blob: 5f1fca7880b1b28d0c2387b9f7dc414527c23e81 [file] [log] [blame]
/*
* Renesas RIIC driver
*
* Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com>
* Copyright (C) 2013 Renesas Solutions Corp.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
/*
* This i2c core has a lot of interrupts, namely 8. We use their chaining as
* some kind of state machine.
*
* 1) The main xfer routine kicks off a transmission by putting the start bit
* (or repeated start) on the bus and enabling the transmit interrupt (TIE)
* since we need to send the slave address + RW bit in every case.
*
* 2) TIE sends slave address + RW bit and selects how to continue.
*
* 3a) Write case: We keep utilizing TIE as long as we have data to send. If we
* are done, we switch over to the transmission done interrupt (TEIE) and mark
* the message as completed (includes sending STOP) there.
*
* 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is
* needed to start clocking, then we keep receiving until we are done. Note
* that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by
* writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a
* message to create the final NACK as sketched in the datasheet. This caused
* some subtle races (when byte n was processed and byte n+1 was already
* waiting), though, and I started with the safe approach.
*
* 4) If we got a NACK somewhere, we flag the error and stop the transmission
* via NAKIE.
*
* Also check the comments in the interrupt routines for some gory details.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#define RIIC_ICCR1 0x00
#define RIIC_ICCR2 0x04
#define RIIC_ICMR1 0x08
#define RIIC_ICMR3 0x10
#define RIIC_ICSER 0x18
#define RIIC_ICIER 0x1c
#define RIIC_ICSR2 0x24
#define RIIC_ICBRL 0x34
#define RIIC_ICBRH 0x38
#define RIIC_ICDRT 0x3c
#define RIIC_ICDRR 0x40
#define ICCR1_ICE 0x80
#define ICCR1_IICRST 0x40
#define ICCR1_SOWP 0x10
#define ICCR2_BBSY 0x80
#define ICCR2_SP 0x08
#define ICCR2_RS 0x04
#define ICCR2_ST 0x02
#define ICMR1_CKS_MASK 0x70
#define ICMR1_BCWP 0x08
#define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP)
#define ICMR3_RDRFS 0x20
#define ICMR3_ACKWP 0x10
#define ICMR3_ACKBT 0x08
#define ICIER_TIE 0x80
#define ICIER_TEIE 0x40
#define ICIER_RIE 0x20
#define ICIER_NAKIE 0x10
#define ICIER_SPIE 0x08
#define ICSR2_NACKF 0x10
#define ICBR_RESERVED 0xe0 /* Should be 1 on writes */
#define RIIC_INIT_MSG -1
struct riic_dev {
void __iomem *base;
u8 *buf;
struct i2c_msg *msg;
int bytes_left;
int err;
int is_last;
struct completion msg_done;
struct i2c_adapter adapter;
struct clk *clk;
};
struct riic_irq_desc {
int res_num;
irq_handler_t isr;
char *name;
};
static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg)
{
writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg);
}
static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
struct riic_dev *riic = i2c_get_adapdata(adap);
unsigned long time_left;
int i, ret;
u8 start_bit;
ret = clk_prepare_enable(riic->clk);
if (ret)
return ret;
if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) {
riic->err = -EBUSY;
goto out;
}
reinit_completion(&riic->msg_done);
riic->err = 0;
writeb(0, riic->base + RIIC_ICSR2);
for (i = 0, start_bit = ICCR2_ST; i < num; i++) {
riic->bytes_left = RIIC_INIT_MSG;
riic->buf = msgs[i].buf;
riic->msg = &msgs[i];
riic->is_last = (i == num - 1);
writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER);
writeb(start_bit, riic->base + RIIC_ICCR2);
time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout);
if (time_left == 0)
riic->err = -ETIMEDOUT;
if (riic->err)
break;
start_bit = ICCR2_RS;
}
out:
clk_disable_unprepare(riic->clk);
return riic->err ?: num;
}
static irqreturn_t riic_tdre_isr(int irq, void *data)
{
struct riic_dev *riic = data;
u8 val;
if (!riic->bytes_left)
return IRQ_NONE;
if (riic->bytes_left == RIIC_INIT_MSG) {
if (riic->msg->flags & I2C_M_RD)
/* On read, switch over to receive interrupt */
riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER);
else
/* On write, initialize length */
riic->bytes_left = riic->msg->len;
val = i2c_8bit_addr_from_msg(riic->msg);
} else {
val = *riic->buf;
riic->buf++;
riic->bytes_left--;
}
/*
* Switch to transmission ended interrupt when done. Do check here
* after bytes_left was initialized to support SMBUS_QUICK (new msg has
* 0 length then)
*/
if (riic->bytes_left == 0)
riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER);
/*
* This acks the TIE interrupt. We get another TIE immediately if our
* value could be moved to the shadow shift register right away. So
* this must be after updates to ICIER (where we want to disable TIE)!
*/
writeb(val, riic->base + RIIC_ICDRT);
return IRQ_HANDLED;
}
static irqreturn_t riic_tend_isr(int irq, void *data)
{
struct riic_dev *riic = data;
if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) {
/* We got a NACKIE */
readb(riic->base + RIIC_ICDRR); /* dummy read */
riic->err = -ENXIO;
} else if (riic->bytes_left) {
return IRQ_NONE;
}
if (riic->is_last || riic->err) {
riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER);
writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
} else {
/* Transfer is complete, but do not send STOP */
riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER);
complete(&riic->msg_done);
}
return IRQ_HANDLED;
}
static irqreturn_t riic_rdrf_isr(int irq, void *data)
{
struct riic_dev *riic = data;
if (!riic->bytes_left)
return IRQ_NONE;
if (riic->bytes_left == RIIC_INIT_MSG) {
riic->bytes_left = riic->msg->len;
readb(riic->base + RIIC_ICDRR); /* dummy read */
return IRQ_HANDLED;
}
if (riic->bytes_left == 1) {
/* STOP must come before we set ACKBT! */
if (riic->is_last) {
riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER);
writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
}
riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3);
} else {
riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3);
}
/* Reading acks the RIE interrupt */
*riic->buf = readb(riic->base + RIIC_ICDRR);
riic->buf++;
riic->bytes_left--;
return IRQ_HANDLED;
}
static irqreturn_t riic_stop_isr(int irq, void *data)
{
struct riic_dev *riic = data;
/* read back registers to confirm writes have fully propagated */
writeb(0, riic->base + RIIC_ICSR2);
readb(riic->base + RIIC_ICSR2);
writeb(0, riic->base + RIIC_ICIER);
readb(riic->base + RIIC_ICIER);
complete(&riic->msg_done);
return IRQ_HANDLED;
}
static u32 riic_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm riic_algo = {
.master_xfer = riic_xfer,
.functionality = riic_func,
};
static int riic_init_hw(struct riic_dev *riic, struct i2c_timings *t)
{
int ret;
unsigned long rate;
int total_ticks, cks, brl, brh;
ret = clk_prepare_enable(riic->clk);
if (ret)
return ret;
if (t->bus_freq_hz > 400000) {
dev_err(&riic->adapter.dev,
"unsupported bus speed (%dHz). 400000 max\n",
t->bus_freq_hz);
clk_disable_unprepare(riic->clk);
return -EINVAL;
}
rate = clk_get_rate(riic->clk);
/*
* Assume the default register settings:
* FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles)
* FER.NFE = 1 (noise circuit enabled)
* MR3.NF = 0 (1 cycle of noise filtered out)
*
* Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1)
* Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1)
*/
/*
* Determine reference clock rate. We must be able to get the desired
* frequency with only 62 clock ticks max (31 high, 31 low).
* Aim for a duty of 60% LOW, 40% HIGH.
*/
total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz);
for (cks = 0; cks < 7; cks++) {
/*
* 60% low time must be less than BRL + 2 + 1
* BRL max register value is 0x1F.
*/
brl = ((total_ticks * 6) / 10);
if (brl <= (0x1F + 3))
break;
total_ticks /= 2;
rate /= 2;
}
if (brl > (0x1F + 3)) {
dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n",
(unsigned long)t->bus_freq_hz);
clk_disable_unprepare(riic->clk);
return -EINVAL;
}
brh = total_ticks - brl;
/* Remove automatic clock ticks for sync circuit and NF */
if (cks == 0) {
brl -= 4;
brh -= 4;
} else {
brl -= 3;
brh -= 3;
}
/*
* Remove clock ticks for rise and fall times. Convert ns to clock
* ticks.
*/
brl -= t->scl_fall_ns / (1000000000 / rate);
brh -= t->scl_rise_ns / (1000000000 / rate);
/* Adjust for min register values for when SCLE=1 and NFE=1 */
if (brl < 1)
brl = 1;
if (brh < 1)
brh = 1;
pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n",
rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6),
t->scl_fall_ns / (1000000000 / rate),
t->scl_rise_ns / (1000000000 / rate), cks, brl, brh);
/* Changing the order of accessing IICRST and ICE may break things! */
writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1);
riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1);
writeb(ICMR1_CKS(cks), riic->base + RIIC_ICMR1);
writeb(brh | ICBR_RESERVED, riic->base + RIIC_ICBRH);
writeb(brl | ICBR_RESERVED, riic->base + RIIC_ICBRL);
writeb(0, riic->base + RIIC_ICSER);
writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3);
riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1);
clk_disable_unprepare(riic->clk);
return 0;
}
static struct riic_irq_desc riic_irqs[] = {
{ .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" },
{ .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" },
{ .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" },
{ .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" },
{ .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" },
};
static int riic_i2c_probe(struct platform_device *pdev)
{
struct riic_dev *riic;
struct i2c_adapter *adap;
struct resource *res;
struct i2c_timings i2c_t;
int i, ret;
riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL);
if (!riic)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
riic->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(riic->base))
return PTR_ERR(riic->base);
riic->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(riic->clk)) {
dev_err(&pdev->dev, "missing controller clock");
return PTR_ERR(riic->clk);
}
for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) {
res = platform_get_resource(pdev, IORESOURCE_IRQ, riic_irqs[i].res_num);
if (!res)
return -ENODEV;
ret = devm_request_irq(&pdev->dev, res->start, riic_irqs[i].isr,
0, riic_irqs[i].name, riic);
if (ret) {
dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name);
return ret;
}
}
adap = &riic->adapter;
i2c_set_adapdata(adap, riic);
strlcpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name));
adap->owner = THIS_MODULE;
adap->algo = &riic_algo;
adap->dev.parent = &pdev->dev;
adap->dev.of_node = pdev->dev.of_node;
init_completion(&riic->msg_done);
i2c_parse_fw_timings(&pdev->dev, &i2c_t, true);
ret = riic_init_hw(riic, &i2c_t);
if (ret)
return ret;
ret = i2c_add_adapter(adap);
if (ret)
return ret;
platform_set_drvdata(pdev, riic);
dev_info(&pdev->dev, "registered with %dHz bus speed\n",
i2c_t.bus_freq_hz);
return 0;
}
static int riic_i2c_remove(struct platform_device *pdev)
{
struct riic_dev *riic = platform_get_drvdata(pdev);
writeb(0, riic->base + RIIC_ICIER);
i2c_del_adapter(&riic->adapter);
return 0;
}
static const struct of_device_id riic_i2c_dt_ids[] = {
{ .compatible = "renesas,riic-rz" },
{ /* Sentinel */ },
};
static struct platform_driver riic_i2c_driver = {
.probe = riic_i2c_probe,
.remove = riic_i2c_remove,
.driver = {
.name = "i2c-riic",
.of_match_table = riic_i2c_dt_ids,
},
};
module_platform_driver(riic_i2c_driver);
MODULE_DESCRIPTION("Renesas RIIC adapter");
MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>");
MODULE_LICENSE("GPL v2");
MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids);