
 | 	       CONTEXT1_IDENTITY_ACCESS_MODE(1)); | 
 | 	WREG32(VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS | INVALIDATE_L2_CACHE); | 
 | 	WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY | | 
 | 	       L2_CACHE_BIGK_FRAGMENT_SIZE(6)); | 
 | 	/* setup context0 */ | 
 | 	WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12); | 
 | 	WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12); | 
 | 	WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12); | 
 | 	WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, | 
 | 			(u32)(rdev->dummy_page.addr >> 12)); | 
 | 	WREG32(VM_CONTEXT0_CNTL2, 0); | 
 | 	WREG32(VM_CONTEXT0_CNTL, (ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) | | 
 | 				  RANGE_PROTECTION_FAULT_ENABLE_DEFAULT)); | 
 |  | 
 | 	WREG32(0x15D4, 0); | 
 | 	WREG32(0x15D8, 0); | 
 | 	WREG32(0x15DC, 0); | 
 |  | 
 | 	/* empty context1-15 */ | 
 | 	/* FIXME start with 4G, once using 2 level pt switch to full | 
 | 	 * vm size space | 
 | 	 */ | 
 | 	/* set vm size, must be a multiple of 4 */ | 
 | 	WREG32(VM_CONTEXT1_PAGE_TABLE_START_ADDR, 0); | 
 | 	WREG32(VM_CONTEXT1_PAGE_TABLE_END_ADDR, rdev->vm_manager.max_pfn); | 
 | 	for (i = 1; i < 16; i++) { | 
 | 		if (i < 8) | 
 | 			WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2), | 
 | 			       rdev->gart.table_addr >> 12); | 
 | 		else | 
 | 			WREG32(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2), | 
 | 			       rdev->gart.table_addr >> 12); | 
 | 	} | 
 |  | 
 | 	/* enable context1-15 */ | 
 | 	WREG32(VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR, | 
 | 	       (u32)(rdev->dummy_page.addr >> 12)); | 
 | 	WREG32(VM_CONTEXT1_CNTL2, 4); | 
 | 	WREG32(VM_CONTEXT1_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(1) | | 
 | 				RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT | | 
 | 				RANGE_PROTECTION_FAULT_ENABLE_DEFAULT | | 
 | 				DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT | | 
 | 				DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT | | 
 | 				PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT | | 
 | 				PDE0_PROTECTION_FAULT_ENABLE_DEFAULT | | 
 | 				VALID_PROTECTION_FAULT_ENABLE_INTERRUPT | | 
 | 				VALID_PROTECTION_FAULT_ENABLE_DEFAULT | | 
 | 				READ_PROTECTION_FAULT_ENABLE_INTERRUPT | | 
 | 				READ_PROTECTION_FAULT_ENABLE_DEFAULT | | 
 | 				WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT | | 
 | 				WRITE_PROTECTION_FAULT_ENABLE_DEFAULT); | 
 |  | 
 | 	/* TC cache setup ??? */ | 
 | 	WREG32(TC_CFG_L1_LOAD_POLICY0, 0); | 
 | 	WREG32(TC_CFG_L1_LOAD_POLICY1, 0); | 
 | 	WREG32(TC_CFG_L1_STORE_POLICY, 0); | 
 |  | 
 | 	WREG32(TC_CFG_L2_LOAD_POLICY0, 0); | 
 | 	WREG32(TC_CFG_L2_LOAD_POLICY1, 0); | 
 | 	WREG32(TC_CFG_L2_STORE_POLICY0, 0); | 
 | 	WREG32(TC_CFG_L2_STORE_POLICY1, 0); | 
 | 	WREG32(TC_CFG_L2_ATOMIC_POLICY, 0); | 
 |  | 
 | 	WREG32(TC_CFG_L1_VOLATILE, 0); | 
 | 	WREG32(TC_CFG_L2_VOLATILE, 0); | 
 |  | 
 | 	if (rdev->family == CHIP_KAVERI) { | 
 | 		u32 tmp = RREG32(CHUB_CONTROL); | 
 | 		tmp &= ~BYPASS_VM; | 
 | 		WREG32(CHUB_CONTROL, tmp); | 
 | 	} | 
 |  | 
 | 	/* XXX SH_MEM regs */ | 
 | 	/* where to put LDS, scratch, GPUVM in FSA64 space */ | 
 | 	for (i = 0; i < 16; i++) { | 
 | 		cik_srbm_select(rdev, 0, 0, 0, i); | 
 | 		/* CP and shaders */ | 
 | 		WREG32(SH_MEM_CONFIG, 0); | 
 | 		WREG32(SH_MEM_APE1_BASE, 1); | 
 | 		WREG32(SH_MEM_APE1_LIMIT, 0); | 
 | 		WREG32(SH_MEM_BASES, 0); | 
 | 		/* SDMA GFX */ | 
 | 		WREG32(SDMA0_GFX_VIRTUAL_ADDR + SDMA0_REGISTER_OFFSET, 0); | 
 | 		WREG32(SDMA0_GFX_APE1_CNTL + SDMA0_REGISTER_OFFSET, 0); | 
 | 		WREG32(SDMA0_GFX_VIRTUAL_ADDR + SDMA1_REGISTER_OFFSET, 0); | 
 | 		WREG32(SDMA0_GFX_APE1_CNTL + SDMA1_REGISTER_OFFSET, 0); | 
 | 		/* XXX SDMA RLC - todo */ | 
 | 	} | 
 | 	cik_srbm_select(rdev, 0, 0, 0, 0); | 
 |  | 
 | 	cik_pcie_gart_tlb_flush(rdev); | 
 | 	DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", | 
 | 		 (unsigned)(rdev->mc.gtt_size >> 20), | 
 | 		 (unsigned long long)rdev->gart.table_addr); | 
 | 	rdev->gart.ready = true; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_pcie_gart_disable - gart disable | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * This disables all VM page table (CIK). | 
 |  */ | 
 | static void cik_pcie_gart_disable(struct radeon_device *rdev) | 
 | { | 
 | 	/* Disable all tables */ | 
 | 	WREG32(VM_CONTEXT0_CNTL, 0); | 
 | 	WREG32(VM_CONTEXT1_CNTL, 0); | 
 | 	/* Setup TLB control */ | 
 | 	WREG32(MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE_NOT_IN_SYS | | 
 | 	       SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU); | 
 | 	/* Setup L2 cache */ | 
 | 	WREG32(VM_L2_CNTL, | 
 | 	       ENABLE_L2_FRAGMENT_PROCESSING | | 
 | 	       ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | | 
 | 	       ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE | | 
 | 	       EFFECTIVE_L2_QUEUE_SIZE(7) | | 
 | 	       CONTEXT1_IDENTITY_ACCESS_MODE(1)); | 
 | 	WREG32(VM_L2_CNTL2, 0); | 
 | 	WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY | | 
 | 	       L2_CACHE_BIGK_FRAGMENT_SIZE(6)); | 
 | 	radeon_gart_table_vram_unpin(rdev); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_pcie_gart_fini - vm fini callback | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Tears down the driver GART/VM setup (CIK). | 
 |  */ | 
 | static void cik_pcie_gart_fini(struct radeon_device *rdev) | 
 | { | 
 | 	cik_pcie_gart_disable(rdev); | 
 | 	radeon_gart_table_vram_free(rdev); | 
 | 	radeon_gart_fini(rdev); | 
 | } | 
 |  | 
 | /* vm parser */ | 
 | /** | 
 |  * cik_ib_parse - vm ib_parse callback | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @ib: indirect buffer pointer | 
 |  * | 
 |  * CIK uses hw IB checking so this is a nop (CIK). | 
 |  */ | 
 | int cik_ib_parse(struct radeon_device *rdev, struct radeon_ib *ib) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * vm | 
 |  * VMID 0 is the physical GPU addresses as used by the kernel. | 
 |  * VMIDs 1-15 are used for userspace clients and are handled | 
 |  * by the radeon vm/hsa code. | 
 |  */ | 
 | /** | 
 |  * cik_vm_init - cik vm init callback | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Inits cik specific vm parameters (number of VMs, base of vram for | 
 |  * VMIDs 1-15) (CIK). | 
 |  * Returns 0 for success. | 
 |  */ | 
 | int cik_vm_init(struct radeon_device *rdev) | 
 | { | 
 | 	/* number of VMs */ | 
 | 	rdev->vm_manager.nvm = 16; | 
 | 	/* base offset of vram pages */ | 
 | 	if (rdev->flags & RADEON_IS_IGP) { | 
 | 		u64 tmp = RREG32(MC_VM_FB_OFFSET); | 
 | 		tmp <<= 22; | 
 | 		rdev->vm_manager.vram_base_offset = tmp; | 
 | 	} else | 
 | 		rdev->vm_manager.vram_base_offset = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_vm_fini - cik vm fini callback | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Tear down any asic specific VM setup (CIK). | 
 |  */ | 
 | void cik_vm_fini(struct radeon_device *rdev) | 
 | { | 
 | } | 
 |  | 
 | /** | 
 |  * cik_vm_decode_fault - print human readable fault info | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value | 
 |  * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value | 
 |  * | 
 |  * Print human readable fault information (CIK). | 
 |  */ | 
 | static void cik_vm_decode_fault(struct radeon_device *rdev, | 
 | 				u32 status, u32 addr, u32 mc_client) | 
 | { | 
 | 	u32 mc_id = (status & MEMORY_CLIENT_ID_MASK) >> MEMORY_CLIENT_ID_SHIFT; | 
 | 	u32 vmid = (status & FAULT_VMID_MASK) >> FAULT_VMID_SHIFT; | 
 | 	u32 protections = (status & PROTECTIONS_MASK) >> PROTECTIONS_SHIFT; | 
 | 	char *block = (char *)&mc_client; | 
 |  | 
 | 	printk("VM fault (0x%02x, vmid %d) at page %u, %s from %s (%d)\n", | 
 | 	       protections, vmid, addr, | 
 | 	       (status & MEMORY_CLIENT_RW_MASK) ? "write" : "read", | 
 | 	       block, mc_id); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_vm_flush - cik vm flush using the CP | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Update the page table base and flush the VM TLB | 
 |  * using the CP (CIK). | 
 |  */ | 
 | void cik_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm) | 
 | { | 
 | 	struct radeon_ring *ring = &rdev->ring[ridx]; | 
 |  | 
 | 	if (vm == NULL) | 
 | 		return; | 
 |  | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); | 
 | 	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | | 
 | 				 WRITE_DATA_DST_SEL(0))); | 
 | 	if (vm->id < 8) { | 
 | 		radeon_ring_write(ring, | 
 | 				  (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2); | 
 | 	} else { | 
 | 		radeon_ring_write(ring, | 
 | 				  (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2); | 
 | 	} | 
 | 	radeon_ring_write(ring, 0); | 
 | 	radeon_ring_write(ring, vm->pd_gpu_addr >> 12); | 
 |  | 
 | 	/* update SH_MEM_* regs */ | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); | 
 | 	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | | 
 | 				 WRITE_DATA_DST_SEL(0))); | 
 | 	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); | 
 | 	radeon_ring_write(ring, 0); | 
 | 	radeon_ring_write(ring, VMID(vm->id)); | 
 |  | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 6)); | 
 | 	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | | 
 | 				 WRITE_DATA_DST_SEL(0))); | 
 | 	radeon_ring_write(ring, SH_MEM_BASES >> 2); | 
 | 	radeon_ring_write(ring, 0); | 
 |  | 
 | 	radeon_ring_write(ring, 0); /* SH_MEM_BASES */ | 
 | 	radeon_ring_write(ring, 0); /* SH_MEM_CONFIG */ | 
 | 	radeon_ring_write(ring, 1); /* SH_MEM_APE1_BASE */ | 
 | 	radeon_ring_write(ring, 0); /* SH_MEM_APE1_LIMIT */ | 
 |  | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); | 
 | 	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | | 
 | 				 WRITE_DATA_DST_SEL(0))); | 
 | 	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); | 
 | 	radeon_ring_write(ring, 0); | 
 | 	radeon_ring_write(ring, VMID(0)); | 
 |  | 
 | 	/* HDP flush */ | 
 | 	/* We should be using the WAIT_REG_MEM packet here like in | 
 | 	 * cik_fence_ring_emit(), but it causes the CP to hang in this | 
 | 	 * context... | 
 | 	 */ | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); | 
 | 	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | | 
 | 				 WRITE_DATA_DST_SEL(0))); | 
 | 	radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2); | 
 | 	radeon_ring_write(ring, 0); | 
 | 	radeon_ring_write(ring, 0); | 
 |  | 
 | 	/* bits 0-15 are the VM contexts0-15 */ | 
 | 	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); | 
 | 	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | | 
 | 				 WRITE_DATA_DST_SEL(0))); | 
 | 	radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); | 
 | 	radeon_ring_write(ring, 0); | 
 | 	radeon_ring_write(ring, 1 << vm->id); | 
 |  | 
 | 	/* compute doesn't have PFP */ | 
 | 	if (ridx == RADEON_RING_TYPE_GFX_INDEX) { | 
 | 		/* sync PFP to ME, otherwise we might get invalid PFP reads */ | 
 | 		radeon_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0)); | 
 | 		radeon_ring_write(ring, 0x0); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cik_vm_set_page - update the page tables using sDMA | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @ib: indirect buffer to fill with commands | 
 |  * @pe: addr of the page entry | 
 |  * @addr: dst addr to write into pe | 
 |  * @count: number of page entries to update | 
 |  * @incr: increase next addr by incr bytes | 
 |  * @flags: access flags | 
 |  * | 
 |  * Update the page tables using CP or sDMA (CIK). | 
 |  */ | 
 | void cik_vm_set_page(struct radeon_device *rdev, | 
 | 		     struct radeon_ib *ib, | 
 | 		     uint64_t pe, | 
 | 		     uint64_t addr, unsigned count, | 
 | 		     uint32_t incr, uint32_t flags) | 
 | { | 
 | 	uint32_t r600_flags = cayman_vm_page_flags(rdev, flags); | 
 | 	uint64_t value; | 
 | 	unsigned ndw; | 
 |  | 
 | 	if (rdev->asic->vm.pt_ring_index == RADEON_RING_TYPE_GFX_INDEX) { | 
 | 		/* CP */ | 
 | 		while (count) { | 
 | 			ndw = 2 + count * 2; | 
 | 			if (ndw > 0x3FFE) | 
 | 				ndw = 0x3FFE; | 
 |  | 
 | 			ib->ptr[ib->length_dw++] = PACKET3(PACKET3_WRITE_DATA, ndw); | 
 | 			ib->ptr[ib->length_dw++] = (WRITE_DATA_ENGINE_SEL(0) | | 
 | 						    WRITE_DATA_DST_SEL(1)); | 
 | 			ib->ptr[ib->length_dw++] = pe; | 
 | 			ib->ptr[ib->length_dw++] = upper_32_bits(pe); | 
 | 			for (; ndw > 2; ndw -= 2, --count, pe += 8) { | 
 | 				if (flags & RADEON_VM_PAGE_SYSTEM) { | 
 | 					value = radeon_vm_map_gart(rdev, addr); | 
 | 					value &= 0xFFFFFFFFFFFFF000ULL; | 
 | 				} else if (flags & RADEON_VM_PAGE_VALID) { | 
 | 					value = addr; | 
 | 				} else { | 
 | 					value = 0; | 
 | 				} | 
 | 				addr += incr; | 
 | 				value |= r600_flags; | 
 | 				ib->ptr[ib->length_dw++] = value; | 
 | 				ib->ptr[ib->length_dw++] = upper_32_bits(value); | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* DMA */ | 
 | 		if (flags & RADEON_VM_PAGE_SYSTEM) { | 
 | 			while (count) { | 
 | 				ndw = count * 2; | 
 | 				if (ndw > 0xFFFFE) | 
 | 					ndw = 0xFFFFE; | 
 |  | 
 | 				/* for non-physically contiguous pages (system) */ | 
 | 				ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); | 
 | 				ib->ptr[ib->length_dw++] = pe; | 
 | 				ib->ptr[ib->length_dw++] = upper_32_bits(pe); | 
 | 				ib->ptr[ib->length_dw++] = ndw; | 
 | 				for (; ndw > 0; ndw -= 2, --count, pe += 8) { | 
 | 					if (flags & RADEON_VM_PAGE_SYSTEM) { | 
 | 						value = radeon_vm_map_gart(rdev, addr); | 
 | 						value &= 0xFFFFFFFFFFFFF000ULL; | 
 | 					} else if (flags & RADEON_VM_PAGE_VALID) { | 
 | 						value = addr; | 
 | 					} else { | 
 | 						value = 0; | 
 | 					} | 
 | 					addr += incr; | 
 | 					value |= r600_flags; | 
 | 					ib->ptr[ib->length_dw++] = value; | 
 | 					ib->ptr[ib->length_dw++] = upper_32_bits(value); | 
 | 				} | 
 | 			} | 
 | 		} else { | 
 | 			while (count) { | 
 | 				ndw = count; | 
 | 				if (ndw > 0x7FFFF) | 
 | 					ndw = 0x7FFFF; | 
 |  | 
 | 				if (flags & RADEON_VM_PAGE_VALID) | 
 | 					value = addr; | 
 | 				else | 
 | 					value = 0; | 
 | 				/* for physically contiguous pages (vram) */ | 
 | 				ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0); | 
 | 				ib->ptr[ib->length_dw++] = pe; /* dst addr */ | 
 | 				ib->ptr[ib->length_dw++] = upper_32_bits(pe); | 
 | 				ib->ptr[ib->length_dw++] = r600_flags; /* mask */ | 
 | 				ib->ptr[ib->length_dw++] = 0; | 
 | 				ib->ptr[ib->length_dw++] = value; /* value */ | 
 | 				ib->ptr[ib->length_dw++] = upper_32_bits(value); | 
 | 				ib->ptr[ib->length_dw++] = incr; /* increment size */ | 
 | 				ib->ptr[ib->length_dw++] = 0; | 
 | 				ib->ptr[ib->length_dw++] = ndw; /* number of entries */ | 
 | 				pe += ndw * 8; | 
 | 				addr += ndw * incr; | 
 | 				count -= ndw; | 
 | 			} | 
 | 		} | 
 | 		while (ib->length_dw & 0x7) | 
 | 			ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cik_dma_vm_flush - cik vm flush using sDMA | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Update the page table base and flush the VM TLB | 
 |  * using sDMA (CIK). | 
 |  */ | 
 | void cik_dma_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm) | 
 | { | 
 | 	struct radeon_ring *ring = &rdev->ring[ridx]; | 
 | 	u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) | | 
 | 			  SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */ | 
 | 	u32 ref_and_mask; | 
 |  | 
 | 	if (vm == NULL) | 
 | 		return; | 
 |  | 
 | 	if (ridx == R600_RING_TYPE_DMA_INDEX) | 
 | 		ref_and_mask = SDMA0; | 
 | 	else | 
 | 		ref_and_mask = SDMA1; | 
 |  | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); | 
 | 	if (vm->id < 8) { | 
 | 		radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2); | 
 | 	} else { | 
 | 		radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2); | 
 | 	} | 
 | 	radeon_ring_write(ring, vm->pd_gpu_addr >> 12); | 
 |  | 
 | 	/* update SH_MEM_* regs */ | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); | 
 | 	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); | 
 | 	radeon_ring_write(ring, VMID(vm->id)); | 
 |  | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); | 
 | 	radeon_ring_write(ring, SH_MEM_BASES >> 2); | 
 | 	radeon_ring_write(ring, 0); | 
 |  | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); | 
 | 	radeon_ring_write(ring, SH_MEM_CONFIG >> 2); | 
 | 	radeon_ring_write(ring, 0); | 
 |  | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); | 
 | 	radeon_ring_write(ring, SH_MEM_APE1_BASE >> 2); | 
 | 	radeon_ring_write(ring, 1); | 
 |  | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); | 
 | 	radeon_ring_write(ring, SH_MEM_APE1_LIMIT >> 2); | 
 | 	radeon_ring_write(ring, 0); | 
 |  | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); | 
 | 	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); | 
 | 	radeon_ring_write(ring, VMID(0)); | 
 |  | 
 | 	/* flush HDP */ | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); | 
 | 	radeon_ring_write(ring, GPU_HDP_FLUSH_DONE); | 
 | 	radeon_ring_write(ring, GPU_HDP_FLUSH_REQ); | 
 | 	radeon_ring_write(ring, ref_and_mask); /* REFERENCE */ | 
 | 	radeon_ring_write(ring, ref_and_mask); /* MASK */ | 
 | 	radeon_ring_write(ring, (4 << 16) | 10); /* RETRY_COUNT, POLL_INTERVAL */ | 
 |  | 
 | 	/* flush TLB */ | 
 | 	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); | 
 | 	radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); | 
 | 	radeon_ring_write(ring, 1 << vm->id); | 
 | } | 
 |  | 
 | /* | 
 |  * RLC | 
 |  * The RLC is a multi-purpose microengine that handles a | 
 |  * variety of functions, the most important of which is | 
 |  * the interrupt controller. | 
 |  */ | 
 | /** | 
 |  * cik_rlc_stop - stop the RLC ME | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Halt the RLC ME (MicroEngine) (CIK). | 
 |  */ | 
 | static void cik_rlc_stop(struct radeon_device *rdev) | 
 | { | 
 | 	int i, j, k; | 
 | 	u32 mask, tmp; | 
 |  | 
 | 	tmp = RREG32(CP_INT_CNTL_RING0); | 
 | 	tmp &= ~(CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); | 
 | 	WREG32(CP_INT_CNTL_RING0, tmp); | 
 |  | 
 | 	RREG32(CB_CGTT_SCLK_CTRL); | 
 | 	RREG32(CB_CGTT_SCLK_CTRL); | 
 | 	RREG32(CB_CGTT_SCLK_CTRL); | 
 | 	RREG32(CB_CGTT_SCLK_CTRL); | 
 |  | 
 | 	tmp = RREG32(RLC_CGCG_CGLS_CTRL) & 0xfffffffc; | 
 | 	WREG32(RLC_CGCG_CGLS_CTRL, tmp); | 
 |  | 
 | 	WREG32(RLC_CNTL, 0); | 
 |  | 
 | 	for (i = 0; i < rdev->config.cik.max_shader_engines; i++) { | 
 | 		for (j = 0; j < rdev->config.cik.max_sh_per_se; j++) { | 
 | 			cik_select_se_sh(rdev, i, j); | 
 | 			for (k = 0; k < rdev->usec_timeout; k++) { | 
 | 				if (RREG32(RLC_SERDES_CU_MASTER_BUSY) == 0) | 
 | 					break; | 
 | 				udelay(1); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); | 
 |  | 
 | 	mask = SE_MASTER_BUSY_MASK | GC_MASTER_BUSY | TC0_MASTER_BUSY | TC1_MASTER_BUSY; | 
 | 	for (k = 0; k < rdev->usec_timeout; k++) { | 
 | 		if ((RREG32(RLC_SERDES_NONCU_MASTER_BUSY) & mask) == 0) | 
 | 			break; | 
 | 		udelay(1); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cik_rlc_start - start the RLC ME | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Unhalt the RLC ME (MicroEngine) (CIK). | 
 |  */ | 
 | static void cik_rlc_start(struct radeon_device *rdev) | 
 | { | 
 | 	u32 tmp; | 
 |  | 
 | 	WREG32(RLC_CNTL, RLC_ENABLE); | 
 |  | 
 | 	tmp = RREG32(CP_INT_CNTL_RING0); | 
 | 	tmp |= (CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); | 
 | 	WREG32(CP_INT_CNTL_RING0, tmp); | 
 |  | 
 | 	udelay(50); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_rlc_resume - setup the RLC hw | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Initialize the RLC registers, load the ucode, | 
 |  * and start the RLC (CIK). | 
 |  * Returns 0 for success, -EINVAL if the ucode is not available. | 
 |  */ | 
 | static int cik_rlc_resume(struct radeon_device *rdev) | 
 | { | 
 | 	u32 i, size; | 
 | 	u32 clear_state_info[3]; | 
 | 	const __be32 *fw_data; | 
 |  | 
 | 	if (!rdev->rlc_fw) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (rdev->family) { | 
 | 	case CHIP_BONAIRE: | 
 | 	default: | 
 | 		size = BONAIRE_RLC_UCODE_SIZE; | 
 | 		break; | 
 | 	case CHIP_KAVERI: | 
 | 		size = KV_RLC_UCODE_SIZE; | 
 | 		break; | 
 | 	case CHIP_KABINI: | 
 | 		size = KB_RLC_UCODE_SIZE; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	cik_rlc_stop(rdev); | 
 |  | 
 | 	WREG32(GRBM_SOFT_RESET, SOFT_RESET_RLC); | 
 | 	RREG32(GRBM_SOFT_RESET); | 
 | 	udelay(50); | 
 | 	WREG32(GRBM_SOFT_RESET, 0); | 
 | 	RREG32(GRBM_SOFT_RESET); | 
 | 	udelay(50); | 
 |  | 
 | 	WREG32(RLC_LB_CNTR_INIT, 0); | 
 | 	WREG32(RLC_LB_CNTR_MAX, 0x00008000); | 
 |  | 
 | 	cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); | 
 | 	WREG32(RLC_LB_INIT_CU_MASK, 0xffffffff); | 
 | 	WREG32(RLC_LB_PARAMS, 0x00600408); | 
 | 	WREG32(RLC_LB_CNTL, 0x80000004); | 
 |  | 
 | 	WREG32(RLC_MC_CNTL, 0); | 
 | 	WREG32(RLC_UCODE_CNTL, 0); | 
 |  | 
 | 	fw_data = (const __be32 *)rdev->rlc_fw->data; | 
 | 		WREG32(RLC_GPM_UCODE_ADDR, 0); | 
 | 	for (i = 0; i < size; i++) | 
 | 		WREG32(RLC_GPM_UCODE_DATA, be32_to_cpup(fw_data++)); | 
 | 	WREG32(RLC_GPM_UCODE_ADDR, 0); | 
 |  | 
 | 	/* XXX */ | 
 | 	clear_state_info[0] = 0;//upper_32_bits(rdev->rlc.save_restore_gpu_addr); | 
 | 	clear_state_info[1] = 0;//rdev->rlc.save_restore_gpu_addr; | 
 | 	clear_state_info[2] = 0;//cik_default_size; | 
 | 	WREG32(RLC_GPM_SCRATCH_ADDR, 0x3d); | 
 | 	for (i = 0; i < 3; i++) | 
 | 		WREG32(RLC_GPM_SCRATCH_DATA, clear_state_info[i]); | 
 | 	WREG32(RLC_DRIVER_DMA_STATUS, 0); | 
 |  | 
 | 	cik_rlc_start(rdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Interrupts | 
 |  * Starting with r6xx, interrupts are handled via a ring buffer. | 
 |  * Ring buffers are areas of GPU accessible memory that the GPU | 
 |  * writes interrupt vectors into and the host reads vectors out of. | 
 |  * There is a rptr (read pointer) that determines where the | 
 |  * host is currently reading, and a wptr (write pointer) | 
 |  * which determines where the GPU has written.  When the | 
 |  * pointers are equal, the ring is idle.  When the GPU | 
 |  * writes vectors to the ring buffer, it increments the | 
 |  * wptr.  When there is an interrupt, the host then starts | 
 |  * fetching commands and processing them until the pointers are | 
 |  * equal again at which point it updates the rptr. | 
 |  */ | 
 |  | 
 | /** | 
 |  * cik_enable_interrupts - Enable the interrupt ring buffer | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Enable the interrupt ring buffer (CIK). | 
 |  */ | 
 | static void cik_enable_interrupts(struct radeon_device *rdev) | 
 | { | 
 | 	u32 ih_cntl = RREG32(IH_CNTL); | 
 | 	u32 ih_rb_cntl = RREG32(IH_RB_CNTL); | 
 |  | 
 | 	ih_cntl |= ENABLE_INTR; | 
 | 	ih_rb_cntl |= IH_RB_ENABLE; | 
 | 	WREG32(IH_CNTL, ih_cntl); | 
 | 	WREG32(IH_RB_CNTL, ih_rb_cntl); | 
 | 	rdev->ih.enabled = true; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_disable_interrupts - Disable the interrupt ring buffer | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Disable the interrupt ring buffer (CIK). | 
 |  */ | 
 | static void cik_disable_interrupts(struct radeon_device *rdev) | 
 | { | 
 | 	u32 ih_rb_cntl = RREG32(IH_RB_CNTL); | 
 | 	u32 ih_cntl = RREG32(IH_CNTL); | 
 |  | 
 | 	ih_rb_cntl &= ~IH_RB_ENABLE; | 
 | 	ih_cntl &= ~ENABLE_INTR; | 
 | 	WREG32(IH_RB_CNTL, ih_rb_cntl); | 
 | 	WREG32(IH_CNTL, ih_cntl); | 
 | 	/* set rptr, wptr to 0 */ | 
 | 	WREG32(IH_RB_RPTR, 0); | 
 | 	WREG32(IH_RB_WPTR, 0); | 
 | 	rdev->ih.enabled = false; | 
 | 	rdev->ih.rptr = 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_disable_interrupt_state - Disable all interrupt sources | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Clear all interrupt enable bits used by the driver (CIK). | 
 |  */ | 
 | static void cik_disable_interrupt_state(struct radeon_device *rdev) | 
 | { | 
 | 	u32 tmp; | 
 |  | 
 | 	/* gfx ring */ | 
 | 	WREG32(CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); | 
 | 	/* sdma */ | 
 | 	tmp = RREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET) & ~TRAP_ENABLE; | 
 | 	WREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET, tmp); | 
 | 	tmp = RREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET) & ~TRAP_ENABLE; | 
 | 	WREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET, tmp); | 
 | 	/* compute queues */ | 
 | 	WREG32(CP_ME1_PIPE0_INT_CNTL, 0); | 
 | 	WREG32(CP_ME1_PIPE1_INT_CNTL, 0); | 
 | 	WREG32(CP_ME1_PIPE2_INT_CNTL, 0); | 
 | 	WREG32(CP_ME1_PIPE3_INT_CNTL, 0); | 
 | 	WREG32(CP_ME2_PIPE0_INT_CNTL, 0); | 
 | 	WREG32(CP_ME2_PIPE1_INT_CNTL, 0); | 
 | 	WREG32(CP_ME2_PIPE2_INT_CNTL, 0); | 
 | 	WREG32(CP_ME2_PIPE3_INT_CNTL, 0); | 
 | 	/* grbm */ | 
 | 	WREG32(GRBM_INT_CNTL, 0); | 
 | 	/* vline/vblank, etc. */ | 
 | 	WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, 0); | 
 | 	WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, 0); | 
 | 	if (rdev->num_crtc >= 4) { | 
 | 		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, 0); | 
 | 		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, 0); | 
 | 	} | 
 | 	if (rdev->num_crtc >= 6) { | 
 | 		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, 0); | 
 | 		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, 0); | 
 | 	} | 
 |  | 
 | 	/* dac hotplug */ | 
 | 	WREG32(DAC_AUTODETECT_INT_CONTROL, 0); | 
 |  | 
 | 	/* digital hotplug */ | 
 | 	tmp = RREG32(DC_HPD1_INT_CONTROL) & DC_HPDx_INT_POLARITY; | 
 | 	WREG32(DC_HPD1_INT_CONTROL, tmp); | 
 | 	tmp = RREG32(DC_HPD2_INT_CONTROL) & DC_HPDx_INT_POLARITY; | 
 | 	WREG32(DC_HPD2_INT_CONTROL, tmp); | 
 | 	tmp = RREG32(DC_HPD3_INT_CONTROL) & DC_HPDx_INT_POLARITY; | 
 | 	WREG32(DC_HPD3_INT_CONTROL, tmp); | 
 | 	tmp = RREG32(DC_HPD4_INT_CONTROL) & DC_HPDx_INT_POLARITY; | 
 | 	WREG32(DC_HPD4_INT_CONTROL, tmp); | 
 | 	tmp = RREG32(DC_HPD5_INT_CONTROL) & DC_HPDx_INT_POLARITY; | 
 | 	WREG32(DC_HPD5_INT_CONTROL, tmp); | 
 | 	tmp = RREG32(DC_HPD6_INT_CONTROL) & DC_HPDx_INT_POLARITY; | 
 | 	WREG32(DC_HPD6_INT_CONTROL, tmp); | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * cik_irq_init - init and enable the interrupt ring | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Allocate a ring buffer for the interrupt controller, | 
 |  * enable the RLC, disable interrupts, enable the IH | 
 |  * ring buffer and enable it (CIK). | 
 |  * Called at device load and reume. | 
 |  * Returns 0 for success, errors for failure. | 
 |  */ | 
 | static int cik_irq_init(struct radeon_device *rdev) | 
 | { | 
 | 	int ret = 0; | 
 | 	int rb_bufsz; | 
 | 	u32 interrupt_cntl, ih_cntl, ih_rb_cntl; | 
 |  | 
 | 	/* allocate ring */ | 
 | 	ret = r600_ih_ring_alloc(rdev); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* disable irqs */ | 
 | 	cik_disable_interrupts(rdev); | 
 |  | 
 | 	/* init rlc */ | 
 | 	ret = cik_rlc_resume(rdev); | 
 | 	if (ret) { | 
 | 		r600_ih_ring_fini(rdev); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* setup interrupt control */ | 
 | 	/* XXX this should actually be a bus address, not an MC address. same on older asics */ | 
 | 	WREG32(INTERRUPT_CNTL2, rdev->ih.gpu_addr >> 8); | 
 | 	interrupt_cntl = RREG32(INTERRUPT_CNTL); | 
 | 	/* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi | 
 | 	 * IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN | 
 | 	 */ | 
 | 	interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE; | 
 | 	/* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */ | 
 | 	interrupt_cntl &= ~IH_REQ_NONSNOOP_EN; | 
 | 	WREG32(INTERRUPT_CNTL, interrupt_cntl); | 
 |  | 
 | 	WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8); | 
 | 	rb_bufsz = drm_order(rdev->ih.ring_size / 4); | 
 |  | 
 | 	ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE | | 
 | 		      IH_WPTR_OVERFLOW_CLEAR | | 
 | 		      (rb_bufsz << 1)); | 
 |  | 
 | 	if (rdev->wb.enabled) | 
 | 		ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE; | 
 |  | 
 | 	/* set the writeback address whether it's enabled or not */ | 
 | 	WREG32(IH_RB_WPTR_ADDR_LO, (rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFFFFFFFC); | 
 | 	WREG32(IH_RB_WPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFF); | 
 |  | 
 | 	WREG32(IH_RB_CNTL, ih_rb_cntl); | 
 |  | 
 | 	/* set rptr, wptr to 0 */ | 
 | 	WREG32(IH_RB_RPTR, 0); | 
 | 	WREG32(IH_RB_WPTR, 0); | 
 |  | 
 | 	/* Default settings for IH_CNTL (disabled at first) */ | 
 | 	ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10) | MC_VMID(0); | 
 | 	/* RPTR_REARM only works if msi's are enabled */ | 
 | 	if (rdev->msi_enabled) | 
 | 		ih_cntl |= RPTR_REARM; | 
 | 	WREG32(IH_CNTL, ih_cntl); | 
 |  | 
 | 	/* force the active interrupt state to all disabled */ | 
 | 	cik_disable_interrupt_state(rdev); | 
 |  | 
 | 	pci_set_master(rdev->pdev); | 
 |  | 
 | 	/* enable irqs */ | 
 | 	cik_enable_interrupts(rdev); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_irq_set - enable/disable interrupt sources | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Enable interrupt sources on the GPU (vblanks, hpd, | 
 |  * etc.) (CIK). | 
 |  * Returns 0 for success, errors for failure. | 
 |  */ | 
 | int cik_irq_set(struct radeon_device *rdev) | 
 | { | 
 | 	u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE | | 
 | 		PRIV_INSTR_INT_ENABLE | PRIV_REG_INT_ENABLE; | 
 | 	u32 cp_m1p0, cp_m1p1, cp_m1p2, cp_m1p3; | 
 | 	u32 cp_m2p0, cp_m2p1, cp_m2p2, cp_m2p3; | 
 | 	u32 crtc1 = 0, crtc2 = 0, crtc3 = 0, crtc4 = 0, crtc5 = 0, crtc6 = 0; | 
 | 	u32 hpd1, hpd2, hpd3, hpd4, hpd5, hpd6; | 
 | 	u32 grbm_int_cntl = 0; | 
 | 	u32 dma_cntl, dma_cntl1; | 
 |  | 
 | 	if (!rdev->irq.installed) { | 
 | 		WARN(1, "Can't enable IRQ/MSI because no handler is installed\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	/* don't enable anything if the ih is disabled */ | 
 | 	if (!rdev->ih.enabled) { | 
 | 		cik_disable_interrupts(rdev); | 
 | 		/* force the active interrupt state to all disabled */ | 
 | 		cik_disable_interrupt_state(rdev); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	hpd1 = RREG32(DC_HPD1_INT_CONTROL) & ~DC_HPDx_INT_EN; | 
 | 	hpd2 = RREG32(DC_HPD2_INT_CONTROL) & ~DC_HPDx_INT_EN; | 
 | 	hpd3 = RREG32(DC_HPD3_INT_CONTROL) & ~DC_HPDx_INT_EN; | 
 | 	hpd4 = RREG32(DC_HPD4_INT_CONTROL) & ~DC_HPDx_INT_EN; | 
 | 	hpd5 = RREG32(DC_HPD5_INT_CONTROL) & ~DC_HPDx_INT_EN; | 
 | 	hpd6 = RREG32(DC_HPD6_INT_CONTROL) & ~DC_HPDx_INT_EN; | 
 |  | 
 | 	dma_cntl = RREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET) & ~TRAP_ENABLE; | 
 | 	dma_cntl1 = RREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET) & ~TRAP_ENABLE; | 
 |  | 
 | 	cp_m1p0 = RREG32(CP_ME1_PIPE0_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; | 
 | 	cp_m1p1 = RREG32(CP_ME1_PIPE1_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; | 
 | 	cp_m1p2 = RREG32(CP_ME1_PIPE2_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; | 
 | 	cp_m1p3 = RREG32(CP_ME1_PIPE3_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; | 
 | 	cp_m2p0 = RREG32(CP_ME2_PIPE0_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; | 
 | 	cp_m2p1 = RREG32(CP_ME2_PIPE1_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; | 
 | 	cp_m2p2 = RREG32(CP_ME2_PIPE2_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; | 
 | 	cp_m2p3 = RREG32(CP_ME2_PIPE3_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; | 
 |  | 
 | 	/* enable CP interrupts on all rings */ | 
 | 	if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) { | 
 | 		DRM_DEBUG("cik_irq_set: sw int gfx\n"); | 
 | 		cp_int_cntl |= TIME_STAMP_INT_ENABLE; | 
 | 	} | 
 | 	if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP1_INDEX])) { | 
 | 		struct radeon_ring *ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; | 
 | 		DRM_DEBUG("si_irq_set: sw int cp1\n"); | 
 | 		if (ring->me == 1) { | 
 | 			switch (ring->pipe) { | 
 | 			case 0: | 
 | 				cp_m1p0 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			case 1: | 
 | 				cp_m1p1 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			case 2: | 
 | 				cp_m1p2 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			case 3: | 
 | 				cp_m1p2 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			default: | 
 | 				DRM_DEBUG("si_irq_set: sw int cp1 invalid pipe %d\n", ring->pipe); | 
 | 				break; | 
 | 			} | 
 | 		} else if (ring->me == 2) { | 
 | 			switch (ring->pipe) { | 
 | 			case 0: | 
 | 				cp_m2p0 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			case 1: | 
 | 				cp_m2p1 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			case 2: | 
 | 				cp_m2p2 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			case 3: | 
 | 				cp_m2p2 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			default: | 
 | 				DRM_DEBUG("si_irq_set: sw int cp1 invalid pipe %d\n", ring->pipe); | 
 | 				break; | 
 | 			} | 
 | 		} else { | 
 | 			DRM_DEBUG("si_irq_set: sw int cp1 invalid me %d\n", ring->me); | 
 | 		} | 
 | 	} | 
 | 	if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP2_INDEX])) { | 
 | 		struct radeon_ring *ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; | 
 | 		DRM_DEBUG("si_irq_set: sw int cp2\n"); | 
 | 		if (ring->me == 1) { | 
 | 			switch (ring->pipe) { | 
 | 			case 0: | 
 | 				cp_m1p0 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			case 1: | 
 | 				cp_m1p1 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			case 2: | 
 | 				cp_m1p2 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			case 3: | 
 | 				cp_m1p2 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			default: | 
 | 				DRM_DEBUG("si_irq_set: sw int cp2 invalid pipe %d\n", ring->pipe); | 
 | 				break; | 
 | 			} | 
 | 		} else if (ring->me == 2) { | 
 | 			switch (ring->pipe) { | 
 | 			case 0: | 
 | 				cp_m2p0 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			case 1: | 
 | 				cp_m2p1 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			case 2: | 
 | 				cp_m2p2 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			case 3: | 
 | 				cp_m2p2 |= TIME_STAMP_INT_ENABLE; | 
 | 				break; | 
 | 			default: | 
 | 				DRM_DEBUG("si_irq_set: sw int cp2 invalid pipe %d\n", ring->pipe); | 
 | 				break; | 
 | 			} | 
 | 		} else { | 
 | 			DRM_DEBUG("si_irq_set: sw int cp2 invalid me %d\n", ring->me); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (atomic_read(&rdev->irq.ring_int[R600_RING_TYPE_DMA_INDEX])) { | 
 | 		DRM_DEBUG("cik_irq_set: sw int dma\n"); | 
 | 		dma_cntl |= TRAP_ENABLE; | 
 | 	} | 
 |  | 
 | 	if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_DMA1_INDEX])) { | 
 | 		DRM_DEBUG("cik_irq_set: sw int dma1\n"); | 
 | 		dma_cntl1 |= TRAP_ENABLE; | 
 | 	} | 
 |  | 
 | 	if (rdev->irq.crtc_vblank_int[0] || | 
 | 	    atomic_read(&rdev->irq.pflip[0])) { | 
 | 		DRM_DEBUG("cik_irq_set: vblank 0\n"); | 
 | 		crtc1 |= VBLANK_INTERRUPT_MASK; | 
 | 	} | 
 | 	if (rdev->irq.crtc_vblank_int[1] || | 
 | 	    atomic_read(&rdev->irq.pflip[1])) { | 
 | 		DRM_DEBUG("cik_irq_set: vblank 1\n"); | 
 | 		crtc2 |= VBLANK_INTERRUPT_MASK; | 
 | 	} | 
 | 	if (rdev->irq.crtc_vblank_int[2] || | 
 | 	    atomic_read(&rdev->irq.pflip[2])) { | 
 | 		DRM_DEBUG("cik_irq_set: vblank 2\n"); | 
 | 		crtc3 |= VBLANK_INTERRUPT_MASK; | 
 | 	} | 
 | 	if (rdev->irq.crtc_vblank_int[3] || | 
 | 	    atomic_read(&rdev->irq.pflip[3])) { | 
 | 		DRM_DEBUG("cik_irq_set: vblank 3\n"); | 
 | 		crtc4 |= VBLANK_INTERRUPT_MASK; | 
 | 	} | 
 | 	if (rdev->irq.crtc_vblank_int[4] || | 
 | 	    atomic_read(&rdev->irq.pflip[4])) { | 
 | 		DRM_DEBUG("cik_irq_set: vblank 4\n"); | 
 | 		crtc5 |= VBLANK_INTERRUPT_MASK; | 
 | 	} | 
 | 	if (rdev->irq.crtc_vblank_int[5] || | 
 | 	    atomic_read(&rdev->irq.pflip[5])) { | 
 | 		DRM_DEBUG("cik_irq_set: vblank 5\n"); | 
 | 		crtc6 |= VBLANK_INTERRUPT_MASK; | 
 | 	} | 
 | 	if (rdev->irq.hpd[0]) { | 
 | 		DRM_DEBUG("cik_irq_set: hpd 1\n"); | 
 | 		hpd1 |= DC_HPDx_INT_EN; | 
 | 	} | 
 | 	if (rdev->irq.hpd[1]) { | 
 | 		DRM_DEBUG("cik_irq_set: hpd 2\n"); | 
 | 		hpd2 |= DC_HPDx_INT_EN; | 
 | 	} | 
 | 	if (rdev->irq.hpd[2]) { | 
 | 		DRM_DEBUG("cik_irq_set: hpd 3\n"); | 
 | 		hpd3 |= DC_HPDx_INT_EN; | 
 | 	} | 
 | 	if (rdev->irq.hpd[3]) { | 
 | 		DRM_DEBUG("cik_irq_set: hpd 4\n"); | 
 | 		hpd4 |= DC_HPDx_INT_EN; | 
 | 	} | 
 | 	if (rdev->irq.hpd[4]) { | 
 | 		DRM_DEBUG("cik_irq_set: hpd 5\n"); | 
 | 		hpd5 |= DC_HPDx_INT_EN; | 
 | 	} | 
 | 	if (rdev->irq.hpd[5]) { | 
 | 		DRM_DEBUG("cik_irq_set: hpd 6\n"); | 
 | 		hpd6 |= DC_HPDx_INT_EN; | 
 | 	} | 
 |  | 
 | 	WREG32(CP_INT_CNTL_RING0, cp_int_cntl); | 
 |  | 
 | 	WREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET, dma_cntl); | 
 | 	WREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET, dma_cntl1); | 
 |  | 
 | 	WREG32(CP_ME1_PIPE0_INT_CNTL, cp_m1p0); | 
 | 	WREG32(CP_ME1_PIPE1_INT_CNTL, cp_m1p1); | 
 | 	WREG32(CP_ME1_PIPE2_INT_CNTL, cp_m1p2); | 
 | 	WREG32(CP_ME1_PIPE3_INT_CNTL, cp_m1p3); | 
 | 	WREG32(CP_ME2_PIPE0_INT_CNTL, cp_m2p0); | 
 | 	WREG32(CP_ME2_PIPE1_INT_CNTL, cp_m2p1); | 
 | 	WREG32(CP_ME2_PIPE2_INT_CNTL, cp_m2p2); | 
 | 	WREG32(CP_ME2_PIPE3_INT_CNTL, cp_m2p3); | 
 |  | 
 | 	WREG32(GRBM_INT_CNTL, grbm_int_cntl); | 
 |  | 
 | 	WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, crtc1); | 
 | 	WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, crtc2); | 
 | 	if (rdev->num_crtc >= 4) { | 
 | 		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, crtc3); | 
 | 		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, crtc4); | 
 | 	} | 
 | 	if (rdev->num_crtc >= 6) { | 
 | 		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, crtc5); | 
 | 		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, crtc6); | 
 | 	} | 
 |  | 
 | 	WREG32(DC_HPD1_INT_CONTROL, hpd1); | 
 | 	WREG32(DC_HPD2_INT_CONTROL, hpd2); | 
 | 	WREG32(DC_HPD3_INT_CONTROL, hpd3); | 
 | 	WREG32(DC_HPD4_INT_CONTROL, hpd4); | 
 | 	WREG32(DC_HPD5_INT_CONTROL, hpd5); | 
 | 	WREG32(DC_HPD6_INT_CONTROL, hpd6); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_irq_ack - ack interrupt sources | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Ack interrupt sources on the GPU (vblanks, hpd, | 
 |  * etc.) (CIK).  Certain interrupts sources are sw | 
 |  * generated and do not require an explicit ack. | 
 |  */ | 
 | static inline void cik_irq_ack(struct radeon_device *rdev) | 
 | { | 
 | 	u32 tmp; | 
 |  | 
 | 	rdev->irq.stat_regs.cik.disp_int = RREG32(DISP_INTERRUPT_STATUS); | 
 | 	rdev->irq.stat_regs.cik.disp_int_cont = RREG32(DISP_INTERRUPT_STATUS_CONTINUE); | 
 | 	rdev->irq.stat_regs.cik.disp_int_cont2 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE2); | 
 | 	rdev->irq.stat_regs.cik.disp_int_cont3 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE3); | 
 | 	rdev->irq.stat_regs.cik.disp_int_cont4 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE4); | 
 | 	rdev->irq.stat_regs.cik.disp_int_cont5 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE5); | 
 | 	rdev->irq.stat_regs.cik.disp_int_cont6 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE6); | 
 |  | 
 | 	if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VBLANK_INTERRUPT) | 
 | 		WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VBLANK_ACK); | 
 | 	if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VLINE_INTERRUPT) | 
 | 		WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VLINE_ACK); | 
 | 	if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VBLANK_INTERRUPT) | 
 | 		WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VBLANK_ACK); | 
 | 	if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VLINE_INTERRUPT) | 
 | 		WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VLINE_ACK); | 
 |  | 
 | 	if (rdev->num_crtc >= 4) { | 
 | 		if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT) | 
 | 			WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VBLANK_ACK); | 
 | 		if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VLINE_INTERRUPT) | 
 | 			WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VLINE_ACK); | 
 | 		if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT) | 
 | 			WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VBLANK_ACK); | 
 | 		if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VLINE_INTERRUPT) | 
 | 			WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VLINE_ACK); | 
 | 	} | 
 |  | 
 | 	if (rdev->num_crtc >= 6) { | 
 | 		if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT) | 
 | 			WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VBLANK_ACK); | 
 | 		if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VLINE_INTERRUPT) | 
 | 			WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VLINE_ACK); | 
 | 		if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT) | 
 | 			WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VBLANK_ACK); | 
 | 		if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VLINE_INTERRUPT) | 
 | 			WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VLINE_ACK); | 
 | 	} | 
 |  | 
 | 	if (rdev->irq.stat_regs.cik.disp_int & DC_HPD1_INTERRUPT) { | 
 | 		tmp = RREG32(DC_HPD1_INT_CONTROL); | 
 | 		tmp |= DC_HPDx_INT_ACK; | 
 | 		WREG32(DC_HPD1_INT_CONTROL, tmp); | 
 | 	} | 
 | 	if (rdev->irq.stat_regs.cik.disp_int_cont & DC_HPD2_INTERRUPT) { | 
 | 		tmp = RREG32(DC_HPD2_INT_CONTROL); | 
 | 		tmp |= DC_HPDx_INT_ACK; | 
 | 		WREG32(DC_HPD2_INT_CONTROL, tmp); | 
 | 	} | 
 | 	if (rdev->irq.stat_regs.cik.disp_int_cont2 & DC_HPD3_INTERRUPT) { | 
 | 		tmp = RREG32(DC_HPD3_INT_CONTROL); | 
 | 		tmp |= DC_HPDx_INT_ACK; | 
 | 		WREG32(DC_HPD3_INT_CONTROL, tmp); | 
 | 	} | 
 | 	if (rdev->irq.stat_regs.cik.disp_int_cont3 & DC_HPD4_INTERRUPT) { | 
 | 		tmp = RREG32(DC_HPD4_INT_CONTROL); | 
 | 		tmp |= DC_HPDx_INT_ACK; | 
 | 		WREG32(DC_HPD4_INT_CONTROL, tmp); | 
 | 	} | 
 | 	if (rdev->irq.stat_regs.cik.disp_int_cont4 & DC_HPD5_INTERRUPT) { | 
 | 		tmp = RREG32(DC_HPD5_INT_CONTROL); | 
 | 		tmp |= DC_HPDx_INT_ACK; | 
 | 		WREG32(DC_HPD5_INT_CONTROL, tmp); | 
 | 	} | 
 | 	if (rdev->irq.stat_regs.cik.disp_int_cont5 & DC_HPD6_INTERRUPT) { | 
 | 		tmp = RREG32(DC_HPD5_INT_CONTROL); | 
 | 		tmp |= DC_HPDx_INT_ACK; | 
 | 		WREG32(DC_HPD6_INT_CONTROL, tmp); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cik_irq_disable - disable interrupts | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Disable interrupts on the hw (CIK). | 
 |  */ | 
 | static void cik_irq_disable(struct radeon_device *rdev) | 
 | { | 
 | 	cik_disable_interrupts(rdev); | 
 | 	/* Wait and acknowledge irq */ | 
 | 	mdelay(1); | 
 | 	cik_irq_ack(rdev); | 
 | 	cik_disable_interrupt_state(rdev); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_irq_disable - disable interrupts for suspend | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Disable interrupts and stop the RLC (CIK). | 
 |  * Used for suspend. | 
 |  */ | 
 | static void cik_irq_suspend(struct radeon_device *rdev) | 
 | { | 
 | 	cik_irq_disable(rdev); | 
 | 	cik_rlc_stop(rdev); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_irq_fini - tear down interrupt support | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Disable interrupts on the hw and free the IH ring | 
 |  * buffer (CIK). | 
 |  * Used for driver unload. | 
 |  */ | 
 | static void cik_irq_fini(struct radeon_device *rdev) | 
 | { | 
 | 	cik_irq_suspend(rdev); | 
 | 	r600_ih_ring_fini(rdev); | 
 | } | 
 |  | 
 | /** | 
 |  * cik_get_ih_wptr - get the IH ring buffer wptr | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Get the IH ring buffer wptr from either the register | 
 |  * or the writeback memory buffer (CIK).  Also check for | 
 |  * ring buffer overflow and deal with it. | 
 |  * Used by cik_irq_process(). | 
 |  * Returns the value of the wptr. | 
 |  */ | 
 | static inline u32 cik_get_ih_wptr(struct radeon_device *rdev) | 
 | { | 
 | 	u32 wptr, tmp; | 
 |  | 
 | 	if (rdev->wb.enabled) | 
 | 		wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]); | 
 | 	else | 
 | 		wptr = RREG32(IH_RB_WPTR); | 
 |  | 
 | 	if (wptr & RB_OVERFLOW) { | 
 | 		/* When a ring buffer overflow happen start parsing interrupt | 
 | 		 * from the last not overwritten vector (wptr + 16). Hopefully | 
 | 		 * this should allow us to catchup. | 
 | 		 */ | 
 | 		dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, %d, %d)\n", | 
 | 			wptr, rdev->ih.rptr, (wptr + 16) + rdev->ih.ptr_mask); | 
 | 		rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask; | 
 | 		tmp = RREG32(IH_RB_CNTL); | 
 | 		tmp |= IH_WPTR_OVERFLOW_CLEAR; | 
 | 		WREG32(IH_RB_CNTL, tmp); | 
 | 	} | 
 | 	return (wptr & rdev->ih.ptr_mask); | 
 | } | 
 |  | 
 | /*        CIK IV Ring | 
 |  * Each IV ring entry is 128 bits: | 
 |  * [7:0]    - interrupt source id | 
 |  * [31:8]   - reserved | 
 |  * [59:32]  - interrupt source data | 
 |  * [63:60]  - reserved | 
 |  * [71:64]  - RINGID | 
 |  *            CP: | 
 |  *            ME_ID [1:0], PIPE_ID[1:0], QUEUE_ID[2:0] | 
 |  *            QUEUE_ID - for compute, which of the 8 queues owned by the dispatcher | 
 |  *                     - for gfx, hw shader state (0=PS...5=LS, 6=CS) | 
 |  *            ME_ID - 0 = gfx, 1 = first 4 CS pipes, 2 = second 4 CS pipes | 
 |  *            PIPE_ID - ME0 0=3D | 
 |  *                    - ME1&2 compute dispatcher (4 pipes each) | 
 |  *            SDMA: | 
 |  *            INSTANCE_ID [1:0], QUEUE_ID[1:0] | 
 |  *            INSTANCE_ID - 0 = sdma0, 1 = sdma1 | 
 |  *            QUEUE_ID - 0 = gfx, 1 = rlc0, 2 = rlc1 | 
 |  * [79:72]  - VMID | 
 |  * [95:80]  - PASID | 
 |  * [127:96] - reserved | 
 |  */ | 
 | /** | 
 |  * cik_irq_process - interrupt handler | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Interrupt hander (CIK).  Walk the IH ring, | 
 |  * ack interrupts and schedule work to handle | 
 |  * interrupt events. | 
 |  * Returns irq process return code. | 
 |  */ | 
 | int cik_irq_process(struct radeon_device *rdev) | 
 | { | 
 | 	struct radeon_ring *cp1_ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; | 
 | 	struct radeon_ring *cp2_ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; | 
 | 	u32 wptr; | 
 | 	u32 rptr; | 
 | 	u32 src_id, src_data, ring_id; | 
 | 	u8 me_id, pipe_id, queue_id; | 
 | 	u32 ring_index; | 
 | 	bool queue_hotplug = false; | 
 | 	bool queue_reset = false; | 
 | 	u32 addr, status, mc_client; | 
 |  | 
 | 	if (!rdev->ih.enabled || rdev->shutdown) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	wptr = cik_get_ih_wptr(rdev); | 
 |  | 
 | restart_ih: | 
 | 	/* is somebody else already processing irqs? */ | 
 | 	if (atomic_xchg(&rdev->ih.lock, 1)) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	rptr = rdev->ih.rptr; | 
 | 	DRM_DEBUG("cik_irq_process start: rptr %d, wptr %d\n", rptr, wptr); | 
 |  | 
 | 	/* Order reading of wptr vs. reading of IH ring data */ | 
 | 	rmb(); | 
 |  | 
 | 	/* display interrupts */ | 
 | 	cik_irq_ack(rdev); | 
 |  | 
 | 	while (rptr != wptr) { | 
 | 		/* wptr/rptr are in bytes! */ | 
 | 		ring_index = rptr / 4; | 
 | 		src_id =  le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff; | 
 | 		src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff; | 
 | 		ring_id = le32_to_cpu(rdev->ih.ring[ring_index + 2]) & 0xff; | 
 |  | 
 | 		switch (src_id) { | 
 | 		case 1: /* D1 vblank/vline */ | 
 | 			switch (src_data) { | 
 | 			case 0: /* D1 vblank */ | 
 | 				if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VBLANK_INTERRUPT) { | 
 | 					if (rdev->irq.crtc_vblank_int[0]) { | 
 | 						drm_handle_vblank(rdev->ddev, 0); | 
 | 						rdev->pm.vblank_sync = true; | 
 | 						wake_up(&rdev->irq.vblank_queue); | 
 | 					} | 
 | 					if (atomic_read(&rdev->irq.pflip[0])) | 
 | 						radeon_crtc_handle_flip(rdev, 0); | 
 | 					rdev->irq.stat_regs.cik.disp_int &= ~LB_D1_VBLANK_INTERRUPT; | 
 | 					DRM_DEBUG("IH: D1 vblank\n"); | 
 | 				} | 
 | 				break; | 
 | 			case 1: /* D1 vline */ | 
 | 				if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VLINE_INTERRUPT) { | 
 | 					rdev->irq.stat_regs.cik.disp_int &= ~LB_D1_VLINE_INTERRUPT; | 
 | 					DRM_DEBUG("IH: D1 vline\n"); | 
 | 				} | 
 | 				break; | 
 | 			default: | 
 | 				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case 2: /* D2 vblank/vline */ | 
 | 			switch (src_data) { | 
 | 			case 0: /* D2 vblank */ | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VBLANK_INTERRUPT) { | 
 | 					if (rdev->irq.crtc_vblank_int[1]) { | 
 | 						drm_handle_vblank(rdev->ddev, 1); | 
 | 						rdev->pm.vblank_sync = true; | 
 | 						wake_up(&rdev->irq.vblank_queue); | 
 | 					} | 
 | 					if (atomic_read(&rdev->irq.pflip[1])) | 
 | 						radeon_crtc_handle_flip(rdev, 1); | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont &= ~LB_D2_VBLANK_INTERRUPT; | 
 | 					DRM_DEBUG("IH: D2 vblank\n"); | 
 | 				} | 
 | 				break; | 
 | 			case 1: /* D2 vline */ | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VLINE_INTERRUPT) { | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont &= ~LB_D2_VLINE_INTERRUPT; | 
 | 					DRM_DEBUG("IH: D2 vline\n"); | 
 | 				} | 
 | 				break; | 
 | 			default: | 
 | 				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case 3: /* D3 vblank/vline */ | 
 | 			switch (src_data) { | 
 | 			case 0: /* D3 vblank */ | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT) { | 
 | 					if (rdev->irq.crtc_vblank_int[2]) { | 
 | 						drm_handle_vblank(rdev->ddev, 2); | 
 | 						rdev->pm.vblank_sync = true; | 
 | 						wake_up(&rdev->irq.vblank_queue); | 
 | 					} | 
 | 					if (atomic_read(&rdev->irq.pflip[2])) | 
 | 						radeon_crtc_handle_flip(rdev, 2); | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont2 &= ~LB_D3_VBLANK_INTERRUPT; | 
 | 					DRM_DEBUG("IH: D3 vblank\n"); | 
 | 				} | 
 | 				break; | 
 | 			case 1: /* D3 vline */ | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VLINE_INTERRUPT) { | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont2 &= ~LB_D3_VLINE_INTERRUPT; | 
 | 					DRM_DEBUG("IH: D3 vline\n"); | 
 | 				} | 
 | 				break; | 
 | 			default: | 
 | 				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case 4: /* D4 vblank/vline */ | 
 | 			switch (src_data) { | 
 | 			case 0: /* D4 vblank */ | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT) { | 
 | 					if (rdev->irq.crtc_vblank_int[3]) { | 
 | 						drm_handle_vblank(rdev->ddev, 3); | 
 | 						rdev->pm.vblank_sync = true; | 
 | 						wake_up(&rdev->irq.vblank_queue); | 
 | 					} | 
 | 					if (atomic_read(&rdev->irq.pflip[3])) | 
 | 						radeon_crtc_handle_flip(rdev, 3); | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont3 &= ~LB_D4_VBLANK_INTERRUPT; | 
 | 					DRM_DEBUG("IH: D4 vblank\n"); | 
 | 				} | 
 | 				break; | 
 | 			case 1: /* D4 vline */ | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VLINE_INTERRUPT) { | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont3 &= ~LB_D4_VLINE_INTERRUPT; | 
 | 					DRM_DEBUG("IH: D4 vline\n"); | 
 | 				} | 
 | 				break; | 
 | 			default: | 
 | 				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case 5: /* D5 vblank/vline */ | 
 | 			switch (src_data) { | 
 | 			case 0: /* D5 vblank */ | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT) { | 
 | 					if (rdev->irq.crtc_vblank_int[4]) { | 
 | 						drm_handle_vblank(rdev->ddev, 4); | 
 | 						rdev->pm.vblank_sync = true; | 
 | 						wake_up(&rdev->irq.vblank_queue); | 
 | 					} | 
 | 					if (atomic_read(&rdev->irq.pflip[4])) | 
 | 						radeon_crtc_handle_flip(rdev, 4); | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont4 &= ~LB_D5_VBLANK_INTERRUPT; | 
 | 					DRM_DEBUG("IH: D5 vblank\n"); | 
 | 				} | 
 | 				break; | 
 | 			case 1: /* D5 vline */ | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VLINE_INTERRUPT) { | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont4 &= ~LB_D5_VLINE_INTERRUPT; | 
 | 					DRM_DEBUG("IH: D5 vline\n"); | 
 | 				} | 
 | 				break; | 
 | 			default: | 
 | 				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case 6: /* D6 vblank/vline */ | 
 | 			switch (src_data) { | 
 | 			case 0: /* D6 vblank */ | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT) { | 
 | 					if (rdev->irq.crtc_vblank_int[5]) { | 
 | 						drm_handle_vblank(rdev->ddev, 5); | 
 | 						rdev->pm.vblank_sync = true; | 
 | 						wake_up(&rdev->irq.vblank_queue); | 
 | 					} | 
 | 					if (atomic_read(&rdev->irq.pflip[5])) | 
 | 						radeon_crtc_handle_flip(rdev, 5); | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont5 &= ~LB_D6_VBLANK_INTERRUPT; | 
 | 					DRM_DEBUG("IH: D6 vblank\n"); | 
 | 				} | 
 | 				break; | 
 | 			case 1: /* D6 vline */ | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VLINE_INTERRUPT) { | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont5 &= ~LB_D6_VLINE_INTERRUPT; | 
 | 					DRM_DEBUG("IH: D6 vline\n"); | 
 | 				} | 
 | 				break; | 
 | 			default: | 
 | 				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case 42: /* HPD hotplug */ | 
 | 			switch (src_data) { | 
 | 			case 0: | 
 | 				if (rdev->irq.stat_regs.cik.disp_int & DC_HPD1_INTERRUPT) { | 
 | 					rdev->irq.stat_regs.cik.disp_int &= ~DC_HPD1_INTERRUPT; | 
 | 					queue_hotplug = true; | 
 | 					DRM_DEBUG("IH: HPD1\n"); | 
 | 				} | 
 | 				break; | 
 | 			case 1: | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont & DC_HPD2_INTERRUPT) { | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont &= ~DC_HPD2_INTERRUPT; | 
 | 					queue_hotplug = true; | 
 | 					DRM_DEBUG("IH: HPD2\n"); | 
 | 				} | 
 | 				break; | 
 | 			case 2: | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont2 & DC_HPD3_INTERRUPT) { | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont2 &= ~DC_HPD3_INTERRUPT; | 
 | 					queue_hotplug = true; | 
 | 					DRM_DEBUG("IH: HPD3\n"); | 
 | 				} | 
 | 				break; | 
 | 			case 3: | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont3 & DC_HPD4_INTERRUPT) { | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont3 &= ~DC_HPD4_INTERRUPT; | 
 | 					queue_hotplug = true; | 
 | 					DRM_DEBUG("IH: HPD4\n"); | 
 | 				} | 
 | 				break; | 
 | 			case 4: | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont4 & DC_HPD5_INTERRUPT) { | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont4 &= ~DC_HPD5_INTERRUPT; | 
 | 					queue_hotplug = true; | 
 | 					DRM_DEBUG("IH: HPD5\n"); | 
 | 				} | 
 | 				break; | 
 | 			case 5: | 
 | 				if (rdev->irq.stat_regs.cik.disp_int_cont5 & DC_HPD6_INTERRUPT) { | 
 | 					rdev->irq.stat_regs.cik.disp_int_cont5 &= ~DC_HPD6_INTERRUPT; | 
 | 					queue_hotplug = true; | 
 | 					DRM_DEBUG("IH: HPD6\n"); | 
 | 				} | 
 | 				break; | 
 | 			default: | 
 | 				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case 146: | 
 | 		case 147: | 
 | 			addr = RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR); | 
 | 			status = RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS); | 
 | 			mc_client = RREG32(VM_CONTEXT1_PROTECTION_FAULT_MCCLIENT); | 
 | 			dev_err(rdev->dev, "GPU fault detected: %d 0x%08x\n", src_id, src_data); | 
 | 			dev_err(rdev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_ADDR   0x%08X\n", | 
 | 				addr); | 
 | 			dev_err(rdev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", | 
 | 				status); | 
 | 			cik_vm_decode_fault(rdev, status, addr, mc_client); | 
 | 			/* reset addr and status */ | 
 | 			WREG32_P(VM_CONTEXT1_CNTL2, 1, ~1); | 
 | 			break; | 
 | 		case 176: /* GFX RB CP_INT */ | 
 | 		case 177: /* GFX IB CP_INT */ | 
 | 			radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); | 
 | 			break; | 
 | 		case 181: /* CP EOP event */ | 
 | 			DRM_DEBUG("IH: CP EOP\n"); | 
 | 			/* XXX check the bitfield order! */ | 
 | 			me_id = (ring_id & 0x60) >> 5; | 
 | 			pipe_id = (ring_id & 0x18) >> 3; | 
 | 			queue_id = (ring_id & 0x7) >> 0; | 
 | 			switch (me_id) { | 
 | 			case 0: | 
 | 				radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); | 
 | 				break; | 
 | 			case 1: | 
 | 			case 2: | 
 | 				if ((cp1_ring->me == me_id) & (cp1_ring->pipe == pipe_id)) | 
 | 					radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP1_INDEX); | 
 | 				if ((cp2_ring->me == me_id) & (cp2_ring->pipe == pipe_id)) | 
 | 					radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP2_INDEX); | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case 184: /* CP Privileged reg access */ | 
 | 			DRM_ERROR("Illegal register access in command stream\n"); | 
 | 			/* XXX check the bitfield order! */ | 
 | 			me_id = (ring_id & 0x60) >> 5; | 
 | 			pipe_id = (ring_id & 0x18) >> 3; | 
 | 			queue_id = (ring_id & 0x7) >> 0; | 
 | 			switch (me_id) { | 
 | 			case 0: | 
 | 				/* This results in a full GPU reset, but all we need to do is soft | 
 | 				 * reset the CP for gfx | 
 | 				 */ | 
 | 				queue_reset = true; | 
 | 				break; | 
 | 			case 1: | 
 | 				/* XXX compute */ | 
 | 				queue_reset = true; | 
 | 				break; | 
 | 			case 2: | 
 | 				/* XXX compute */ | 
 | 				queue_reset = true; | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case 185: /* CP Privileged inst */ | 
 | 			DRM_ERROR("Illegal instruction in command stream\n"); | 
 | 			/* XXX check the bitfield order! */ | 
 | 			me_id = (ring_id & 0x60) >> 5; | 
 | 			pipe_id = (ring_id & 0x18) >> 3; | 
 | 			queue_id = (ring_id & 0x7) >> 0; | 
 | 			switch (me_id) { | 
 | 			case 0: | 
 | 				/* This results in a full GPU reset, but all we need to do is soft | 
 | 				 * reset the CP for gfx | 
 | 				 */ | 
 | 				queue_reset = true; | 
 | 				break; | 
 | 			case 1: | 
 | 				/* XXX compute */ | 
 | 				queue_reset = true; | 
 | 				break; | 
 | 			case 2: | 
 | 				/* XXX compute */ | 
 | 				queue_reset = true; | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case 224: /* SDMA trap event */ | 
 | 			/* XXX check the bitfield order! */ | 
 | 			me_id = (ring_id & 0x3) >> 0; | 
 | 			queue_id = (ring_id & 0xc) >> 2; | 
 | 			DRM_DEBUG("IH: SDMA trap\n"); | 
 | 			switch (me_id) { | 
 | 			case 0: | 
 | 				switch (queue_id) { | 
 | 				case 0: | 
 | 					radeon_fence_process(rdev, R600_RING_TYPE_DMA_INDEX); | 
 | 					break; | 
 | 				case 1: | 
 | 					/* XXX compute */ | 
 | 					break; | 
 | 				case 2: | 
 | 					/* XXX compute */ | 
 | 					break; | 
 | 				} | 
 | 				break; | 
 | 			case 1: | 
 | 				switch (queue_id) { | 
 | 				case 0: | 
 | 					radeon_fence_process(rdev, CAYMAN_RING_TYPE_DMA1_INDEX); | 
 | 					break; | 
 | 				case 1: | 
 | 					/* XXX compute */ | 
 | 					break; | 
 | 				case 2: | 
 | 					/* XXX compute */ | 
 | 					break; | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case 241: /* SDMA Privileged inst */ | 
 | 		case 247: /* SDMA Privileged inst */ | 
 | 			DRM_ERROR("Illegal instruction in SDMA command stream\n"); | 
 | 			/* XXX check the bitfield order! */ | 
 | 			me_id = (ring_id & 0x3) >> 0; | 
 | 			queue_id = (ring_id & 0xc) >> 2; | 
 | 			switch (me_id) { | 
 | 			case 0: | 
 | 				switch (queue_id) { | 
 | 				case 0: | 
 | 					queue_reset = true; | 
 | 					break; | 
 | 				case 1: | 
 | 					/* XXX compute */ | 
 | 					queue_reset = true; | 
 | 					break; | 
 | 				case 2: | 
 | 					/* XXX compute */ | 
 | 					queue_reset = true; | 
 | 					break; | 
 | 				} | 
 | 				break; | 
 | 			case 1: | 
 | 				switch (queue_id) { | 
 | 				case 0: | 
 | 					queue_reset = true; | 
 | 					break; | 
 | 				case 1: | 
 | 					/* XXX compute */ | 
 | 					queue_reset = true; | 
 | 					break; | 
 | 				case 2: | 
 | 					/* XXX compute */ | 
 | 					queue_reset = true; | 
 | 					break; | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | 		case 233: /* GUI IDLE */ | 
 | 			DRM_DEBUG("IH: GUI idle\n"); | 
 | 			break; | 
 | 		default: | 
 | 			DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* wptr/rptr are in bytes! */ | 
 | 		rptr += 16; | 
 | 		rptr &= rdev->ih.ptr_mask; | 
 | 	} | 
 | 	if (queue_hotplug) | 
 | 		schedule_work(&rdev->hotplug_work); | 
 | 	if (queue_reset) | 
 | 		schedule_work(&rdev->reset_work); | 
 | 	rdev->ih.rptr = rptr; | 
 | 	WREG32(IH_RB_RPTR, rdev->ih.rptr); | 
 | 	atomic_set(&rdev->ih.lock, 0); | 
 |  | 
 | 	/* make sure wptr hasn't changed while processing */ | 
 | 	wptr = cik_get_ih_wptr(rdev); | 
 | 	if (wptr != rptr) | 
 | 		goto restart_ih; | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * startup/shutdown callbacks | 
 |  */ | 
 | /** | 
 |  * cik_startup - program the asic to a functional state | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Programs the asic to a functional state (CIK). | 
 |  * Called by cik_init() and cik_resume(). | 
 |  * Returns 0 for success, error for failure. | 
 |  */ | 
 | static int cik_startup(struct radeon_device *rdev) | 
 | { | 
 | 	struct radeon_ring *ring; | 
 | 	int r; | 
 |  | 
 | 	if (rdev->flags & RADEON_IS_IGP) { | 
 | 		if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw || | 
 | 		    !rdev->mec_fw || !rdev->sdma_fw || !rdev->rlc_fw) { | 
 | 			r = cik_init_microcode(rdev); | 
 | 			if (r) { | 
 | 				DRM_ERROR("Failed to load firmware!\n"); | 
 | 				return r; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw || | 
 | 		    !rdev->mec_fw || !rdev->sdma_fw || !rdev->rlc_fw || | 
 | 		    !rdev->mc_fw) { | 
 | 			r = cik_init_microcode(rdev); | 
 | 			if (r) { | 
 | 				DRM_ERROR("Failed to load firmware!\n"); | 
 | 				return r; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		r = ci_mc_load_microcode(rdev); | 
 | 		if (r) { | 
 | 			DRM_ERROR("Failed to load MC firmware!\n"); | 
 | 			return r; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	r = r600_vram_scratch_init(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	cik_mc_program(rdev); | 
 | 	r = cik_pcie_gart_enable(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 | 	cik_gpu_init(rdev); | 
 |  | 
 | 	/* allocate rlc buffers */ | 
 | 	r = si_rlc_init(rdev); | 
 | 	if (r) { | 
 | 		DRM_ERROR("Failed to init rlc BOs!\n"); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	/* allocate wb buffer */ | 
 | 	r = radeon_wb_init(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* allocate mec buffers */ | 
 | 	r = cik_mec_init(rdev); | 
 | 	if (r) { | 
 | 		DRM_ERROR("Failed to init MEC BOs!\n"); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX); | 
 | 	if (r) { | 
 | 		dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_CP1_INDEX); | 
 | 	if (r) { | 
 | 		dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_CP2_INDEX); | 
 | 	if (r) { | 
 | 		dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_DMA_INDEX); | 
 | 	if (r) { | 
 | 		dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_DMA1_INDEX); | 
 | 	if (r) { | 
 | 		dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = cik_uvd_resume(rdev); | 
 | 	if (!r) { | 
 | 		r = radeon_fence_driver_start_ring(rdev, | 
 | 						   R600_RING_TYPE_UVD_INDEX); | 
 | 		if (r) | 
 | 			dev_err(rdev->dev, "UVD fences init error (%d).\n", r); | 
 | 	} | 
 | 	if (r) | 
 | 		rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_size = 0; | 
 |  | 
 | 	/* Enable IRQ */ | 
 | 	if (!rdev->irq.installed) { | 
 | 		r = radeon_irq_kms_init(rdev); | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 |  | 
 | 	r = cik_irq_init(rdev); | 
 | 	if (r) { | 
 | 		DRM_ERROR("radeon: IH init failed (%d).\n", r); | 
 | 		radeon_irq_kms_fini(rdev); | 
 | 		return r; | 
 | 	} | 
 | 	cik_irq_set(rdev); | 
 |  | 
 | 	ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; | 
 | 	r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP_RPTR_OFFSET, | 
 | 			     CP_RB0_RPTR, CP_RB0_WPTR, | 
 | 			     0, 0xfffff, RADEON_CP_PACKET2); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* set up the compute queues */ | 
 | 	/* type-2 packets are deprecated on MEC, use type-3 instead */ | 
 | 	ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; | 
 | 	r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP1_RPTR_OFFSET, | 
 | 			     CP_HQD_PQ_RPTR, CP_HQD_PQ_WPTR, | 
 | 			     0, 0xfffff, PACKET3(PACKET3_NOP, 0x3FFF)); | 
 | 	if (r) | 
 | 		return r; | 
 | 	ring->me = 1; /* first MEC */ | 
 | 	ring->pipe = 0; /* first pipe */ | 
 | 	ring->queue = 0; /* first queue */ | 
 | 	ring->wptr_offs = CIK_WB_CP1_WPTR_OFFSET; | 
 |  | 
 | 	/* type-2 packets are deprecated on MEC, use type-3 instead */ | 
 | 	ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; | 
 | 	r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP2_RPTR_OFFSET, | 
 | 			     CP_HQD_PQ_RPTR, CP_HQD_PQ_WPTR, | 
 | 			     0, 0xffffffff, PACKET3(PACKET3_NOP, 0x3FFF)); | 
 | 	if (r) | 
 | 		return r; | 
 | 	/* dGPU only have 1 MEC */ | 
 | 	ring->me = 1; /* first MEC */ | 
 | 	ring->pipe = 0; /* first pipe */ | 
 | 	ring->queue = 1; /* second queue */ | 
 | 	ring->wptr_offs = CIK_WB_CP2_WPTR_OFFSET; | 
 |  | 
 | 	ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; | 
 | 	r = radeon_ring_init(rdev, ring, ring->ring_size, R600_WB_DMA_RPTR_OFFSET, | 
 | 			     SDMA0_GFX_RB_RPTR + SDMA0_REGISTER_OFFSET, | 
 | 			     SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET, | 
 | 			     2, 0xfffffffc, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0)); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; | 
 | 	r = radeon_ring_init(rdev, ring, ring->ring_size, CAYMAN_WB_DMA1_RPTR_OFFSET, | 
 | 			     SDMA0_GFX_RB_RPTR + SDMA1_REGISTER_OFFSET, | 
 | 			     SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET, | 
 | 			     2, 0xfffffffc, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0)); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = cik_cp_resume(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = cik_sdma_resume(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	ring = &rdev->ring[R600_RING_TYPE_UVD_INDEX]; | 
 | 	if (ring->ring_size) { | 
 | 		r = radeon_ring_init(rdev, ring, ring->ring_size, | 
 | 				     R600_WB_UVD_RPTR_OFFSET, | 
 | 				     UVD_RBC_RB_RPTR, UVD_RBC_RB_WPTR, | 
 | 				     0, 0xfffff, RADEON_CP_PACKET2); | 
 | 		if (!r) | 
 | 			r = r600_uvd_init(rdev); | 
 | 		if (r) | 
 | 			DRM_ERROR("radeon: failed initializing UVD (%d).\n", r); | 
 | 	} | 
 |  | 
 | 	r = radeon_ib_pool_init(rdev); | 
 | 	if (r) { | 
 | 		dev_err(rdev->dev, "IB initialization failed (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = radeon_vm_manager_init(rdev); | 
 | 	if (r) { | 
 | 		dev_err(rdev->dev, "vm manager initialization failed (%d).\n", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_resume - resume the asic to a functional state | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Programs the asic to a functional state (CIK). | 
 |  * Called at resume. | 
 |  * Returns 0 for success, error for failure. | 
 |  */ | 
 | int cik_resume(struct radeon_device *rdev) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	/* post card */ | 
 | 	atom_asic_init(rdev->mode_info.atom_context); | 
 |  | 
 | 	/* init golden registers */ | 
 | 	cik_init_golden_registers(rdev); | 
 |  | 
 | 	rdev->accel_working = true; | 
 | 	r = cik_startup(rdev); | 
 | 	if (r) { | 
 | 		DRM_ERROR("cik startup failed on resume\n"); | 
 | 		rdev->accel_working = false; | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	return r; | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * cik_suspend - suspend the asic | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Bring the chip into a state suitable for suspend (CIK). | 
 |  * Called at suspend. | 
 |  * Returns 0 for success. | 
 |  */ | 
 | int cik_suspend(struct radeon_device *rdev) | 
 | { | 
 | 	radeon_vm_manager_fini(rdev); | 
 | 	cik_cp_enable(rdev, false); | 
 | 	cik_sdma_enable(rdev, false); | 
 | 	r600_uvd_rbc_stop(rdev); | 
 | 	radeon_uvd_suspend(rdev); | 
 | 	cik_irq_suspend(rdev); | 
 | 	radeon_wb_disable(rdev); | 
 | 	cik_pcie_gart_disable(rdev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Plan is to move initialization in that function and use | 
 |  * helper function so that radeon_device_init pretty much | 
 |  * do nothing more than calling asic specific function. This | 
 |  * should also allow to remove a bunch of callback function | 
 |  * like vram_info. | 
 |  */ | 
 | /** | 
 |  * cik_init - asic specific driver and hw init | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Setup asic specific driver variables and program the hw | 
 |  * to a functional state (CIK). | 
 |  * Called at driver startup. | 
 |  * Returns 0 for success, errors for failure. | 
 |  */ | 
 | int cik_init(struct radeon_device *rdev) | 
 | { | 
 | 	struct radeon_ring *ring; | 
 | 	int r; | 
 |  | 
 | 	/* Read BIOS */ | 
 | 	if (!radeon_get_bios(rdev)) { | 
 | 		if (ASIC_IS_AVIVO(rdev)) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	/* Must be an ATOMBIOS */ | 
 | 	if (!rdev->is_atom_bios) { | 
 | 		dev_err(rdev->dev, "Expecting atombios for cayman GPU\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	r = radeon_atombios_init(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* Post card if necessary */ | 
 | 	if (!radeon_card_posted(rdev)) { | 
 | 		if (!rdev->bios) { | 
 | 			dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		DRM_INFO("GPU not posted. posting now...\n"); | 
 | 		atom_asic_init(rdev->mode_info.atom_context); | 
 | 	} | 
 | 	/* init golden registers */ | 
 | 	cik_init_golden_registers(rdev); | 
 | 	/* Initialize scratch registers */ | 
 | 	cik_scratch_init(rdev); | 
 | 	/* Initialize surface registers */ | 
 | 	radeon_surface_init(rdev); | 
 | 	/* Initialize clocks */ | 
 | 	radeon_get_clock_info(rdev->ddev); | 
 |  | 
 | 	/* Fence driver */ | 
 | 	r = radeon_fence_driver_init(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* initialize memory controller */ | 
 | 	r = cik_mc_init(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 | 	/* Memory manager */ | 
 | 	r = radeon_bo_init(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; | 
 | 	ring->ring_obj = NULL; | 
 | 	r600_ring_init(rdev, ring, 1024 * 1024); | 
 |  | 
 | 	ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; | 
 | 	ring->ring_obj = NULL; | 
 | 	r600_ring_init(rdev, ring, 1024 * 1024); | 
 | 	r = radeon_doorbell_get(rdev, &ring->doorbell_page_num); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; | 
 | 	ring->ring_obj = NULL; | 
 | 	r600_ring_init(rdev, ring, 1024 * 1024); | 
 | 	r = radeon_doorbell_get(rdev, &ring->doorbell_page_num); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; | 
 | 	ring->ring_obj = NULL; | 
 | 	r600_ring_init(rdev, ring, 256 * 1024); | 
 |  | 
 | 	ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; | 
 | 	ring->ring_obj = NULL; | 
 | 	r600_ring_init(rdev, ring, 256 * 1024); | 
 |  | 
 | 	r = radeon_uvd_init(rdev); | 
 | 	if (!r) { | 
 | 		ring = &rdev->ring[R600_RING_TYPE_UVD_INDEX]; | 
 | 		ring->ring_obj = NULL; | 
 | 		r600_ring_init(rdev, ring, 4096); | 
 | 	} | 
 |  | 
 | 	rdev->ih.ring_obj = NULL; | 
 | 	r600_ih_ring_init(rdev, 64 * 1024); | 
 |  | 
 | 	r = r600_pcie_gart_init(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	rdev->accel_working = true; | 
 | 	r = cik_startup(rdev); | 
 | 	if (r) { | 
 | 		dev_err(rdev->dev, "disabling GPU acceleration\n"); | 
 | 		cik_cp_fini(rdev); | 
 | 		cik_sdma_fini(rdev); | 
 | 		cik_irq_fini(rdev); | 
 | 		si_rlc_fini(rdev); | 
 | 		cik_mec_fini(rdev); | 
 | 		radeon_wb_fini(rdev); | 
 | 		radeon_ib_pool_fini(rdev); | 
 | 		radeon_vm_manager_fini(rdev); | 
 | 		radeon_irq_kms_fini(rdev); | 
 | 		cik_pcie_gart_fini(rdev); | 
 | 		rdev->accel_working = false; | 
 | 	} | 
 |  | 
 | 	/* Don't start up if the MC ucode is missing. | 
 | 	 * The default clocks and voltages before the MC ucode | 
 | 	 * is loaded are not suffient for advanced operations. | 
 | 	 */ | 
 | 	if (!rdev->mc_fw && !(rdev->flags & RADEON_IS_IGP)) { | 
 | 		DRM_ERROR("radeon: MC ucode required for NI+.\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_fini - asic specific driver and hw fini | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Tear down the asic specific driver variables and program the hw | 
 |  * to an idle state (CIK). | 
 |  * Called at driver unload. | 
 |  */ | 
 | void cik_fini(struct radeon_device *rdev) | 
 | { | 
 | 	cik_cp_fini(rdev); | 
 | 	cik_sdma_fini(rdev); | 
 | 	cik_irq_fini(rdev); | 
 | 	si_rlc_fini(rdev); | 
 | 	cik_mec_fini(rdev); | 
 | 	radeon_wb_fini(rdev); | 
 | 	radeon_vm_manager_fini(rdev); | 
 | 	radeon_ib_pool_fini(rdev); | 
 | 	radeon_irq_kms_fini(rdev); | 
 | 	radeon_uvd_fini(rdev); | 
 | 	cik_pcie_gart_fini(rdev); | 
 | 	r600_vram_scratch_fini(rdev); | 
 | 	radeon_gem_fini(rdev); | 
 | 	radeon_fence_driver_fini(rdev); | 
 | 	radeon_bo_fini(rdev); | 
 | 	radeon_atombios_fini(rdev); | 
 | 	kfree(rdev->bios); | 
 | 	rdev->bios = NULL; | 
 | } | 
 |  | 
 | /* display watermark setup */ | 
 | /** | 
 |  * dce8_line_buffer_adjust - Set up the line buffer | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @radeon_crtc: the selected display controller | 
 |  * @mode: the current display mode on the selected display | 
 |  * controller | 
 |  * | 
 |  * Setup up the line buffer allocation for | 
 |  * the selected display controller (CIK). | 
 |  * Returns the line buffer size in pixels. | 
 |  */ | 
 | static u32 dce8_line_buffer_adjust(struct radeon_device *rdev, | 
 | 				   struct radeon_crtc *radeon_crtc, | 
 | 				   struct drm_display_mode *mode) | 
 | { | 
 | 	u32 tmp; | 
 |  | 
 | 	/* | 
 | 	 * Line Buffer Setup | 
 | 	 * There are 6 line buffers, one for each display controllers. | 
 | 	 * There are 3 partitions per LB. Select the number of partitions | 
 | 	 * to enable based on the display width.  For display widths larger | 
 | 	 * than 4096, you need use to use 2 display controllers and combine | 
 | 	 * them using the stereo blender. | 
 | 	 */ | 
 | 	if (radeon_crtc->base.enabled && mode) { | 
 | 		if (mode->crtc_hdisplay < 1920) | 
 | 			tmp = 1; | 
 | 		else if (mode->crtc_hdisplay < 2560) | 
 | 			tmp = 2; | 
 | 		else if (mode->crtc_hdisplay < 4096) | 
 | 			tmp = 0; | 
 | 		else { | 
 | 			DRM_DEBUG_KMS("Mode too big for LB!\n"); | 
 | 			tmp = 0; | 
 | 		} | 
 | 	} else | 
 | 		tmp = 1; | 
 |  | 
 | 	WREG32(LB_MEMORY_CTRL + radeon_crtc->crtc_offset, | 
 | 	       LB_MEMORY_CONFIG(tmp) | LB_MEMORY_SIZE(0x6B0)); | 
 |  | 
 | 	if (radeon_crtc->base.enabled && mode) { | 
 | 		switch (tmp) { | 
 | 		case 0: | 
 | 		default: | 
 | 			return 4096 * 2; | 
 | 		case 1: | 
 | 			return 1920 * 2; | 
 | 		case 2: | 
 | 			return 2560 * 2; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* controller not enabled, so no lb used */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cik_get_number_of_dram_channels - get the number of dram channels | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Look up the number of video ram channels (CIK). | 
 |  * Used for display watermark bandwidth calculations | 
 |  * Returns the number of dram channels | 
 |  */ | 
 | static u32 cik_get_number_of_dram_channels(struct radeon_device *rdev) | 
 | { | 
 | 	u32 tmp = RREG32(MC_SHARED_CHMAP); | 
 |  | 
 | 	switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { | 
 | 	case 0: | 
 | 	default: | 
 | 		return 1; | 
 | 	case 1: | 
 | 		return 2; | 
 | 	case 2: | 
 | 		return 4; | 
 | 	case 3: | 
 | 		return 8; | 
 | 	case 4: | 
 | 		return 3; | 
 | 	case 5: | 
 | 		return 6; | 
 | 	case 6: | 
 | 		return 10; | 
 | 	case 7: | 
 | 		return 12; | 
 | 	case 8: | 
 | 		return 16; | 
 | 	} | 
 | } | 
 |  | 
 | struct dce8_wm_params { | 
 | 	u32 dram_channels; /* number of dram channels */ | 
 | 	u32 yclk;          /* bandwidth per dram data pin in kHz */ | 
 | 	u32 sclk;          /* engine clock in kHz */ | 
 | 	u32 disp_clk;      /* display clock in kHz */ | 
 | 	u32 src_width;     /* viewport width */ | 
 | 	u32 active_time;   /* active display time in ns */ | 
 | 	u32 blank_time;    /* blank time in ns */ | 
 | 	bool interlaced;    /* mode is interlaced */ | 
 | 	fixed20_12 vsc;    /* vertical scale ratio */ | 
 | 	u32 num_heads;     /* number of active crtcs */ | 
 | 	u32 bytes_per_pixel; /* bytes per pixel display + overlay */ | 
 | 	u32 lb_size;       /* line buffer allocated to pipe */ | 
 | 	u32 vtaps;         /* vertical scaler taps */ | 
 | }; | 
 |  | 
 | /** | 
 |  * dce8_dram_bandwidth - get the dram bandwidth | 
 |  * | 
 |  * @wm: watermark calculation data | 
 |  * | 
 |  * Calculate the raw dram bandwidth (CIK). | 
 |  * Used for display watermark bandwidth calculations | 
 |  * Returns the dram bandwidth in MBytes/s | 
 |  */ | 
 | static u32 dce8_dram_bandwidth(struct dce8_wm_params *wm) | 
 | { | 
 | 	/* Calculate raw DRAM Bandwidth */ | 
 | 	fixed20_12 dram_efficiency; /* 0.7 */ | 
 | 	fixed20_12 yclk, dram_channels, bandwidth; | 
 | 	fixed20_12 a; | 
 |  | 
 | 	a.full = dfixed_const(1000); | 
 | 	yclk.full = dfixed_const(wm->yclk); | 
 | 	yclk.full = dfixed_div(yclk, a); | 
 | 	dram_channels.full = dfixed_const(wm->dram_channels * 4); | 
 | 	a.full = dfixed_const(10); | 
 | 	dram_efficiency.full = dfixed_const(7); | 
 | 	dram_efficiency.full = dfixed_div(dram_efficiency, a); | 
 | 	bandwidth.full = dfixed_mul(dram_channels, yclk); | 
 | 	bandwidth.full = dfixed_mul(bandwidth, dram_efficiency); | 
 |  | 
 | 	return dfixed_trunc(bandwidth); | 
 | } | 
 |  | 
 | /** | 
 |  * dce8_dram_bandwidth_for_display - get the dram bandwidth for display | 
 |  * | 
 |  * @wm: watermark calculation data | 
 |  * | 
 |  * Calculate the dram bandwidth used for display (CIK). | 
 |  * Used for display watermark bandwidth calculations | 
 |  * Returns the dram bandwidth for display in MBytes/s | 
 |  */ | 
 | static u32 dce8_dram_bandwidth_for_display(struct dce8_wm_params *wm) | 
 | { | 
 | 	/* Calculate DRAM Bandwidth and the part allocated to display. */ | 
 | 	fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */ | 
 | 	fixed20_12 yclk, dram_channels, bandwidth; | 
 | 	fixed20_12 a; | 
 |  | 
 | 	a.full = dfixed_const(1000); | 
 | 	yclk.full = dfixed_const(wm->yclk); | 
 | 	yclk.full = dfixed_div(yclk, a); | 
 | 	dram_channels.full = dfixed_const(wm->dram_channels * 4); | 
 | 	a.full = dfixed_const(10); | 
 | 	disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */ | 
 | 	disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a); | 
 | 	bandwidth.full = dfixed_mul(dram_channels, yclk); | 
 | 	bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation); | 
 |  | 
 | 	return dfixed_trunc(bandwidth); | 
 | } | 
 |  | 
 | /** | 
 |  * dce8_data_return_bandwidth - get the data return bandwidth | 
 |  * | 
 |  * @wm: watermark calculation data | 
 |  * | 
 |  * Calculate the data return bandwidth used for display (CIK). | 
 |  * Used for display watermark bandwidth calculations | 
 |  * Returns the data return bandwidth in MBytes/s | 
 |  */ | 
 | static u32 dce8_data_return_bandwidth(struct dce8_wm_params *wm) | 
 | { | 
 | 	/* Calculate the display Data return Bandwidth */ | 
 | 	fixed20_12 return_efficiency; /* 0.8 */ | 
 | 	fixed20_12 sclk, bandwidth; | 
 | 	fixed20_12 a; | 
 |  | 
 | 	a.full = dfixed_const(1000); | 
 | 	sclk.full = dfixed_const(wm->sclk); | 
 | 	sclk.full = dfixed_div(sclk, a); | 
 | 	a.full = dfixed_const(10); | 
 | 	return_efficiency.full = dfixed_const(8); | 
 | 	return_efficiency.full = dfixed_div(return_efficiency, a); | 
 | 	a.full = dfixed_const(32); | 
 | 	bandwidth.full = dfixed_mul(a, sclk); | 
 | 	bandwidth.full = dfixed_mul(bandwidth, return_efficiency); | 
 |  | 
 | 	return dfixed_trunc(bandwidth); | 
 | } | 
 |  | 
 | /** | 
 |  * dce8_dmif_request_bandwidth - get the dmif bandwidth | 
 |  * | 
 |  * @wm: watermark calculation data | 
 |  * | 
 |  * Calculate the dmif bandwidth used for display (CIK). | 
 |  * Used for display watermark bandwidth calculations | 
 |  * Returns the dmif bandwidth in MBytes/s | 
 |  */ | 
 | static u32 dce8_dmif_request_bandwidth(struct dce8_wm_params *wm) | 
 | { | 
 | 	/* Calculate the DMIF Request Bandwidth */ | 
 | 	fixed20_12 disp_clk_request_efficiency; /* 0.8 */ | 
 | 	fixed20_12 disp_clk, bandwidth; | 
 | 	fixed20_12 a, b; | 
 |  | 
 | 	a.full = dfixed_const(1000); | 
 | 	disp_clk.full = dfixed_const(wm->disp_clk); | 
 | 	disp_clk.full = dfixed_div(disp_clk, a); | 
 | 	a.full = dfixed_const(32); | 
 | 	b.full = dfixed_mul(a, disp_clk); | 
 |  | 
 | 	a.full = dfixed_const(10); | 
 | 	disp_clk_request_efficiency.full = dfixed_const(8); | 
 | 	disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a); | 
 |  | 
 | 	bandwidth.full = dfixed_mul(b, disp_clk_request_efficiency); | 
 |  | 
 | 	return dfixed_trunc(bandwidth); | 
 | } | 
 |  | 
 | /** | 
 |  * dce8_available_bandwidth - get the min available bandwidth | 
 |  * | 
 |  * @wm: watermark calculation data | 
 |  * | 
 |  * Calculate the min available bandwidth used for display (CIK). | 
 |  * Used for display watermark bandwidth calculations | 
 |  * Returns the min available bandwidth in MBytes/s | 
 |  */ | 
 | static u32 dce8_available_bandwidth(struct dce8_wm_params *wm) | 
 | { | 
 | 	/* Calculate the Available bandwidth. Display can use this temporarily but not in average. */ | 
 | 	u32 dram_bandwidth = dce8_dram_bandwidth(wm); | 
 | 	u32 data_return_bandwidth = dce8_data_return_bandwidth(wm); | 
 | 	u32 dmif_req_bandwidth = dce8_dmif_request_bandwidth(wm); | 
 |  | 
 | 	return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth)); | 
 | } | 
 |  | 
 | /** | 
 |  * dce8_average_bandwidth - get the average available bandwidth | 
 |  * | 
 |  * @wm: watermark calculation data | 
 |  * | 
 |  * Calculate the average available bandwidth used for display (CIK). | 
 |  * Used for display watermark bandwidth calculations | 
 |  * Returns the average available bandwidth in MBytes/s | 
 |  */ | 
 | static u32 dce8_average_bandwidth(struct dce8_wm_params *wm) | 
 | { | 
 | 	/* Calculate the display mode Average Bandwidth | 
 | 	 * DisplayMode should contain the source and destination dimensions, | 
 | 	 * timing, etc. | 
 | 	 */ | 
 | 	fixed20_12 bpp; | 
 | 	fixed20_12 line_time; | 
 | 	fixed20_12 src_width; | 
 | 	fixed20_12 bandwidth; | 
 | 	fixed20_12 a; | 
 |  | 
 | 	a.full = dfixed_const(1000); | 
 | 	line_time.full = dfixed_const(wm->active_time + wm->blank_time); | 
 | 	line_time.full = dfixed_div(line_time, a); | 
 | 	bpp.full = dfixed_const(wm->bytes_per_pixel); | 
 | 	src_width.full = dfixed_const(wm->src_width); | 
 | 	bandwidth.full = dfixed_mul(src_width, bpp); | 
 | 	bandwidth.full = dfixed_mul(bandwidth, wm->vsc); | 
 | 	bandwidth.full = dfixed_div(bandwidth, line_time); | 
 |  | 
 | 	return dfixed_trunc(bandwidth); | 
 | } | 
 |  | 
 | /** | 
 |  * dce8_latency_watermark - get the latency watermark | 
 |  * | 
 |  * @wm: watermark calculation data | 
 |  * | 
 |  * Calculate the latency watermark (CIK). | 
 |  * Used for display watermark bandwidth calculations | 
 |  * Returns the latency watermark in ns | 
 |  */ | 
 | static u32 dce8_latency_watermark(struct dce8_wm_params *wm) | 
 | { | 
 | 	/* First calculate the latency in ns */ | 
 | 	u32 mc_latency = 2000; /* 2000 ns. */ | 
 | 	u32 available_bandwidth = dce8_available_bandwidth(wm); | 
 | 	u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth; | 
 | 	u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth; | 
 | 	u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */ | 
 | 	u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) + | 
 | 		(wm->num_heads * cursor_line_pair_return_time); | 
 | 	u32 latency = mc_latency + other_heads_data_return_time + dc_latency; | 
 | 	u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time; | 
 | 	u32 tmp, dmif_size = 12288; | 
 | 	fixed20_12 a, b, c; | 
 |  | 
 | 	if (wm->num_heads == 0) | 
 | 		return 0; | 
 |  | 
 | 	a.full = dfixed_const(2); | 
 | 	b.full = dfixed_const(1); | 
 | 	if ((wm->vsc.full > a.full) || | 
 | 	    ((wm->vsc.full > b.full) && (wm->vtaps >= 3)) || | 
 | 	    (wm->vtaps >= 5) || | 
 | 	    ((wm->vsc.full >= a.full) && wm->interlaced)) | 
 | 		max_src_lines_per_dst_line = 4; | 
 | 	else | 
 | 		max_src_lines_per_dst_line = 2; | 
 |  | 
 | 	a.full = dfixed_const(available_bandwidth); | 
 | 	b.full = dfixed_const(wm->num_heads); | 
 | 	a.full = dfixed_div(a, b); | 
 |  | 
 | 	b.full = dfixed_const(mc_latency + 512); | 
 | 	c.full = dfixed_const(wm->disp_clk); | 
 | 	b.full = dfixed_div(b, c); | 
 |  | 
 | 	c.full = dfixed_const(dmif_size); | 
 | 	b.full = dfixed_div(c, b); | 
 |  | 
 | 	tmp = min(dfixed_trunc(a), dfixed_trunc(b)); | 
 |  | 
 | 	b.full = dfixed_const(1000); | 
 | 	c.full = dfixed_const(wm->disp_clk); | 
 | 	b.full = dfixed_div(c, b); | 
 | 	c.full = dfixed_const(wm->bytes_per_pixel); | 
 | 	b.full = dfixed_mul(b, c); | 
 |  | 
 | 	lb_fill_bw = min(tmp, dfixed_trunc(b)); | 
 |  | 
 | 	a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel); | 
 | 	b.full = dfixed_const(1000); | 
 | 	c.full = dfixed_const(lb_fill_bw); | 
 | 	b.full = dfixed_div(c, b); | 
 | 	a.full = dfixed_div(a, b); | 
 | 	line_fill_time = dfixed_trunc(a); | 
 |  | 
 | 	if (line_fill_time < wm->active_time) | 
 | 		return latency; | 
 | 	else | 
 | 		return latency + (line_fill_time - wm->active_time); | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * dce8_average_bandwidth_vs_dram_bandwidth_for_display - check | 
 |  * average and available dram bandwidth | 
 |  * | 
 |  * @wm: watermark calculation data | 
 |  * | 
 |  * Check if the display average bandwidth fits in the display | 
 |  * dram bandwidth (CIK). | 
 |  * Used for display watermark bandwidth calculations | 
 |  * Returns true if the display fits, false if not. | 
 |  */ | 
 | static bool dce8_average_bandwidth_vs_dram_bandwidth_for_display(struct dce8_wm_params *wm) | 
 | { | 
 | 	if (dce8_average_bandwidth(wm) <= | 
 | 	    (dce8_dram_bandwidth_for_display(wm) / wm->num_heads)) | 
 | 		return true; | 
 | 	else | 
 | 		return false; | 
 | } | 
 |  | 
 | /** | 
 |  * dce8_average_bandwidth_vs_available_bandwidth - check | 
 |  * average and available bandwidth | 
 |  * | 
 |  * @wm: watermark calculation data | 
 |  * | 
 |  * Check if the display average bandwidth fits in the display | 
 |  * available bandwidth (CIK). | 
 |  * Used for display watermark bandwidth calculations | 
 |  * Returns true if the display fits, false if not. | 
 |  */ | 
 | static bool dce8_average_bandwidth_vs_available_bandwidth(struct dce8_wm_params *wm) | 
 | { | 
 | 	if (dce8_average_bandwidth(wm) <= | 
 | 	    (dce8_available_bandwidth(wm) / wm->num_heads)) | 
 | 		return true; | 
 | 	else | 
 | 		return false; | 
 | } | 
 |  | 
 | /** | 
 |  * dce8_check_latency_hiding - check latency hiding | 
 |  * | 
 |  * @wm: watermark calculation data | 
 |  * | 
 |  * Check latency hiding (CIK). | 
 |  * Used for display watermark bandwidth calculations | 
 |  * Returns true if the display fits, false if not. | 
 |  */ | 
 | static bool dce8_check_latency_hiding(struct dce8_wm_params *wm) | 
 | { | 
 | 	u32 lb_partitions = wm->lb_size / wm->src_width; | 
 | 	u32 line_time = wm->active_time + wm->blank_time; | 
 | 	u32 latency_tolerant_lines; | 
 | 	u32 latency_hiding; | 
 | 	fixed20_12 a; | 
 |  | 
 | 	a.full = dfixed_const(1); | 
 | 	if (wm->vsc.full > a.full) | 
 | 		latency_tolerant_lines = 1; | 
 | 	else { | 
 | 		if (lb_partitions <= (wm->vtaps + 1)) | 
 | 			latency_tolerant_lines = 1; | 
 | 		else | 
 | 			latency_tolerant_lines = 2; | 
 | 	} | 
 |  | 
 | 	latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time); | 
 |  | 
 | 	if (dce8_latency_watermark(wm) <= latency_hiding) | 
 | 		return true; | 
 | 	else | 
 | 		return false; | 
 | } | 
 |  | 
 | /** | 
 |  * dce8_program_watermarks - program display watermarks | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * @radeon_crtc: the selected display controller | 
 |  * @lb_size: line buffer size | 
 |  * @num_heads: number of display controllers in use | 
 |  * | 
 |  * Calculate and program the display watermarks for the | 
 |  * selected display controller (CIK). | 
 |  */ | 
 | static void dce8_program_watermarks(struct radeon_device *rdev, | 
 | 				    struct radeon_crtc *radeon_crtc, | 
 | 				    u32 lb_size, u32 num_heads) | 
 | { | 
 | 	struct drm_display_mode *mode = &radeon_crtc->base.mode; | 
 | 	struct dce8_wm_params wm; | 
 | 	u32 pixel_period; | 
 | 	u32 line_time = 0; | 
 | 	u32 latency_watermark_a = 0, latency_watermark_b = 0; | 
 | 	u32 tmp, wm_mask; | 
 |  | 
 | 	if (radeon_crtc->base.enabled && num_heads && mode) { | 
 | 		pixel_period = 1000000 / (u32)mode->clock; | 
 | 		line_time = min((u32)mode->crtc_htotal * pixel_period, (u32)65535); | 
 |  | 
 | 		wm.yclk = rdev->pm.current_mclk * 10; | 
 | 		wm.sclk = rdev->pm.current_sclk * 10; | 
 | 		wm.disp_clk = mode->clock; | 
 | 		wm.src_width = mode->crtc_hdisplay; | 
 | 		wm.active_time = mode->crtc_hdisplay * pixel_period; | 
 | 		wm.blank_time = line_time - wm.active_time; | 
 | 		wm.interlaced = false; | 
 | 		if (mode->flags & DRM_MODE_FLAG_INTERLACE) | 
 | 			wm.interlaced = true; | 
 | 		wm.vsc = radeon_crtc->vsc; | 
 | 		wm.vtaps = 1; | 
 | 		if (radeon_crtc->rmx_type != RMX_OFF) | 
 | 			wm.vtaps = 2; | 
 | 		wm.bytes_per_pixel = 4; /* XXX: get this from fb config */ | 
 | 		wm.lb_size = lb_size; | 
 | 		wm.dram_channels = cik_get_number_of_dram_channels(rdev); | 
 | 		wm.num_heads = num_heads; | 
 |  | 
 | 		/* set for high clocks */ | 
 | 		latency_watermark_a = min(dce8_latency_watermark(&wm), (u32)65535); | 
 | 		/* set for low clocks */ | 
 | 		/* wm.yclk = low clk; wm.sclk = low clk */ | 
 | 		latency_watermark_b = min(dce8_latency_watermark(&wm), (u32)65535); | 
 |  | 
 | 		/* possibly force display priority to high */ | 
 | 		/* should really do this at mode validation time... */ | 
 | 		if (!dce8_average_bandwidth_vs_dram_bandwidth_for_display(&wm) || | 
 | 		    !dce8_average_bandwidth_vs_available_bandwidth(&wm) || | 
 | 		    !dce8_check_latency_hiding(&wm) || | 
 | 		    (rdev->disp_priority == 2)) { | 
 | 			DRM_DEBUG_KMS("force priority to high\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* select wm A */ | 
 | 	wm_mask = RREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset); | 
 | 	tmp = wm_mask; | 
 | 	tmp &= ~LATENCY_WATERMARK_MASK(3); | 
 | 	tmp |= LATENCY_WATERMARK_MASK(1); | 
 | 	WREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset, tmp); | 
 | 	WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset, | 
 | 	       (LATENCY_LOW_WATERMARK(latency_watermark_a) | | 
 | 		LATENCY_HIGH_WATERMARK(line_time))); | 
 | 	/* select wm B */ | 
 | 	tmp = RREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset); | 
 | 	tmp &= ~LATENCY_WATERMARK_MASK(3); | 
 | 	tmp |= LATENCY_WATERMARK_MASK(2); | 
 | 	WREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset, tmp); | 
 | 	WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset, | 
 | 	       (LATENCY_LOW_WATERMARK(latency_watermark_b) | | 
 | 		LATENCY_HIGH_WATERMARK(line_time))); | 
 | 	/* restore original selection */ | 
 | 	WREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset, wm_mask); | 
 | } | 
 |  | 
 | /** | 
 |  * dce8_bandwidth_update - program display watermarks | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Calculate and program the display watermarks and line | 
 |  * buffer allocation (CIK). | 
 |  */ | 
 | void dce8_bandwidth_update(struct radeon_device *rdev) | 
 | { | 
 | 	struct drm_display_mode *mode = NULL; | 
 | 	u32 num_heads = 0, lb_size; | 
 | 	int i; | 
 |  | 
 | 	radeon_update_display_priority(rdev); | 
 |  | 
 | 	for (i = 0; i < rdev->num_crtc; i++) { | 
 | 		if (rdev->mode_info.crtcs[i]->base.enabled) | 
 | 			num_heads++; | 
 | 	} | 
 | 	for (i = 0; i < rdev->num_crtc; i++) { | 
 | 		mode = &rdev->mode_info.crtcs[i]->base.mode; | 
 | 		lb_size = dce8_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i], mode); | 
 | 		dce8_program_watermarks(rdev, rdev->mode_info.crtcs[i], lb_size, num_heads); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cik_get_gpu_clock_counter - return GPU clock counter snapshot | 
 |  * | 
 |  * @rdev: radeon_device pointer | 
 |  * | 
 |  * Fetches a GPU clock counter snapshot (SI). | 
 |  * Returns the 64 bit clock counter snapshot. | 
 |  */ | 
 | uint64_t cik_get_gpu_clock_counter(struct radeon_device *rdev) | 
 | { | 
 | 	uint64_t clock; | 
 |  | 
 | 	mutex_lock(&rdev->gpu_clock_mutex); | 
 | 	WREG32(RLC_CAPTURE_GPU_CLOCK_COUNT, 1); | 
 | 	clock = (uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_LSB) | | 
 | 	        ((uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_MSB) << 32ULL); | 
 | 	mutex_unlock(&rdev->gpu_clock_mutex); | 
 | 	return clock; | 
 | } | 
 |  | 
 | static int cik_set_uvd_clock(struct radeon_device *rdev, u32 clock, | 
 |                               u32 cntl_reg, u32 status_reg) | 
 | { | 
 | 	int r, i; | 
 | 	struct atom_clock_dividers dividers; | 
 | 	uint32_t tmp; | 
 |  | 
 | 	r = radeon_atom_get_clock_dividers(rdev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, | 
 | 					   clock, false, ÷rs); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	tmp = RREG32_SMC(cntl_reg); | 
 | 	tmp &= ~(DCLK_DIR_CNTL_EN|DCLK_DIVIDER_MASK); | 
 | 	tmp |= dividers.post_divider; | 
 | 	WREG32_SMC(cntl_reg, tmp); | 
 |  | 
 | 	for (i = 0; i < 100; i++) { | 
 | 		if (RREG32_SMC(status_reg) & DCLK_STATUS) | 
 | 			break; | 
 | 		mdelay(10); | 
 | 	} | 
 | 	if (i == 100) | 
 | 		return -ETIMEDOUT; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int cik_set_uvd_clocks(struct radeon_device *rdev, u32 vclk, u32 dclk) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	r = cik_set_uvd_clock(rdev, vclk, CG_VCLK_CNTL, CG_VCLK_STATUS); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = cik_set_uvd_clock(rdev, dclk, CG_DCLK_CNTL, CG_DCLK_STATUS); | 
 | 	return r; | 
 | } | 
 |  | 
 | int cik_uvd_resume(struct radeon_device *rdev) | 
 | { | 
 | 	uint64_t addr; | 
 | 	uint32_t size; | 
 | 	int r; | 
 |  | 
 | 	r = radeon_uvd_resume(rdev); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* programm the VCPU memory controller bits 0-27 */ | 
 | 	addr = rdev->uvd.gpu_addr >> 3; | 
 | 	size = RADEON_GPU_PAGE_ALIGN(rdev->uvd.fw_size + 4) >> 3; | 
 | 	WREG32(UVD_VCPU_CACHE_OFFSET0, addr); | 
 | 	WREG32(UVD_VCPU_CACHE_SIZE0, size); | 
 |  | 
 | 	addr += size; | 
 | 	size = RADEON_UVD_STACK_SIZE >> 3; | 
 | 	WREG32(UVD_VCPU_CACHE_OFFSET1, addr); | 
 | 	WREG32(UVD_VCPU_CACHE_SIZE1, size); | 
 |  | 
 | 	addr += size; | 
 | 	size = RADEON_UVD_HEAP_SIZE >> 3; | 
 | 	WREG32(UVD_VCPU_CACHE_OFFSET2, addr); | 
 | 	WREG32(UVD_VCPU_CACHE_SIZE2, size); | 
 |  | 
 | 	/* bits 28-31 */ | 
 | 	addr = (rdev->uvd.gpu_addr >> 28) & 0xF; | 
 | 	WREG32(UVD_LMI_ADDR_EXT, (addr << 12) | (addr << 0)); | 
 |  | 
 | 	/* bits 32-39 */ | 
 | 	addr = (rdev->uvd.gpu_addr >> 32) & 0xFF; | 
 | 	WREG32(UVD_LMI_EXT40_ADDR, addr | (0x9 << 16) | (0x1 << 31)); | 
 |  | 
 | 	return 0; | 
 | } |