| /* | 
 |  * Resizable virtual memory filesystem for Linux. | 
 |  * | 
 |  * Copyright (C) 2000 Linus Torvalds. | 
 |  *		 2000 Transmeta Corp. | 
 |  *		 2000-2001 Christoph Rohland | 
 |  *		 2000-2001 SAP AG | 
 |  *		 2002 Red Hat Inc. | 
 |  * Copyright (C) 2002-2011 Hugh Dickins. | 
 |  * Copyright (C) 2011 Google Inc. | 
 |  * Copyright (C) 2002-2005 VERITAS Software Corporation. | 
 |  * Copyright (C) 2004 Andi Kleen, SuSE Labs | 
 |  * | 
 |  * Extended attribute support for tmpfs: | 
 |  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> | 
 |  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> | 
 |  * | 
 |  * tiny-shmem: | 
 |  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> | 
 |  * | 
 |  * This file is released under the GPL. | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/init.h> | 
 | #include <linux/vfs.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/ramfs.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/file.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/export.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/aio.h> | 
 |  | 
 | static struct vfsmount *shm_mnt; | 
 |  | 
 | #ifdef CONFIG_SHMEM | 
 | /* | 
 |  * This virtual memory filesystem is heavily based on the ramfs. It | 
 |  * extends ramfs by the ability to use swap and honor resource limits | 
 |  * which makes it a completely usable filesystem. | 
 |  */ | 
 |  | 
 | #include <linux/xattr.h> | 
 | #include <linux/exportfs.h> | 
 | #include <linux/posix_acl.h> | 
 | #include <linux/generic_acl.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/string.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/shmem_fs.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/percpu_counter.h> | 
 | #include <linux/falloc.h> | 
 | #include <linux/splice.h> | 
 | #include <linux/security.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/magic.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 | #include <asm/pgtable.h> | 
 |  | 
 | #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512) | 
 | #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) | 
 |  | 
 | /* Pretend that each entry is of this size in directory's i_size */ | 
 | #define BOGO_DIRENT_SIZE 20 | 
 |  | 
 | /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ | 
 | #define SHORT_SYMLINK_LEN 128 | 
 |  | 
 | /* | 
 |  * shmem_fallocate and shmem_writepage communicate via inode->i_private | 
 |  * (with i_mutex making sure that it has only one user at a time): | 
 |  * we would prefer not to enlarge the shmem inode just for that. | 
 |  */ | 
 | struct shmem_falloc { | 
 | 	pgoff_t start;		/* start of range currently being fallocated */ | 
 | 	pgoff_t next;		/* the next page offset to be fallocated */ | 
 | 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */ | 
 | 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */ | 
 | }; | 
 |  | 
 | /* Flag allocation requirements to shmem_getpage */ | 
 | enum sgp_type { | 
 | 	SGP_READ,	/* don't exceed i_size, don't allocate page */ | 
 | 	SGP_CACHE,	/* don't exceed i_size, may allocate page */ | 
 | 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */ | 
 | 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */ | 
 | 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */ | 
 | }; | 
 |  | 
 | #ifdef CONFIG_TMPFS | 
 | static unsigned long shmem_default_max_blocks(void) | 
 | { | 
 | 	return totalram_pages / 2; | 
 | } | 
 |  | 
 | static unsigned long shmem_default_max_inodes(void) | 
 | { | 
 | 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2); | 
 | } | 
 | #endif | 
 |  | 
 | static bool shmem_should_replace_page(struct page *page, gfp_t gfp); | 
 | static int shmem_replace_page(struct page **pagep, gfp_t gfp, | 
 | 				struct shmem_inode_info *info, pgoff_t index); | 
 | static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, | 
 | 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); | 
 |  | 
 | static inline int shmem_getpage(struct inode *inode, pgoff_t index, | 
 | 	struct page **pagep, enum sgp_type sgp, int *fault_type) | 
 | { | 
 | 	return shmem_getpage_gfp(inode, index, pagep, sgp, | 
 | 			mapping_gfp_mask(inode->i_mapping), fault_type); | 
 | } | 
 |  | 
 | static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) | 
 | { | 
 | 	return sb->s_fs_info; | 
 | } | 
 |  | 
 | /* | 
 |  * shmem_file_setup pre-accounts the whole fixed size of a VM object, | 
 |  * for shared memory and for shared anonymous (/dev/zero) mappings | 
 |  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), | 
 |  * consistent with the pre-accounting of private mappings ... | 
 |  */ | 
 | static inline int shmem_acct_size(unsigned long flags, loff_t size) | 
 | { | 
 | 	return (flags & VM_NORESERVE) ? | 
 | 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); | 
 | } | 
 |  | 
 | static inline void shmem_unacct_size(unsigned long flags, loff_t size) | 
 | { | 
 | 	if (!(flags & VM_NORESERVE)) | 
 | 		vm_unacct_memory(VM_ACCT(size)); | 
 | } | 
 |  | 
 | /* | 
 |  * ... whereas tmpfs objects are accounted incrementally as | 
 |  * pages are allocated, in order to allow huge sparse files. | 
 |  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, | 
 |  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. | 
 |  */ | 
 | static inline int shmem_acct_block(unsigned long flags) | 
 | { | 
 | 	return (flags & VM_NORESERVE) ? | 
 | 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; | 
 | } | 
 |  | 
 | static inline void shmem_unacct_blocks(unsigned long flags, long pages) | 
 | { | 
 | 	if (flags & VM_NORESERVE) | 
 | 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); | 
 | } | 
 |  | 
 | static const struct super_operations shmem_ops; | 
 | static const struct address_space_operations shmem_aops; | 
 | static const struct file_operations shmem_file_operations; | 
 | static const struct inode_operations shmem_inode_operations; | 
 | static const struct inode_operations shmem_dir_inode_operations; | 
 | static const struct inode_operations shmem_special_inode_operations; | 
 | static const struct vm_operations_struct shmem_vm_ops; | 
 |  | 
 | static struct backing_dev_info shmem_backing_dev_info  __read_mostly = { | 
 | 	.ra_pages	= 0,	/* No readahead */ | 
 | 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, | 
 | }; | 
 |  | 
 | static LIST_HEAD(shmem_swaplist); | 
 | static DEFINE_MUTEX(shmem_swaplist_mutex); | 
 |  | 
 | static int shmem_reserve_inode(struct super_block *sb) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
 | 	if (sbinfo->max_inodes) { | 
 | 		spin_lock(&sbinfo->stat_lock); | 
 | 		if (!sbinfo->free_inodes) { | 
 | 			spin_unlock(&sbinfo->stat_lock); | 
 | 			return -ENOSPC; | 
 | 		} | 
 | 		sbinfo->free_inodes--; | 
 | 		spin_unlock(&sbinfo->stat_lock); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void shmem_free_inode(struct super_block *sb) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
 | 	if (sbinfo->max_inodes) { | 
 | 		spin_lock(&sbinfo->stat_lock); | 
 | 		sbinfo->free_inodes++; | 
 | 		spin_unlock(&sbinfo->stat_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * shmem_recalc_inode - recalculate the block usage of an inode | 
 |  * @inode: inode to recalc | 
 |  * | 
 |  * We have to calculate the free blocks since the mm can drop | 
 |  * undirtied hole pages behind our back. | 
 |  * | 
 |  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped | 
 |  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) | 
 |  * | 
 |  * It has to be called with the spinlock held. | 
 |  */ | 
 | static void shmem_recalc_inode(struct inode *inode) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	long freed; | 
 |  | 
 | 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages; | 
 | 	if (freed > 0) { | 
 | 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
 | 		if (sbinfo->max_blocks) | 
 | 			percpu_counter_add(&sbinfo->used_blocks, -freed); | 
 | 		info->alloced -= freed; | 
 | 		inode->i_blocks -= freed * BLOCKS_PER_PAGE; | 
 | 		shmem_unacct_blocks(info->flags, freed); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Replace item expected in radix tree by a new item, while holding tree lock. | 
 |  */ | 
 | static int shmem_radix_tree_replace(struct address_space *mapping, | 
 | 			pgoff_t index, void *expected, void *replacement) | 
 | { | 
 | 	void **pslot; | 
 | 	void *item = NULL; | 
 |  | 
 | 	VM_BUG_ON(!expected); | 
 | 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index); | 
 | 	if (pslot) | 
 | 		item = radix_tree_deref_slot_protected(pslot, | 
 | 							&mapping->tree_lock); | 
 | 	if (item != expected) | 
 | 		return -ENOENT; | 
 | 	if (replacement) | 
 | 		radix_tree_replace_slot(pslot, replacement); | 
 | 	else | 
 | 		radix_tree_delete(&mapping->page_tree, index); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Sometimes, before we decide whether to proceed or to fail, we must check | 
 |  * that an entry was not already brought back from swap by a racing thread. | 
 |  * | 
 |  * Checking page is not enough: by the time a SwapCache page is locked, it | 
 |  * might be reused, and again be SwapCache, using the same swap as before. | 
 |  */ | 
 | static bool shmem_confirm_swap(struct address_space *mapping, | 
 | 			       pgoff_t index, swp_entry_t swap) | 
 | { | 
 | 	void *item; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	item = radix_tree_lookup(&mapping->page_tree, index); | 
 | 	rcu_read_unlock(); | 
 | 	return item == swp_to_radix_entry(swap); | 
 | } | 
 |  | 
 | /* | 
 |  * Like add_to_page_cache_locked, but error if expected item has gone. | 
 |  */ | 
 | static int shmem_add_to_page_cache(struct page *page, | 
 | 				   struct address_space *mapping, | 
 | 				   pgoff_t index, gfp_t gfp, void *expected) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	VM_BUG_ON(!PageLocked(page)); | 
 | 	VM_BUG_ON(!PageSwapBacked(page)); | 
 |  | 
 | 	page_cache_get(page); | 
 | 	page->mapping = mapping; | 
 | 	page->index = index; | 
 |  | 
 | 	spin_lock_irq(&mapping->tree_lock); | 
 | 	if (!expected) | 
 | 		error = radix_tree_insert(&mapping->page_tree, index, page); | 
 | 	else | 
 | 		error = shmem_radix_tree_replace(mapping, index, expected, | 
 | 								 page); | 
 | 	if (!error) { | 
 | 		mapping->nrpages++; | 
 | 		__inc_zone_page_state(page, NR_FILE_PAGES); | 
 | 		__inc_zone_page_state(page, NR_SHMEM); | 
 | 		spin_unlock_irq(&mapping->tree_lock); | 
 | 	} else { | 
 | 		page->mapping = NULL; | 
 | 		spin_unlock_irq(&mapping->tree_lock); | 
 | 		page_cache_release(page); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Like delete_from_page_cache, but substitutes swap for page. | 
 |  */ | 
 | static void shmem_delete_from_page_cache(struct page *page, void *radswap) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 | 	int error; | 
 |  | 
 | 	spin_lock_irq(&mapping->tree_lock); | 
 | 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap); | 
 | 	page->mapping = NULL; | 
 | 	mapping->nrpages--; | 
 | 	__dec_zone_page_state(page, NR_FILE_PAGES); | 
 | 	__dec_zone_page_state(page, NR_SHMEM); | 
 | 	spin_unlock_irq(&mapping->tree_lock); | 
 | 	page_cache_release(page); | 
 | 	BUG_ON(error); | 
 | } | 
 |  | 
 | /* | 
 |  * Like find_get_pages, but collecting swap entries as well as pages. | 
 |  */ | 
 | static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping, | 
 | 					pgoff_t start, unsigned int nr_pages, | 
 | 					struct page **pages, pgoff_t *indices) | 
 | { | 
 | 	void **slot; | 
 | 	unsigned int ret = 0; | 
 | 	struct radix_tree_iter iter; | 
 |  | 
 | 	if (!nr_pages) | 
 | 		return 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | restart: | 
 | 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { | 
 | 		struct page *page; | 
 | repeat: | 
 | 		page = radix_tree_deref_slot(slot); | 
 | 		if (unlikely(!page)) | 
 | 			continue; | 
 | 		if (radix_tree_exception(page)) { | 
 | 			if (radix_tree_deref_retry(page)) | 
 | 				goto restart; | 
 | 			/* | 
 | 			 * Otherwise, we must be storing a swap entry | 
 | 			 * here as an exceptional entry: so return it | 
 | 			 * without attempting to raise page count. | 
 | 			 */ | 
 | 			goto export; | 
 | 		} | 
 | 		if (!page_cache_get_speculative(page)) | 
 | 			goto repeat; | 
 |  | 
 | 		/* Has the page moved? */ | 
 | 		if (unlikely(page != *slot)) { | 
 | 			page_cache_release(page); | 
 | 			goto repeat; | 
 | 		} | 
 | export: | 
 | 		indices[ret] = iter.index; | 
 | 		pages[ret] = page; | 
 | 		if (++ret == nr_pages) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove swap entry from radix tree, free the swap and its page cache. | 
 |  */ | 
 | static int shmem_free_swap(struct address_space *mapping, | 
 | 			   pgoff_t index, void *radswap) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	spin_lock_irq(&mapping->tree_lock); | 
 | 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL); | 
 | 	spin_unlock_irq(&mapping->tree_lock); | 
 | 	if (!error) | 
 | 		free_swap_and_cache(radix_to_swp_entry(radswap)); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Pagevec may contain swap entries, so shuffle up pages before releasing. | 
 |  */ | 
 | static void shmem_deswap_pagevec(struct pagevec *pvec) | 
 | { | 
 | 	int i, j; | 
 |  | 
 | 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) { | 
 | 		struct page *page = pvec->pages[i]; | 
 | 		if (!radix_tree_exceptional_entry(page)) | 
 | 			pvec->pages[j++] = page; | 
 | 	} | 
 | 	pvec->nr = j; | 
 | } | 
 |  | 
 | /* | 
 |  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. | 
 |  */ | 
 | void shmem_unlock_mapping(struct address_space *mapping) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	pgoff_t indices[PAGEVEC_SIZE]; | 
 | 	pgoff_t index = 0; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	/* | 
 | 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it. | 
 | 	 */ | 
 | 	while (!mapping_unevictable(mapping)) { | 
 | 		/* | 
 | 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it | 
 | 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. | 
 | 		 */ | 
 | 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index, | 
 | 					PAGEVEC_SIZE, pvec.pages, indices); | 
 | 		if (!pvec.nr) | 
 | 			break; | 
 | 		index = indices[pvec.nr - 1] + 1; | 
 | 		shmem_deswap_pagevec(&pvec); | 
 | 		check_move_unevictable_pages(pvec.pages, pvec.nr); | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Remove range of pages and swap entries from radix tree, and free them. | 
 |  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. | 
 |  */ | 
 | static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, | 
 | 								 bool unfalloc) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
 | 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; | 
 | 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); | 
 | 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); | 
 | 	struct pagevec pvec; | 
 | 	pgoff_t indices[PAGEVEC_SIZE]; | 
 | 	long nr_swaps_freed = 0; | 
 | 	pgoff_t index; | 
 | 	int i; | 
 |  | 
 | 	if (lend == -1) | 
 | 		end = -1;	/* unsigned, so actually very big */ | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	index = start; | 
 | 	while (index < end) { | 
 | 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index, | 
 | 				min(end - index, (pgoff_t)PAGEVEC_SIZE), | 
 | 							pvec.pages, indices); | 
 | 		if (!pvec.nr) | 
 | 			break; | 
 | 		mem_cgroup_uncharge_start(); | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			index = indices[i]; | 
 | 			if (index >= end) | 
 | 				break; | 
 |  | 
 | 			if (radix_tree_exceptional_entry(page)) { | 
 | 				if (unfalloc) | 
 | 					continue; | 
 | 				nr_swaps_freed += !shmem_free_swap(mapping, | 
 | 								index, page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (!trylock_page(page)) | 
 | 				continue; | 
 | 			if (!unfalloc || !PageUptodate(page)) { | 
 | 				if (page->mapping == mapping) { | 
 | 					VM_BUG_ON(PageWriteback(page)); | 
 | 					truncate_inode_page(mapping, page); | 
 | 				} | 
 | 			} | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		shmem_deswap_pagevec(&pvec); | 
 | 		pagevec_release(&pvec); | 
 | 		mem_cgroup_uncharge_end(); | 
 | 		cond_resched(); | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	if (partial_start) { | 
 | 		struct page *page = NULL; | 
 | 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); | 
 | 		if (page) { | 
 | 			unsigned int top = PAGE_CACHE_SIZE; | 
 | 			if (start > end) { | 
 | 				top = partial_end; | 
 | 				partial_end = 0; | 
 | 			} | 
 | 			zero_user_segment(page, partial_start, top); | 
 | 			set_page_dirty(page); | 
 | 			unlock_page(page); | 
 | 			page_cache_release(page); | 
 | 		} | 
 | 	} | 
 | 	if (partial_end) { | 
 | 		struct page *page = NULL; | 
 | 		shmem_getpage(inode, end, &page, SGP_READ, NULL); | 
 | 		if (page) { | 
 | 			zero_user_segment(page, 0, partial_end); | 
 | 			set_page_dirty(page); | 
 | 			unlock_page(page); | 
 | 			page_cache_release(page); | 
 | 		} | 
 | 	} | 
 | 	if (start >= end) | 
 | 		return; | 
 |  | 
 | 	index = start; | 
 | 	for ( ; ; ) { | 
 | 		cond_resched(); | 
 | 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index, | 
 | 				min(end - index, (pgoff_t)PAGEVEC_SIZE), | 
 | 							pvec.pages, indices); | 
 | 		if (!pvec.nr) { | 
 | 			if (index == start || unfalloc) | 
 | 				break; | 
 | 			index = start; | 
 | 			continue; | 
 | 		} | 
 | 		if ((index == start || unfalloc) && indices[0] >= end) { | 
 | 			shmem_deswap_pagevec(&pvec); | 
 | 			pagevec_release(&pvec); | 
 | 			break; | 
 | 		} | 
 | 		mem_cgroup_uncharge_start(); | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			index = indices[i]; | 
 | 			if (index >= end) | 
 | 				break; | 
 |  | 
 | 			if (radix_tree_exceptional_entry(page)) { | 
 | 				if (unfalloc) | 
 | 					continue; | 
 | 				nr_swaps_freed += !shmem_free_swap(mapping, | 
 | 								index, page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			lock_page(page); | 
 | 			if (!unfalloc || !PageUptodate(page)) { | 
 | 				if (page->mapping == mapping) { | 
 | 					VM_BUG_ON(PageWriteback(page)); | 
 | 					truncate_inode_page(mapping, page); | 
 | 				} | 
 | 			} | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		shmem_deswap_pagevec(&pvec); | 
 | 		pagevec_release(&pvec); | 
 | 		mem_cgroup_uncharge_end(); | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	spin_lock(&info->lock); | 
 | 	info->swapped -= nr_swaps_freed; | 
 | 	shmem_recalc_inode(inode); | 
 | 	spin_unlock(&info->lock); | 
 | } | 
 |  | 
 | void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) | 
 | { | 
 | 	shmem_undo_range(inode, lstart, lend, false); | 
 | 	inode->i_ctime = inode->i_mtime = CURRENT_TIME; | 
 | } | 
 | EXPORT_SYMBOL_GPL(shmem_truncate_range); | 
 |  | 
 | static int shmem_setattr(struct dentry *dentry, struct iattr *attr) | 
 | { | 
 | 	struct inode *inode = dentry->d_inode; | 
 | 	int error; | 
 |  | 
 | 	error = inode_change_ok(inode, attr); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { | 
 | 		loff_t oldsize = inode->i_size; | 
 | 		loff_t newsize = attr->ia_size; | 
 |  | 
 | 		if (newsize != oldsize) { | 
 | 			i_size_write(inode, newsize); | 
 | 			inode->i_ctime = inode->i_mtime = CURRENT_TIME; | 
 | 		} | 
 | 		if (newsize < oldsize) { | 
 | 			loff_t holebegin = round_up(newsize, PAGE_SIZE); | 
 | 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); | 
 | 			shmem_truncate_range(inode, newsize, (loff_t)-1); | 
 | 			/* unmap again to remove racily COWed private pages */ | 
 | 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	setattr_copy(inode, attr); | 
 | #ifdef CONFIG_TMPFS_POSIX_ACL | 
 | 	if (attr->ia_valid & ATTR_MODE) | 
 | 		error = generic_acl_chmod(inode); | 
 | #endif | 
 | 	return error; | 
 | } | 
 |  | 
 | static void shmem_evict_inode(struct inode *inode) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 |  | 
 | 	if (inode->i_mapping->a_ops == &shmem_aops) { | 
 | 		shmem_unacct_size(info->flags, inode->i_size); | 
 | 		inode->i_size = 0; | 
 | 		shmem_truncate_range(inode, 0, (loff_t)-1); | 
 | 		if (!list_empty(&info->swaplist)) { | 
 | 			mutex_lock(&shmem_swaplist_mutex); | 
 | 			list_del_init(&info->swaplist); | 
 | 			mutex_unlock(&shmem_swaplist_mutex); | 
 | 		} | 
 | 	} else | 
 | 		kfree(info->symlink); | 
 |  | 
 | 	simple_xattrs_free(&info->xattrs); | 
 | 	WARN_ON(inode->i_blocks); | 
 | 	shmem_free_inode(inode->i_sb); | 
 | 	clear_inode(inode); | 
 | } | 
 |  | 
 | /* | 
 |  * If swap found in inode, free it and move page from swapcache to filecache. | 
 |  */ | 
 | static int shmem_unuse_inode(struct shmem_inode_info *info, | 
 | 			     swp_entry_t swap, struct page **pagep) | 
 | { | 
 | 	struct address_space *mapping = info->vfs_inode.i_mapping; | 
 | 	void *radswap; | 
 | 	pgoff_t index; | 
 | 	gfp_t gfp; | 
 | 	int error = 0; | 
 |  | 
 | 	radswap = swp_to_radix_entry(swap); | 
 | 	index = radix_tree_locate_item(&mapping->page_tree, radswap); | 
 | 	if (index == -1) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Move _head_ to start search for next from here. | 
 | 	 * But be careful: shmem_evict_inode checks list_empty without taking | 
 | 	 * mutex, and there's an instant in list_move_tail when info->swaplist | 
 | 	 * would appear empty, if it were the only one on shmem_swaplist. | 
 | 	 */ | 
 | 	if (shmem_swaplist.next != &info->swaplist) | 
 | 		list_move_tail(&shmem_swaplist, &info->swaplist); | 
 |  | 
 | 	gfp = mapping_gfp_mask(mapping); | 
 | 	if (shmem_should_replace_page(*pagep, gfp)) { | 
 | 		mutex_unlock(&shmem_swaplist_mutex); | 
 | 		error = shmem_replace_page(pagep, gfp, info, index); | 
 | 		mutex_lock(&shmem_swaplist_mutex); | 
 | 		/* | 
 | 		 * We needed to drop mutex to make that restrictive page | 
 | 		 * allocation, but the inode might have been freed while we | 
 | 		 * dropped it: although a racing shmem_evict_inode() cannot | 
 | 		 * complete without emptying the radix_tree, our page lock | 
 | 		 * on this swapcache page is not enough to prevent that - | 
 | 		 * free_swap_and_cache() of our swap entry will only | 
 | 		 * trylock_page(), removing swap from radix_tree whatever. | 
 | 		 * | 
 | 		 * We must not proceed to shmem_add_to_page_cache() if the | 
 | 		 * inode has been freed, but of course we cannot rely on | 
 | 		 * inode or mapping or info to check that.  However, we can | 
 | 		 * safely check if our swap entry is still in use (and here | 
 | 		 * it can't have got reused for another page): if it's still | 
 | 		 * in use, then the inode cannot have been freed yet, and we | 
 | 		 * can safely proceed (if it's no longer in use, that tells | 
 | 		 * nothing about the inode, but we don't need to unuse swap). | 
 | 		 */ | 
 | 		if (!page_swapcount(*pagep)) | 
 | 			error = -ENOENT; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, | 
 | 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed | 
 | 	 * beneath us (pagelock doesn't help until the page is in pagecache). | 
 | 	 */ | 
 | 	if (!error) | 
 | 		error = shmem_add_to_page_cache(*pagep, mapping, index, | 
 | 						GFP_NOWAIT, radswap); | 
 | 	if (error != -ENOMEM) { | 
 | 		/* | 
 | 		 * Truncation and eviction use free_swap_and_cache(), which | 
 | 		 * only does trylock page: if we raced, best clean up here. | 
 | 		 */ | 
 | 		delete_from_swap_cache(*pagep); | 
 | 		set_page_dirty(*pagep); | 
 | 		if (!error) { | 
 | 			spin_lock(&info->lock); | 
 | 			info->swapped--; | 
 | 			spin_unlock(&info->lock); | 
 | 			swap_free(swap); | 
 | 		} | 
 | 		error = 1;	/* not an error, but entry was found */ | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Search through swapped inodes to find and replace swap by page. | 
 |  */ | 
 | int shmem_unuse(swp_entry_t swap, struct page *page) | 
 | { | 
 | 	struct list_head *this, *next; | 
 | 	struct shmem_inode_info *info; | 
 | 	int found = 0; | 
 | 	int error = 0; | 
 |  | 
 | 	/* | 
 | 	 * There's a faint possibility that swap page was replaced before | 
 | 	 * caller locked it: caller will come back later with the right page. | 
 | 	 */ | 
 | 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Charge page using GFP_KERNEL while we can wait, before taking | 
 | 	 * the shmem_swaplist_mutex which might hold up shmem_writepage(). | 
 | 	 * Charged back to the user (not to caller) when swap account is used. | 
 | 	 */ | 
 | 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); | 
 | 	if (error) | 
 | 		goto out; | 
 | 	/* No radix_tree_preload: swap entry keeps a place for page in tree */ | 
 |  | 
 | 	mutex_lock(&shmem_swaplist_mutex); | 
 | 	list_for_each_safe(this, next, &shmem_swaplist) { | 
 | 		info = list_entry(this, struct shmem_inode_info, swaplist); | 
 | 		if (info->swapped) | 
 | 			found = shmem_unuse_inode(info, swap, &page); | 
 | 		else | 
 | 			list_del_init(&info->swaplist); | 
 | 		cond_resched(); | 
 | 		if (found) | 
 | 			break; | 
 | 	} | 
 | 	mutex_unlock(&shmem_swaplist_mutex); | 
 |  | 
 | 	if (found < 0) | 
 | 		error = found; | 
 | out: | 
 | 	unlock_page(page); | 
 | 	page_cache_release(page); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Move the page from the page cache to the swap cache. | 
 |  */ | 
 | static int shmem_writepage(struct page *page, struct writeback_control *wbc) | 
 | { | 
 | 	struct shmem_inode_info *info; | 
 | 	struct address_space *mapping; | 
 | 	struct inode *inode; | 
 | 	swp_entry_t swap; | 
 | 	pgoff_t index; | 
 |  | 
 | 	BUG_ON(!PageLocked(page)); | 
 | 	mapping = page->mapping; | 
 | 	index = page->index; | 
 | 	inode = mapping->host; | 
 | 	info = SHMEM_I(inode); | 
 | 	if (info->flags & VM_LOCKED) | 
 | 		goto redirty; | 
 | 	if (!total_swap_pages) | 
 | 		goto redirty; | 
 |  | 
 | 	/* | 
 | 	 * shmem_backing_dev_info's capabilities prevent regular writeback or | 
 | 	 * sync from ever calling shmem_writepage; but a stacking filesystem | 
 | 	 * might use ->writepage of its underlying filesystem, in which case | 
 | 	 * tmpfs should write out to swap only in response to memory pressure, | 
 | 	 * and not for the writeback threads or sync. | 
 | 	 */ | 
 | 	if (!wbc->for_reclaim) { | 
 | 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */ | 
 | 		goto redirty; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC | 
 | 	 * value into swapfile.c, the only way we can correctly account for a | 
 | 	 * fallocated page arriving here is now to initialize it and write it. | 
 | 	 * | 
 | 	 * That's okay for a page already fallocated earlier, but if we have | 
 | 	 * not yet completed the fallocation, then (a) we want to keep track | 
 | 	 * of this page in case we have to undo it, and (b) it may not be a | 
 | 	 * good idea to continue anyway, once we're pushing into swap.  So | 
 | 	 * reactivate the page, and let shmem_fallocate() quit when too many. | 
 | 	 */ | 
 | 	if (!PageUptodate(page)) { | 
 | 		if (inode->i_private) { | 
 | 			struct shmem_falloc *shmem_falloc; | 
 | 			spin_lock(&inode->i_lock); | 
 | 			shmem_falloc = inode->i_private; | 
 | 			if (shmem_falloc && | 
 | 			    index >= shmem_falloc->start && | 
 | 			    index < shmem_falloc->next) | 
 | 				shmem_falloc->nr_unswapped++; | 
 | 			else | 
 | 				shmem_falloc = NULL; | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			if (shmem_falloc) | 
 | 				goto redirty; | 
 | 		} | 
 | 		clear_highpage(page); | 
 | 		flush_dcache_page(page); | 
 | 		SetPageUptodate(page); | 
 | 	} | 
 |  | 
 | 	swap = get_swap_page(); | 
 | 	if (!swap.val) | 
 | 		goto redirty; | 
 |  | 
 | 	/* | 
 | 	 * Add inode to shmem_unuse()'s list of swapped-out inodes, | 
 | 	 * if it's not already there.  Do it now before the page is | 
 | 	 * moved to swap cache, when its pagelock no longer protects | 
 | 	 * the inode from eviction.  But don't unlock the mutex until | 
 | 	 * we've incremented swapped, because shmem_unuse_inode() will | 
 | 	 * prune a !swapped inode from the swaplist under this mutex. | 
 | 	 */ | 
 | 	mutex_lock(&shmem_swaplist_mutex); | 
 | 	if (list_empty(&info->swaplist)) | 
 | 		list_add_tail(&info->swaplist, &shmem_swaplist); | 
 |  | 
 | 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { | 
 | 		swap_shmem_alloc(swap); | 
 | 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); | 
 |  | 
 | 		spin_lock(&info->lock); | 
 | 		info->swapped++; | 
 | 		shmem_recalc_inode(inode); | 
 | 		spin_unlock(&info->lock); | 
 |  | 
 | 		mutex_unlock(&shmem_swaplist_mutex); | 
 | 		BUG_ON(page_mapped(page)); | 
 | 		swap_writepage(page, wbc); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&shmem_swaplist_mutex); | 
 | 	swapcache_free(swap, NULL); | 
 | redirty: | 
 | 	set_page_dirty(page); | 
 | 	if (wbc->for_reclaim) | 
 | 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */ | 
 | 	unlock_page(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | #ifdef CONFIG_TMPFS | 
 | static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) | 
 | { | 
 | 	char buffer[64]; | 
 |  | 
 | 	if (!mpol || mpol->mode == MPOL_DEFAULT) | 
 | 		return;		/* show nothing */ | 
 |  | 
 | 	mpol_to_str(buffer, sizeof(buffer), mpol); | 
 |  | 
 | 	seq_printf(seq, ",mpol=%s", buffer); | 
 | } | 
 |  | 
 | static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) | 
 | { | 
 | 	struct mempolicy *mpol = NULL; | 
 | 	if (sbinfo->mpol) { | 
 | 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */ | 
 | 		mpol = sbinfo->mpol; | 
 | 		mpol_get(mpol); | 
 | 		spin_unlock(&sbinfo->stat_lock); | 
 | 	} | 
 | 	return mpol; | 
 | } | 
 | #endif /* CONFIG_TMPFS */ | 
 |  | 
 | static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, | 
 | 			struct shmem_inode_info *info, pgoff_t index) | 
 | { | 
 | 	struct vm_area_struct pvma; | 
 | 	struct page *page; | 
 |  | 
 | 	/* Create a pseudo vma that just contains the policy */ | 
 | 	pvma.vm_start = 0; | 
 | 	/* Bias interleave by inode number to distribute better across nodes */ | 
 | 	pvma.vm_pgoff = index + info->vfs_inode.i_ino; | 
 | 	pvma.vm_ops = NULL; | 
 | 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); | 
 |  | 
 | 	page = swapin_readahead(swap, gfp, &pvma, 0); | 
 |  | 
 | 	/* Drop reference taken by mpol_shared_policy_lookup() */ | 
 | 	mpol_cond_put(pvma.vm_policy); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *shmem_alloc_page(gfp_t gfp, | 
 | 			struct shmem_inode_info *info, pgoff_t index) | 
 | { | 
 | 	struct vm_area_struct pvma; | 
 | 	struct page *page; | 
 |  | 
 | 	/* Create a pseudo vma that just contains the policy */ | 
 | 	pvma.vm_start = 0; | 
 | 	/* Bias interleave by inode number to distribute better across nodes */ | 
 | 	pvma.vm_pgoff = index + info->vfs_inode.i_ino; | 
 | 	pvma.vm_ops = NULL; | 
 | 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); | 
 |  | 
 | 	page = alloc_page_vma(gfp, &pvma, 0); | 
 |  | 
 | 	/* Drop reference taken by mpol_shared_policy_lookup() */ | 
 | 	mpol_cond_put(pvma.vm_policy); | 
 |  | 
 | 	return page; | 
 | } | 
 | #else /* !CONFIG_NUMA */ | 
 | #ifdef CONFIG_TMPFS | 
 | static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) | 
 | { | 
 | } | 
 | #endif /* CONFIG_TMPFS */ | 
 |  | 
 | static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, | 
 | 			struct shmem_inode_info *info, pgoff_t index) | 
 | { | 
 | 	return swapin_readahead(swap, gfp, NULL, 0); | 
 | } | 
 |  | 
 | static inline struct page *shmem_alloc_page(gfp_t gfp, | 
 | 			struct shmem_inode_info *info, pgoff_t index) | 
 | { | 
 | 	return alloc_page(gfp); | 
 | } | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) | 
 | static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * When a page is moved from swapcache to shmem filecache (either by the | 
 |  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of | 
 |  * shmem_unuse_inode()), it may have been read in earlier from swap, in | 
 |  * ignorance of the mapping it belongs to.  If that mapping has special | 
 |  * constraints (like the gma500 GEM driver, which requires RAM below 4GB), | 
 |  * we may need to copy to a suitable page before moving to filecache. | 
 |  * | 
 |  * In a future release, this may well be extended to respect cpuset and | 
 |  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); | 
 |  * but for now it is a simple matter of zone. | 
 |  */ | 
 | static bool shmem_should_replace_page(struct page *page, gfp_t gfp) | 
 | { | 
 | 	return page_zonenum(page) > gfp_zone(gfp); | 
 | } | 
 |  | 
 | static int shmem_replace_page(struct page **pagep, gfp_t gfp, | 
 | 				struct shmem_inode_info *info, pgoff_t index) | 
 | { | 
 | 	struct page *oldpage, *newpage; | 
 | 	struct address_space *swap_mapping; | 
 | 	pgoff_t swap_index; | 
 | 	int error; | 
 |  | 
 | 	oldpage = *pagep; | 
 | 	swap_index = page_private(oldpage); | 
 | 	swap_mapping = page_mapping(oldpage); | 
 |  | 
 | 	/* | 
 | 	 * We have arrived here because our zones are constrained, so don't | 
 | 	 * limit chance of success by further cpuset and node constraints. | 
 | 	 */ | 
 | 	gfp &= ~GFP_CONSTRAINT_MASK; | 
 | 	newpage = shmem_alloc_page(gfp, info, index); | 
 | 	if (!newpage) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	page_cache_get(newpage); | 
 | 	copy_highpage(newpage, oldpage); | 
 | 	flush_dcache_page(newpage); | 
 |  | 
 | 	__set_page_locked(newpage); | 
 | 	SetPageUptodate(newpage); | 
 | 	SetPageSwapBacked(newpage); | 
 | 	set_page_private(newpage, swap_index); | 
 | 	SetPageSwapCache(newpage); | 
 |  | 
 | 	/* | 
 | 	 * Our caller will very soon move newpage out of swapcache, but it's | 
 | 	 * a nice clean interface for us to replace oldpage by newpage there. | 
 | 	 */ | 
 | 	spin_lock_irq(&swap_mapping->tree_lock); | 
 | 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, | 
 | 								   newpage); | 
 | 	if (!error) { | 
 | 		__inc_zone_page_state(newpage, NR_FILE_PAGES); | 
 | 		__dec_zone_page_state(oldpage, NR_FILE_PAGES); | 
 | 	} | 
 | 	spin_unlock_irq(&swap_mapping->tree_lock); | 
 |  | 
 | 	if (unlikely(error)) { | 
 | 		/* | 
 | 		 * Is this possible?  I think not, now that our callers check | 
 | 		 * both PageSwapCache and page_private after getting page lock; | 
 | 		 * but be defensive.  Reverse old to newpage for clear and free. | 
 | 		 */ | 
 | 		oldpage = newpage; | 
 | 	} else { | 
 | 		mem_cgroup_replace_page_cache(oldpage, newpage); | 
 | 		lru_cache_add_anon(newpage); | 
 | 		*pagep = newpage; | 
 | 	} | 
 |  | 
 | 	ClearPageSwapCache(oldpage); | 
 | 	set_page_private(oldpage, 0); | 
 |  | 
 | 	unlock_page(oldpage); | 
 | 	page_cache_release(oldpage); | 
 | 	page_cache_release(oldpage); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate | 
 |  * | 
 |  * If we allocate a new one we do not mark it dirty. That's up to the | 
 |  * vm. If we swap it in we mark it dirty since we also free the swap | 
 |  * entry since a page cannot live in both the swap and page cache | 
 |  */ | 
 | static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, | 
 | 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct shmem_inode_info *info; | 
 | 	struct shmem_sb_info *sbinfo; | 
 | 	struct page *page; | 
 | 	swp_entry_t swap; | 
 | 	int error; | 
 | 	int once = 0; | 
 | 	int alloced = 0; | 
 |  | 
 | 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) | 
 | 		return -EFBIG; | 
 | repeat: | 
 | 	swap.val = 0; | 
 | 	page = find_lock_page(mapping, index); | 
 | 	if (radix_tree_exceptional_entry(page)) { | 
 | 		swap = radix_to_swp_entry(page); | 
 | 		page = NULL; | 
 | 	} | 
 |  | 
 | 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC && | 
 | 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { | 
 | 		error = -EINVAL; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	/* fallocated page? */ | 
 | 	if (page && !PageUptodate(page)) { | 
 | 		if (sgp != SGP_READ) | 
 | 			goto clear; | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 | 		page = NULL; | 
 | 	} | 
 | 	if (page || (sgp == SGP_READ && !swap.val)) { | 
 | 		*pagep = page; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Fast cache lookup did not find it: | 
 | 	 * bring it back from swap or allocate. | 
 | 	 */ | 
 | 	info = SHMEM_I(inode); | 
 | 	sbinfo = SHMEM_SB(inode->i_sb); | 
 |  | 
 | 	if (swap.val) { | 
 | 		/* Look it up and read it in.. */ | 
 | 		page = lookup_swap_cache(swap); | 
 | 		if (!page) { | 
 | 			/* here we actually do the io */ | 
 | 			if (fault_type) | 
 | 				*fault_type |= VM_FAULT_MAJOR; | 
 | 			page = shmem_swapin(swap, gfp, info, index); | 
 | 			if (!page) { | 
 | 				error = -ENOMEM; | 
 | 				goto failed; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* We have to do this with page locked to prevent races */ | 
 | 		lock_page(page); | 
 | 		if (!PageSwapCache(page) || page_private(page) != swap.val || | 
 | 		    !shmem_confirm_swap(mapping, index, swap)) { | 
 | 			error = -EEXIST;	/* try again */ | 
 | 			goto unlock; | 
 | 		} | 
 | 		if (!PageUptodate(page)) { | 
 | 			error = -EIO; | 
 | 			goto failed; | 
 | 		} | 
 | 		wait_on_page_writeback(page); | 
 |  | 
 | 		if (shmem_should_replace_page(page, gfp)) { | 
 | 			error = shmem_replace_page(&page, gfp, info, index); | 
 | 			if (error) | 
 | 				goto failed; | 
 | 		} | 
 |  | 
 | 		error = mem_cgroup_cache_charge(page, current->mm, | 
 | 						gfp & GFP_RECLAIM_MASK); | 
 | 		if (!error) { | 
 | 			error = shmem_add_to_page_cache(page, mapping, index, | 
 | 						gfp, swp_to_radix_entry(swap)); | 
 | 			/* | 
 | 			 * We already confirmed swap under page lock, and make | 
 | 			 * no memory allocation here, so usually no possibility | 
 | 			 * of error; but free_swap_and_cache() only trylocks a | 
 | 			 * page, so it is just possible that the entry has been | 
 | 			 * truncated or holepunched since swap was confirmed. | 
 | 			 * shmem_undo_range() will have done some of the | 
 | 			 * unaccounting, now delete_from_swap_cache() will do | 
 | 			 * the rest (including mem_cgroup_uncharge_swapcache). | 
 | 			 * Reset swap.val? No, leave it so "failed" goes back to | 
 | 			 * "repeat": reading a hole and writing should succeed. | 
 | 			 */ | 
 | 			if (error) | 
 | 				delete_from_swap_cache(page); | 
 | 		} | 
 | 		if (error) | 
 | 			goto failed; | 
 |  | 
 | 		spin_lock(&info->lock); | 
 | 		info->swapped--; | 
 | 		shmem_recalc_inode(inode); | 
 | 		spin_unlock(&info->lock); | 
 |  | 
 | 		delete_from_swap_cache(page); | 
 | 		set_page_dirty(page); | 
 | 		swap_free(swap); | 
 |  | 
 | 	} else { | 
 | 		if (shmem_acct_block(info->flags)) { | 
 | 			error = -ENOSPC; | 
 | 			goto failed; | 
 | 		} | 
 | 		if (sbinfo->max_blocks) { | 
 | 			if (percpu_counter_compare(&sbinfo->used_blocks, | 
 | 						sbinfo->max_blocks) >= 0) { | 
 | 				error = -ENOSPC; | 
 | 				goto unacct; | 
 | 			} | 
 | 			percpu_counter_inc(&sbinfo->used_blocks); | 
 | 		} | 
 |  | 
 | 		page = shmem_alloc_page(gfp, info, index); | 
 | 		if (!page) { | 
 | 			error = -ENOMEM; | 
 | 			goto decused; | 
 | 		} | 
 |  | 
 | 		SetPageSwapBacked(page); | 
 | 		__set_page_locked(page); | 
 | 		error = mem_cgroup_cache_charge(page, current->mm, | 
 | 						gfp & GFP_RECLAIM_MASK); | 
 | 		if (error) | 
 | 			goto decused; | 
 | 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK); | 
 | 		if (!error) { | 
 | 			error = shmem_add_to_page_cache(page, mapping, index, | 
 | 							gfp, NULL); | 
 | 			radix_tree_preload_end(); | 
 | 		} | 
 | 		if (error) { | 
 | 			mem_cgroup_uncharge_cache_page(page); | 
 | 			goto decused; | 
 | 		} | 
 | 		lru_cache_add_anon(page); | 
 |  | 
 | 		spin_lock(&info->lock); | 
 | 		info->alloced++; | 
 | 		inode->i_blocks += BLOCKS_PER_PAGE; | 
 | 		shmem_recalc_inode(inode); | 
 | 		spin_unlock(&info->lock); | 
 | 		alloced = true; | 
 |  | 
 | 		/* | 
 | 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. | 
 | 		 */ | 
 | 		if (sgp == SGP_FALLOC) | 
 | 			sgp = SGP_WRITE; | 
 | clear: | 
 | 		/* | 
 | 		 * Let SGP_WRITE caller clear ends if write does not fill page; | 
 | 		 * but SGP_FALLOC on a page fallocated earlier must initialize | 
 | 		 * it now, lest undo on failure cancel our earlier guarantee. | 
 | 		 */ | 
 | 		if (sgp != SGP_WRITE) { | 
 | 			clear_highpage(page); | 
 | 			flush_dcache_page(page); | 
 | 			SetPageUptodate(page); | 
 | 		} | 
 | 		if (sgp == SGP_DIRTY) | 
 | 			set_page_dirty(page); | 
 | 	} | 
 |  | 
 | 	/* Perhaps the file has been truncated since we checked */ | 
 | 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC && | 
 | 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { | 
 | 		error = -EINVAL; | 
 | 		if (alloced) | 
 | 			goto trunc; | 
 | 		else | 
 | 			goto failed; | 
 | 	} | 
 | 	*pagep = page; | 
 | 	return 0; | 
 |  | 
 | 	/* | 
 | 	 * Error recovery. | 
 | 	 */ | 
 | trunc: | 
 | 	info = SHMEM_I(inode); | 
 | 	ClearPageDirty(page); | 
 | 	delete_from_page_cache(page); | 
 | 	spin_lock(&info->lock); | 
 | 	info->alloced--; | 
 | 	inode->i_blocks -= BLOCKS_PER_PAGE; | 
 | 	spin_unlock(&info->lock); | 
 | decused: | 
 | 	sbinfo = SHMEM_SB(inode->i_sb); | 
 | 	if (sbinfo->max_blocks) | 
 | 		percpu_counter_add(&sbinfo->used_blocks, -1); | 
 | unacct: | 
 | 	shmem_unacct_blocks(info->flags, 1); | 
 | failed: | 
 | 	if (swap.val && error != -EINVAL && | 
 | 	    !shmem_confirm_swap(mapping, index, swap)) | 
 | 		error = -EEXIST; | 
 | unlock: | 
 | 	if (page) { | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 | 	} | 
 | 	if (error == -ENOSPC && !once++) { | 
 | 		info = SHMEM_I(inode); | 
 | 		spin_lock(&info->lock); | 
 | 		shmem_recalc_inode(inode); | 
 | 		spin_unlock(&info->lock); | 
 | 		goto repeat; | 
 | 	} | 
 | 	if (error == -EEXIST)	/* from above or from radix_tree_insert */ | 
 | 		goto repeat; | 
 | 	return error; | 
 | } | 
 |  | 
 | static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
 | { | 
 | 	struct inode *inode = file_inode(vma->vm_file); | 
 | 	int error; | 
 | 	int ret = VM_FAULT_LOCKED; | 
 |  | 
 | 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); | 
 | 	if (error) | 
 | 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); | 
 |  | 
 | 	if (ret & VM_FAULT_MAJOR) { | 
 | 		count_vm_event(PGMAJFAULT); | 
 | 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) | 
 | { | 
 | 	struct inode *inode = file_inode(vma->vm_file); | 
 | 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); | 
 | } | 
 |  | 
 | static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, | 
 | 					  unsigned long addr) | 
 | { | 
 | 	struct inode *inode = file_inode(vma->vm_file); | 
 | 	pgoff_t index; | 
 |  | 
 | 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; | 
 | 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); | 
 | } | 
 | #endif | 
 |  | 
 | int shmem_lock(struct file *file, int lock, struct user_struct *user) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	int retval = -ENOMEM; | 
 |  | 
 | 	spin_lock(&info->lock); | 
 | 	if (lock && !(info->flags & VM_LOCKED)) { | 
 | 		if (!user_shm_lock(inode->i_size, user)) | 
 | 			goto out_nomem; | 
 | 		info->flags |= VM_LOCKED; | 
 | 		mapping_set_unevictable(file->f_mapping); | 
 | 	} | 
 | 	if (!lock && (info->flags & VM_LOCKED) && user) { | 
 | 		user_shm_unlock(inode->i_size, user); | 
 | 		info->flags &= ~VM_LOCKED; | 
 | 		mapping_clear_unevictable(file->f_mapping); | 
 | 	} | 
 | 	retval = 0; | 
 |  | 
 | out_nomem: | 
 | 	spin_unlock(&info->lock); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int shmem_mmap(struct file *file, struct vm_area_struct *vma) | 
 | { | 
 | 	file_accessed(file); | 
 | 	vma->vm_ops = &shmem_vm_ops; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, | 
 | 				     umode_t mode, dev_t dev, unsigned long flags) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct shmem_inode_info *info; | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
 |  | 
 | 	if (shmem_reserve_inode(sb)) | 
 | 		return NULL; | 
 |  | 
 | 	inode = new_inode(sb); | 
 | 	if (inode) { | 
 | 		inode->i_ino = get_next_ino(); | 
 | 		inode_init_owner(inode, dir, mode); | 
 | 		inode->i_blocks = 0; | 
 | 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; | 
 | 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 
 | 		inode->i_generation = get_seconds(); | 
 | 		info = SHMEM_I(inode); | 
 | 		memset(info, 0, (char *)inode - (char *)info); | 
 | 		spin_lock_init(&info->lock); | 
 | 		info->flags = flags & VM_NORESERVE; | 
 | 		INIT_LIST_HEAD(&info->swaplist); | 
 | 		simple_xattrs_init(&info->xattrs); | 
 | 		cache_no_acl(inode); | 
 |  | 
 | 		switch (mode & S_IFMT) { | 
 | 		default: | 
 | 			inode->i_op = &shmem_special_inode_operations; | 
 | 			init_special_inode(inode, mode, dev); | 
 | 			break; | 
 | 		case S_IFREG: | 
 | 			inode->i_mapping->a_ops = &shmem_aops; | 
 | 			inode->i_op = &shmem_inode_operations; | 
 | 			inode->i_fop = &shmem_file_operations; | 
 | 			mpol_shared_policy_init(&info->policy, | 
 | 						 shmem_get_sbmpol(sbinfo)); | 
 | 			break; | 
 | 		case S_IFDIR: | 
 | 			inc_nlink(inode); | 
 | 			/* Some things misbehave if size == 0 on a directory */ | 
 | 			inode->i_size = 2 * BOGO_DIRENT_SIZE; | 
 | 			inode->i_op = &shmem_dir_inode_operations; | 
 | 			inode->i_fop = &simple_dir_operations; | 
 | 			break; | 
 | 		case S_IFLNK: | 
 | 			/* | 
 | 			 * Must not load anything in the rbtree, | 
 | 			 * mpol_free_shared_policy will not be called. | 
 | 			 */ | 
 | 			mpol_shared_policy_init(&info->policy, NULL); | 
 | 			break; | 
 | 		} | 
 | 	} else | 
 | 		shmem_free_inode(sb); | 
 | 	return inode; | 
 | } | 
 |  | 
 | #ifdef CONFIG_TMPFS | 
 | static const struct inode_operations shmem_symlink_inode_operations; | 
 | static const struct inode_operations shmem_short_symlink_operations; | 
 |  | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | static int shmem_initxattrs(struct inode *, const struct xattr *, void *); | 
 | #else | 
 | #define shmem_initxattrs NULL | 
 | #endif | 
 |  | 
 | static int | 
 | shmem_write_begin(struct file *file, struct address_space *mapping, | 
 | 			loff_t pos, unsigned len, unsigned flags, | 
 | 			struct page **pagep, void **fsdata) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	pgoff_t index = pos >> PAGE_CACHE_SHIFT; | 
 | 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); | 
 | } | 
 |  | 
 | static int | 
 | shmem_write_end(struct file *file, struct address_space *mapping, | 
 | 			loff_t pos, unsigned len, unsigned copied, | 
 | 			struct page *page, void *fsdata) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 |  | 
 | 	if (pos + copied > inode->i_size) | 
 | 		i_size_write(inode, pos + copied); | 
 |  | 
 | 	if (!PageUptodate(page)) { | 
 | 		if (copied < PAGE_CACHE_SIZE) { | 
 | 			unsigned from = pos & (PAGE_CACHE_SIZE - 1); | 
 | 			zero_user_segments(page, 0, from, | 
 | 					from + copied, PAGE_CACHE_SIZE); | 
 | 		} | 
 | 		SetPageUptodate(page); | 
 | 	} | 
 | 	set_page_dirty(page); | 
 | 	unlock_page(page); | 
 | 	page_cache_release(page); | 
 |  | 
 | 	return copied; | 
 | } | 
 |  | 
 | static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) | 
 | { | 
 | 	struct inode *inode = file_inode(filp); | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	pgoff_t index; | 
 | 	unsigned long offset; | 
 | 	enum sgp_type sgp = SGP_READ; | 
 |  | 
 | 	/* | 
 | 	 * Might this read be for a stacking filesystem?  Then when reading | 
 | 	 * holes of a sparse file, we actually need to allocate those pages, | 
 | 	 * and even mark them dirty, so it cannot exceed the max_blocks limit. | 
 | 	 */ | 
 | 	if (segment_eq(get_fs(), KERNEL_DS)) | 
 | 		sgp = SGP_DIRTY; | 
 |  | 
 | 	index = *ppos >> PAGE_CACHE_SHIFT; | 
 | 	offset = *ppos & ~PAGE_CACHE_MASK; | 
 |  | 
 | 	for (;;) { | 
 | 		struct page *page = NULL; | 
 | 		pgoff_t end_index; | 
 | 		unsigned long nr, ret; | 
 | 		loff_t i_size = i_size_read(inode); | 
 |  | 
 | 		end_index = i_size >> PAGE_CACHE_SHIFT; | 
 | 		if (index > end_index) | 
 | 			break; | 
 | 		if (index == end_index) { | 
 | 			nr = i_size & ~PAGE_CACHE_MASK; | 
 | 			if (nr <= offset) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL); | 
 | 		if (desc->error) { | 
 | 			if (desc->error == -EINVAL) | 
 | 				desc->error = 0; | 
 | 			break; | 
 | 		} | 
 | 		if (page) | 
 | 			unlock_page(page); | 
 |  | 
 | 		/* | 
 | 		 * We must evaluate after, since reads (unlike writes) | 
 | 		 * are called without i_mutex protection against truncate | 
 | 		 */ | 
 | 		nr = PAGE_CACHE_SIZE; | 
 | 		i_size = i_size_read(inode); | 
 | 		end_index = i_size >> PAGE_CACHE_SHIFT; | 
 | 		if (index == end_index) { | 
 | 			nr = i_size & ~PAGE_CACHE_MASK; | 
 | 			if (nr <= offset) { | 
 | 				if (page) | 
 | 					page_cache_release(page); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		nr -= offset; | 
 |  | 
 | 		if (page) { | 
 | 			/* | 
 | 			 * If users can be writing to this page using arbitrary | 
 | 			 * virtual addresses, take care about potential aliasing | 
 | 			 * before reading the page on the kernel side. | 
 | 			 */ | 
 | 			if (mapping_writably_mapped(mapping)) | 
 | 				flush_dcache_page(page); | 
 | 			/* | 
 | 			 * Mark the page accessed if we read the beginning. | 
 | 			 */ | 
 | 			if (!offset) | 
 | 				mark_page_accessed(page); | 
 | 		} else { | 
 | 			page = ZERO_PAGE(0); | 
 | 			page_cache_get(page); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Ok, we have the page, and it's up-to-date, so | 
 | 		 * now we can copy it to user space... | 
 | 		 * | 
 | 		 * The actor routine returns how many bytes were actually used.. | 
 | 		 * NOTE! This may not be the same as how much of a user buffer | 
 | 		 * we filled up (we may be padding etc), so we can only update | 
 | 		 * "pos" here (the actor routine has to update the user buffer | 
 | 		 * pointers and the remaining count). | 
 | 		 */ | 
 | 		ret = actor(desc, page, offset, nr); | 
 | 		offset += ret; | 
 | 		index += offset >> PAGE_CACHE_SHIFT; | 
 | 		offset &= ~PAGE_CACHE_MASK; | 
 |  | 
 | 		page_cache_release(page); | 
 | 		if (ret != nr || !desc->count) | 
 | 			break; | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; | 
 | 	file_accessed(filp); | 
 | } | 
 |  | 
 | static ssize_t shmem_file_aio_read(struct kiocb *iocb, | 
 | 		const struct iovec *iov, unsigned long nr_segs, loff_t pos) | 
 | { | 
 | 	struct file *filp = iocb->ki_filp; | 
 | 	ssize_t retval; | 
 | 	unsigned long seg; | 
 | 	size_t count; | 
 | 	loff_t *ppos = &iocb->ki_pos; | 
 |  | 
 | 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	for (seg = 0; seg < nr_segs; seg++) { | 
 | 		read_descriptor_t desc; | 
 |  | 
 | 		desc.written = 0; | 
 | 		desc.arg.buf = iov[seg].iov_base; | 
 | 		desc.count = iov[seg].iov_len; | 
 | 		if (desc.count == 0) | 
 | 			continue; | 
 | 		desc.error = 0; | 
 | 		do_shmem_file_read(filp, ppos, &desc, file_read_actor); | 
 | 		retval += desc.written; | 
 | 		if (desc.error) { | 
 | 			retval = retval ?: desc.error; | 
 | 			break; | 
 | 		} | 
 | 		if (desc.count > 0) | 
 | 			break; | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, | 
 | 				struct pipe_inode_info *pipe, size_t len, | 
 | 				unsigned int flags) | 
 | { | 
 | 	struct address_space *mapping = in->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	unsigned int loff, nr_pages, req_pages; | 
 | 	struct page *pages[PIPE_DEF_BUFFERS]; | 
 | 	struct partial_page partial[PIPE_DEF_BUFFERS]; | 
 | 	struct page *page; | 
 | 	pgoff_t index, end_index; | 
 | 	loff_t isize, left; | 
 | 	int error, page_nr; | 
 | 	struct splice_pipe_desc spd = { | 
 | 		.pages = pages, | 
 | 		.partial = partial, | 
 | 		.nr_pages_max = PIPE_DEF_BUFFERS, | 
 | 		.flags = flags, | 
 | 		.ops = &page_cache_pipe_buf_ops, | 
 | 		.spd_release = spd_release_page, | 
 | 	}; | 
 |  | 
 | 	isize = i_size_read(inode); | 
 | 	if (unlikely(*ppos >= isize)) | 
 | 		return 0; | 
 |  | 
 | 	left = isize - *ppos; | 
 | 	if (unlikely(left < len)) | 
 | 		len = left; | 
 |  | 
 | 	if (splice_grow_spd(pipe, &spd)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	index = *ppos >> PAGE_CACHE_SHIFT; | 
 | 	loff = *ppos & ~PAGE_CACHE_MASK; | 
 | 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
 | 	nr_pages = min(req_pages, pipe->buffers); | 
 |  | 
 | 	spd.nr_pages = find_get_pages_contig(mapping, index, | 
 | 						nr_pages, spd.pages); | 
 | 	index += spd.nr_pages; | 
 | 	error = 0; | 
 |  | 
 | 	while (spd.nr_pages < nr_pages) { | 
 | 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); | 
 | 		if (error) | 
 | 			break; | 
 | 		unlock_page(page); | 
 | 		spd.pages[spd.nr_pages++] = page; | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	index = *ppos >> PAGE_CACHE_SHIFT; | 
 | 	nr_pages = spd.nr_pages; | 
 | 	spd.nr_pages = 0; | 
 |  | 
 | 	for (page_nr = 0; page_nr < nr_pages; page_nr++) { | 
 | 		unsigned int this_len; | 
 |  | 
 | 		if (!len) | 
 | 			break; | 
 |  | 
 | 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); | 
 | 		page = spd.pages[page_nr]; | 
 |  | 
 | 		if (!PageUptodate(page) || page->mapping != mapping) { | 
 | 			error = shmem_getpage(inode, index, &page, | 
 | 							SGP_CACHE, NULL); | 
 | 			if (error) | 
 | 				break; | 
 | 			unlock_page(page); | 
 | 			page_cache_release(spd.pages[page_nr]); | 
 | 			spd.pages[page_nr] = page; | 
 | 		} | 
 |  | 
 | 		isize = i_size_read(inode); | 
 | 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT; | 
 | 		if (unlikely(!isize || index > end_index)) | 
 | 			break; | 
 |  | 
 | 		if (end_index == index) { | 
 | 			unsigned int plen; | 
 |  | 
 | 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; | 
 | 			if (plen <= loff) | 
 | 				break; | 
 |  | 
 | 			this_len = min(this_len, plen - loff); | 
 | 			len = this_len; | 
 | 		} | 
 |  | 
 | 		spd.partial[page_nr].offset = loff; | 
 | 		spd.partial[page_nr].len = this_len; | 
 | 		len -= this_len; | 
 | 		loff = 0; | 
 | 		spd.nr_pages++; | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	while (page_nr < nr_pages) | 
 | 		page_cache_release(spd.pages[page_nr++]); | 
 |  | 
 | 	if (spd.nr_pages) | 
 | 		error = splice_to_pipe(pipe, &spd); | 
 |  | 
 | 	splice_shrink_spd(&spd); | 
 |  | 
 | 	if (error > 0) { | 
 | 		*ppos += error; | 
 | 		file_accessed(in); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. | 
 |  */ | 
 | static pgoff_t shmem_seek_hole_data(struct address_space *mapping, | 
 | 				    pgoff_t index, pgoff_t end, int whence) | 
 | { | 
 | 	struct page *page; | 
 | 	struct pagevec pvec; | 
 | 	pgoff_t indices[PAGEVEC_SIZE]; | 
 | 	bool done = false; | 
 | 	int i; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	pvec.nr = 1;		/* start small: we may be there already */ | 
 | 	while (!done) { | 
 | 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index, | 
 | 					pvec.nr, pvec.pages, indices); | 
 | 		if (!pvec.nr) { | 
 | 			if (whence == SEEK_DATA) | 
 | 				index = end; | 
 | 			break; | 
 | 		} | 
 | 		for (i = 0; i < pvec.nr; i++, index++) { | 
 | 			if (index < indices[i]) { | 
 | 				if (whence == SEEK_HOLE) { | 
 | 					done = true; | 
 | 					break; | 
 | 				} | 
 | 				index = indices[i]; | 
 | 			} | 
 | 			page = pvec.pages[i]; | 
 | 			if (page && !radix_tree_exceptional_entry(page)) { | 
 | 				if (!PageUptodate(page)) | 
 | 					page = NULL; | 
 | 			} | 
 | 			if (index >= end || | 
 | 			    (page && whence == SEEK_DATA) || | 
 | 			    (!page && whence == SEEK_HOLE)) { | 
 | 				done = true; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		shmem_deswap_pagevec(&pvec); | 
 | 		pagevec_release(&pvec); | 
 | 		pvec.nr = PAGEVEC_SIZE; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return index; | 
 | } | 
 |  | 
 | static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) | 
 | { | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	pgoff_t start, end; | 
 | 	loff_t new_offset; | 
 |  | 
 | 	if (whence != SEEK_DATA && whence != SEEK_HOLE) | 
 | 		return generic_file_llseek_size(file, offset, whence, | 
 | 					MAX_LFS_FILESIZE, i_size_read(inode)); | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	/* We're holding i_mutex so we can access i_size directly */ | 
 |  | 
 | 	if (offset < 0) | 
 | 		offset = -EINVAL; | 
 | 	else if (offset >= inode->i_size) | 
 | 		offset = -ENXIO; | 
 | 	else { | 
 | 		start = offset >> PAGE_CACHE_SHIFT; | 
 | 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
 | 		new_offset = shmem_seek_hole_data(mapping, start, end, whence); | 
 | 		new_offset <<= PAGE_CACHE_SHIFT; | 
 | 		if (new_offset > offset) { | 
 | 			if (new_offset < inode->i_size) | 
 | 				offset = new_offset; | 
 | 			else if (whence == SEEK_DATA) | 
 | 				offset = -ENXIO; | 
 | 			else | 
 | 				offset = inode->i_size; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (offset >= 0) | 
 | 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); | 
 | 	mutex_unlock(&inode->i_mutex); | 
 | 	return offset; | 
 | } | 
 |  | 
 | static long shmem_fallocate(struct file *file, int mode, loff_t offset, | 
 | 							 loff_t len) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
 | 	struct shmem_falloc shmem_falloc; | 
 | 	pgoff_t start, index, end; | 
 | 	int error; | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); | 
 |  | 
 | 	if (mode & FALLOC_FL_PUNCH_HOLE) { | 
 | 		struct address_space *mapping = file->f_mapping; | 
 | 		loff_t unmap_start = round_up(offset, PAGE_SIZE); | 
 | 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; | 
 |  | 
 | 		if ((u64)unmap_end > (u64)unmap_start) | 
 | 			unmap_mapping_range(mapping, unmap_start, | 
 | 					    1 + unmap_end - unmap_start, 0); | 
 | 		shmem_truncate_range(inode, offset, offset + len - 1); | 
 | 		/* No need to unmap again: hole-punching leaves COWed pages */ | 
 | 		error = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ | 
 | 	error = inode_newsize_ok(inode, offset + len); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	start = offset >> PAGE_CACHE_SHIFT; | 
 | 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
 | 	/* Try to avoid a swapstorm if len is impossible to satisfy */ | 
 | 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { | 
 | 		error = -ENOSPC; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	shmem_falloc.start = start; | 
 | 	shmem_falloc.next  = start; | 
 | 	shmem_falloc.nr_falloced = 0; | 
 | 	shmem_falloc.nr_unswapped = 0; | 
 | 	spin_lock(&inode->i_lock); | 
 | 	inode->i_private = &shmem_falloc; | 
 | 	spin_unlock(&inode->i_lock); | 
 |  | 
 | 	for (index = start; index < end; index++) { | 
 | 		struct page *page; | 
 |  | 
 | 		/* | 
 | 		 * Good, the fallocate(2) manpage permits EINTR: we may have | 
 | 		 * been interrupted because we are using up too much memory. | 
 | 		 */ | 
 | 		if (signal_pending(current)) | 
 | 			error = -EINTR; | 
 | 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) | 
 | 			error = -ENOMEM; | 
 | 		else | 
 | 			error = shmem_getpage(inode, index, &page, SGP_FALLOC, | 
 | 									NULL); | 
 | 		if (error) { | 
 | 			/* Remove the !PageUptodate pages we added */ | 
 | 			shmem_undo_range(inode, | 
 | 				(loff_t)start << PAGE_CACHE_SHIFT, | 
 | 				(loff_t)index << PAGE_CACHE_SHIFT, true); | 
 | 			goto undone; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Inform shmem_writepage() how far we have reached. | 
 | 		 * No need for lock or barrier: we have the page lock. | 
 | 		 */ | 
 | 		shmem_falloc.next++; | 
 | 		if (!PageUptodate(page)) | 
 | 			shmem_falloc.nr_falloced++; | 
 |  | 
 | 		/* | 
 | 		 * If !PageUptodate, leave it that way so that freeable pages | 
 | 		 * can be recognized if we need to rollback on error later. | 
 | 		 * But set_page_dirty so that memory pressure will swap rather | 
 | 		 * than free the pages we are allocating (and SGP_CACHE pages | 
 | 		 * might still be clean: we now need to mark those dirty too). | 
 | 		 */ | 
 | 		set_page_dirty(page); | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) | 
 | 		i_size_write(inode, offset + len); | 
 | 	inode->i_ctime = CURRENT_TIME; | 
 | undone: | 
 | 	spin_lock(&inode->i_lock); | 
 | 	inode->i_private = NULL; | 
 | 	spin_unlock(&inode->i_lock); | 
 | out: | 
 | 	mutex_unlock(&inode->i_mutex); | 
 | 	return error; | 
 | } | 
 |  | 
 | static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); | 
 |  | 
 | 	buf->f_type = TMPFS_MAGIC; | 
 | 	buf->f_bsize = PAGE_CACHE_SIZE; | 
 | 	buf->f_namelen = NAME_MAX; | 
 | 	if (sbinfo->max_blocks) { | 
 | 		buf->f_blocks = sbinfo->max_blocks; | 
 | 		buf->f_bavail = | 
 | 		buf->f_bfree  = sbinfo->max_blocks - | 
 | 				percpu_counter_sum(&sbinfo->used_blocks); | 
 | 	} | 
 | 	if (sbinfo->max_inodes) { | 
 | 		buf->f_files = sbinfo->max_inodes; | 
 | 		buf->f_ffree = sbinfo->free_inodes; | 
 | 	} | 
 | 	/* else leave those fields 0 like simple_statfs */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * File creation. Allocate an inode, and we're done.. | 
 |  */ | 
 | static int | 
 | shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) | 
 | { | 
 | 	struct inode *inode; | 
 | 	int error = -ENOSPC; | 
 |  | 
 | 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); | 
 | 	if (inode) { | 
 | #ifdef CONFIG_TMPFS_POSIX_ACL | 
 | 		error = generic_acl_init(inode, dir); | 
 | 		if (error) { | 
 | 			iput(inode); | 
 | 			return error; | 
 | 		} | 
 | #endif | 
 | 		error = security_inode_init_security(inode, dir, | 
 | 						     &dentry->d_name, | 
 | 						     shmem_initxattrs, NULL); | 
 | 		if (error) { | 
 | 			if (error != -EOPNOTSUPP) { | 
 | 				iput(inode); | 
 | 				return error; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		error = 0; | 
 | 		dir->i_size += BOGO_DIRENT_SIZE; | 
 | 		dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 
 | 		d_instantiate(dentry, inode); | 
 | 		dget(dentry); /* Extra count - pin the dentry in core */ | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | static int | 
 | shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) | 
 | { | 
 | 	struct inode *inode; | 
 | 	int error = -ENOSPC; | 
 |  | 
 | 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); | 
 | 	if (inode) { | 
 | 		error = security_inode_init_security(inode, dir, | 
 | 						     NULL, | 
 | 						     shmem_initxattrs, NULL); | 
 | 		if (error) { | 
 | 			if (error != -EOPNOTSUPP) { | 
 | 				iput(inode); | 
 | 				return error; | 
 | 			} | 
 | 		} | 
 | #ifdef CONFIG_TMPFS_POSIX_ACL | 
 | 		error = generic_acl_init(inode, dir); | 
 | 		if (error) { | 
 | 			iput(inode); | 
 | 			return error; | 
 | 		} | 
 | #else | 
 | 		error = 0; | 
 | #endif | 
 | 		d_tmpfile(dentry, inode); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) | 
 | 		return error; | 
 | 	inc_nlink(dir); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, | 
 | 		bool excl) | 
 | { | 
 | 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Link a file.. | 
 |  */ | 
 | static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) | 
 | { | 
 | 	struct inode *inode = old_dentry->d_inode; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * No ordinary (disk based) filesystem counts links as inodes; | 
 | 	 * but each new link needs a new dentry, pinning lowmem, and | 
 | 	 * tmpfs dentries cannot be pruned until they are unlinked. | 
 | 	 */ | 
 | 	ret = shmem_reserve_inode(inode->i_sb); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	dir->i_size += BOGO_DIRENT_SIZE; | 
 | 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 
 | 	inc_nlink(inode); | 
 | 	ihold(inode);	/* New dentry reference */ | 
 | 	dget(dentry);		/* Extra pinning count for the created dentry */ | 
 | 	d_instantiate(dentry, inode); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int shmem_unlink(struct inode *dir, struct dentry *dentry) | 
 | { | 
 | 	struct inode *inode = dentry->d_inode; | 
 |  | 
 | 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) | 
 | 		shmem_free_inode(inode->i_sb); | 
 |  | 
 | 	dir->i_size -= BOGO_DIRENT_SIZE; | 
 | 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 
 | 	drop_nlink(inode); | 
 | 	dput(dentry);	/* Undo the count from "create" - this does all the work */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int shmem_rmdir(struct inode *dir, struct dentry *dentry) | 
 | { | 
 | 	if (!simple_empty(dentry)) | 
 | 		return -ENOTEMPTY; | 
 |  | 
 | 	drop_nlink(dentry->d_inode); | 
 | 	drop_nlink(dir); | 
 | 	return shmem_unlink(dir, dentry); | 
 | } | 
 |  | 
 | /* | 
 |  * The VFS layer already does all the dentry stuff for rename, | 
 |  * we just have to decrement the usage count for the target if | 
 |  * it exists so that the VFS layer correctly free's it when it | 
 |  * gets overwritten. | 
 |  */ | 
 | static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) | 
 | { | 
 | 	struct inode *inode = old_dentry->d_inode; | 
 | 	int they_are_dirs = S_ISDIR(inode->i_mode); | 
 |  | 
 | 	if (!simple_empty(new_dentry)) | 
 | 		return -ENOTEMPTY; | 
 |  | 
 | 	if (new_dentry->d_inode) { | 
 | 		(void) shmem_unlink(new_dir, new_dentry); | 
 | 		if (they_are_dirs) | 
 | 			drop_nlink(old_dir); | 
 | 	} else if (they_are_dirs) { | 
 | 		drop_nlink(old_dir); | 
 | 		inc_nlink(new_dir); | 
 | 	} | 
 |  | 
 | 	old_dir->i_size -= BOGO_DIRENT_SIZE; | 
 | 	new_dir->i_size += BOGO_DIRENT_SIZE; | 
 | 	old_dir->i_ctime = old_dir->i_mtime = | 
 | 	new_dir->i_ctime = new_dir->i_mtime = | 
 | 	inode->i_ctime = CURRENT_TIME; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) | 
 | { | 
 | 	int error; | 
 | 	int len; | 
 | 	struct inode *inode; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	struct shmem_inode_info *info; | 
 |  | 
 | 	len = strlen(symname) + 1; | 
 | 	if (len > PAGE_CACHE_SIZE) | 
 | 		return -ENAMETOOLONG; | 
 |  | 
 | 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); | 
 | 	if (!inode) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	error = security_inode_init_security(inode, dir, &dentry->d_name, | 
 | 					     shmem_initxattrs, NULL); | 
 | 	if (error) { | 
 | 		if (error != -EOPNOTSUPP) { | 
 | 			iput(inode); | 
 | 			return error; | 
 | 		} | 
 | 		error = 0; | 
 | 	} | 
 |  | 
 | 	info = SHMEM_I(inode); | 
 | 	inode->i_size = len-1; | 
 | 	if (len <= SHORT_SYMLINK_LEN) { | 
 | 		info->symlink = kmemdup(symname, len, GFP_KERNEL); | 
 | 		if (!info->symlink) { | 
 | 			iput(inode); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		inode->i_op = &shmem_short_symlink_operations; | 
 | 	} else { | 
 | 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); | 
 | 		if (error) { | 
 | 			iput(inode); | 
 | 			return error; | 
 | 		} | 
 | 		inode->i_mapping->a_ops = &shmem_aops; | 
 | 		inode->i_op = &shmem_symlink_inode_operations; | 
 | 		kaddr = kmap_atomic(page); | 
 | 		memcpy(kaddr, symname, len); | 
 | 		kunmap_atomic(kaddr); | 
 | 		SetPageUptodate(page); | 
 | 		set_page_dirty(page); | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 | 	} | 
 | 	dir->i_size += BOGO_DIRENT_SIZE; | 
 | 	dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 
 | 	d_instantiate(dentry, inode); | 
 | 	dget(dentry); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) | 
 | { | 
 | 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); | 
 | 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); | 
 | 	if (page) | 
 | 		unlock_page(page); | 
 | 	return page; | 
 | } | 
 |  | 
 | static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) | 
 | { | 
 | 	if (!IS_ERR(nd_get_link(nd))) { | 
 | 		struct page *page = cookie; | 
 | 		kunmap(page); | 
 | 		mark_page_accessed(page); | 
 | 		page_cache_release(page); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | /* | 
 |  * Superblocks without xattr inode operations may get some security.* xattr | 
 |  * support from the LSM "for free". As soon as we have any other xattrs | 
 |  * like ACLs, we also need to implement the security.* handlers at | 
 |  * filesystem level, though. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Callback for security_inode_init_security() for acquiring xattrs. | 
 |  */ | 
 | static int shmem_initxattrs(struct inode *inode, | 
 | 			    const struct xattr *xattr_array, | 
 | 			    void *fs_info) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(inode); | 
 | 	const struct xattr *xattr; | 
 | 	struct simple_xattr *new_xattr; | 
 | 	size_t len; | 
 |  | 
 | 	for (xattr = xattr_array; xattr->name != NULL; xattr++) { | 
 | 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); | 
 | 		if (!new_xattr) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		len = strlen(xattr->name) + 1; | 
 | 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, | 
 | 					  GFP_KERNEL); | 
 | 		if (!new_xattr->name) { | 
 | 			kfree(new_xattr); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, | 
 | 		       XATTR_SECURITY_PREFIX_LEN); | 
 | 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, | 
 | 		       xattr->name, len); | 
 |  | 
 | 		simple_xattr_list_add(&info->xattrs, new_xattr); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct xattr_handler *shmem_xattr_handlers[] = { | 
 | #ifdef CONFIG_TMPFS_POSIX_ACL | 
 | 	&generic_acl_access_handler, | 
 | 	&generic_acl_default_handler, | 
 | #endif | 
 | 	NULL | 
 | }; | 
 |  | 
 | static int shmem_xattr_validate(const char *name) | 
 | { | 
 | 	struct { const char *prefix; size_t len; } arr[] = { | 
 | 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, | 
 | 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } | 
 | 	}; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(arr); i++) { | 
 | 		size_t preflen = arr[i].len; | 
 | 		if (strncmp(name, arr[i].prefix, preflen) == 0) { | 
 | 			if (!name[preflen]) | 
 | 				return -EINVAL; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, | 
 | 			      void *buffer, size_t size) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * If this is a request for a synthetic attribute in the system.* | 
 | 	 * namespace use the generic infrastructure to resolve a handler | 
 | 	 * for it via sb->s_xattr. | 
 | 	 */ | 
 | 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) | 
 | 		return generic_getxattr(dentry, name, buffer, size); | 
 |  | 
 | 	err = shmem_xattr_validate(name); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return simple_xattr_get(&info->xattrs, name, buffer, size); | 
 | } | 
 |  | 
 | static int shmem_setxattr(struct dentry *dentry, const char *name, | 
 | 			  const void *value, size_t size, int flags) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * If this is a request for a synthetic attribute in the system.* | 
 | 	 * namespace use the generic infrastructure to resolve a handler | 
 | 	 * for it via sb->s_xattr. | 
 | 	 */ | 
 | 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) | 
 | 		return generic_setxattr(dentry, name, value, size, flags); | 
 |  | 
 | 	err = shmem_xattr_validate(name); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return simple_xattr_set(&info->xattrs, name, value, size, flags); | 
 | } | 
 |  | 
 | static int shmem_removexattr(struct dentry *dentry, const char *name) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * If this is a request for a synthetic attribute in the system.* | 
 | 	 * namespace use the generic infrastructure to resolve a handler | 
 | 	 * for it via sb->s_xattr. | 
 | 	 */ | 
 | 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) | 
 | 		return generic_removexattr(dentry, name); | 
 |  | 
 | 	err = shmem_xattr_validate(name); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return simple_xattr_remove(&info->xattrs, name); | 
 | } | 
 |  | 
 | static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) | 
 | { | 
 | 	struct shmem_inode_info *info = SHMEM_I(dentry->d_inode); | 
 | 	return simple_xattr_list(&info->xattrs, buffer, size); | 
 | } | 
 | #endif /* CONFIG_TMPFS_XATTR */ | 
 |  | 
 | static const struct inode_operations shmem_short_symlink_operations = { | 
 | 	.readlink	= generic_readlink, | 
 | 	.follow_link	= shmem_follow_short_symlink, | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | 	.setxattr	= shmem_setxattr, | 
 | 	.getxattr	= shmem_getxattr, | 
 | 	.listxattr	= shmem_listxattr, | 
 | 	.removexattr	= shmem_removexattr, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct inode_operations shmem_symlink_inode_operations = { | 
 | 	.readlink	= generic_readlink, | 
 | 	.follow_link	= shmem_follow_link, | 
 | 	.put_link	= shmem_put_link, | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | 	.setxattr	= shmem_setxattr, | 
 | 	.getxattr	= shmem_getxattr, | 
 | 	.listxattr	= shmem_listxattr, | 
 | 	.removexattr	= shmem_removexattr, | 
 | #endif | 
 | }; | 
 |  | 
 | static struct dentry *shmem_get_parent(struct dentry *child) | 
 | { | 
 | 	return ERR_PTR(-ESTALE); | 
 | } | 
 |  | 
 | static int shmem_match(struct inode *ino, void *vfh) | 
 | { | 
 | 	__u32 *fh = vfh; | 
 | 	__u64 inum = fh[2]; | 
 | 	inum = (inum << 32) | fh[1]; | 
 | 	return ino->i_ino == inum && fh[0] == ino->i_generation; | 
 | } | 
 |  | 
 | static struct dentry *shmem_fh_to_dentry(struct super_block *sb, | 
 | 		struct fid *fid, int fh_len, int fh_type) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct dentry *dentry = NULL; | 
 | 	u64 inum; | 
 |  | 
 | 	if (fh_len < 3) | 
 | 		return NULL; | 
 |  | 
 | 	inum = fid->raw[2]; | 
 | 	inum = (inum << 32) | fid->raw[1]; | 
 |  | 
 | 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), | 
 | 			shmem_match, fid->raw); | 
 | 	if (inode) { | 
 | 		dentry = d_find_alias(inode); | 
 | 		iput(inode); | 
 | 	} | 
 |  | 
 | 	return dentry; | 
 | } | 
 |  | 
 | static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, | 
 | 				struct inode *parent) | 
 | { | 
 | 	if (*len < 3) { | 
 | 		*len = 3; | 
 | 		return FILEID_INVALID; | 
 | 	} | 
 |  | 
 | 	if (inode_unhashed(inode)) { | 
 | 		/* Unfortunately insert_inode_hash is not idempotent, | 
 | 		 * so as we hash inodes here rather than at creation | 
 | 		 * time, we need a lock to ensure we only try | 
 | 		 * to do it once | 
 | 		 */ | 
 | 		static DEFINE_SPINLOCK(lock); | 
 | 		spin_lock(&lock); | 
 | 		if (inode_unhashed(inode)) | 
 | 			__insert_inode_hash(inode, | 
 | 					    inode->i_ino + inode->i_generation); | 
 | 		spin_unlock(&lock); | 
 | 	} | 
 |  | 
 | 	fh[0] = inode->i_generation; | 
 | 	fh[1] = inode->i_ino; | 
 | 	fh[2] = ((__u64)inode->i_ino) >> 32; | 
 |  | 
 | 	*len = 3; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static const struct export_operations shmem_export_ops = { | 
 | 	.get_parent     = shmem_get_parent, | 
 | 	.encode_fh      = shmem_encode_fh, | 
 | 	.fh_to_dentry	= shmem_fh_to_dentry, | 
 | }; | 
 |  | 
 | static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, | 
 | 			       bool remount) | 
 | { | 
 | 	char *this_char, *value, *rest; | 
 | 	struct mempolicy *mpol = NULL; | 
 | 	uid_t uid; | 
 | 	gid_t gid; | 
 |  | 
 | 	while (options != NULL) { | 
 | 		this_char = options; | 
 | 		for (;;) { | 
 | 			/* | 
 | 			 * NUL-terminate this option: unfortunately, | 
 | 			 * mount options form a comma-separated list, | 
 | 			 * but mpol's nodelist may also contain commas. | 
 | 			 */ | 
 | 			options = strchr(options, ','); | 
 | 			if (options == NULL) | 
 | 				break; | 
 | 			options++; | 
 | 			if (!isdigit(*options)) { | 
 | 				options[-1] = '\0'; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (!*this_char) | 
 | 			continue; | 
 | 		if ((value = strchr(this_char,'=')) != NULL) { | 
 | 			*value++ = 0; | 
 | 		} else { | 
 | 			printk(KERN_ERR | 
 | 			    "tmpfs: No value for mount option '%s'\n", | 
 | 			    this_char); | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		if (!strcmp(this_char,"size")) { | 
 | 			unsigned long long size; | 
 | 			size = memparse(value,&rest); | 
 | 			if (*rest == '%') { | 
 | 				size <<= PAGE_SHIFT; | 
 | 				size *= totalram_pages; | 
 | 				do_div(size, 100); | 
 | 				rest++; | 
 | 			} | 
 | 			if (*rest) | 
 | 				goto bad_val; | 
 | 			sbinfo->max_blocks = | 
 | 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE); | 
 | 		} else if (!strcmp(this_char,"nr_blocks")) { | 
 | 			sbinfo->max_blocks = memparse(value, &rest); | 
 | 			if (*rest) | 
 | 				goto bad_val; | 
 | 		} else if (!strcmp(this_char,"nr_inodes")) { | 
 | 			sbinfo->max_inodes = memparse(value, &rest); | 
 | 			if (*rest) | 
 | 				goto bad_val; | 
 | 		} else if (!strcmp(this_char,"mode")) { | 
 | 			if (remount) | 
 | 				continue; | 
 | 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; | 
 | 			if (*rest) | 
 | 				goto bad_val; | 
 | 		} else if (!strcmp(this_char,"uid")) { | 
 | 			if (remount) | 
 | 				continue; | 
 | 			uid = simple_strtoul(value, &rest, 0); | 
 | 			if (*rest) | 
 | 				goto bad_val; | 
 | 			sbinfo->uid = make_kuid(current_user_ns(), uid); | 
 | 			if (!uid_valid(sbinfo->uid)) | 
 | 				goto bad_val; | 
 | 		} else if (!strcmp(this_char,"gid")) { | 
 | 			if (remount) | 
 | 				continue; | 
 | 			gid = simple_strtoul(value, &rest, 0); | 
 | 			if (*rest) | 
 | 				goto bad_val; | 
 | 			sbinfo->gid = make_kgid(current_user_ns(), gid); | 
 | 			if (!gid_valid(sbinfo->gid)) | 
 | 				goto bad_val; | 
 | 		} else if (!strcmp(this_char,"mpol")) { | 
 | 			mpol_put(mpol); | 
 | 			mpol = NULL; | 
 | 			if (mpol_parse_str(value, &mpol)) | 
 | 				goto bad_val; | 
 | 		} else { | 
 | 			printk(KERN_ERR "tmpfs: Bad mount option %s\n", | 
 | 			       this_char); | 
 | 			goto error; | 
 | 		} | 
 | 	} | 
 | 	sbinfo->mpol = mpol; | 
 | 	return 0; | 
 |  | 
 | bad_val: | 
 | 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", | 
 | 	       value, this_char); | 
 | error: | 
 | 	mpol_put(mpol); | 
 | 	return 1; | 
 |  | 
 | } | 
 |  | 
 | static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
 | 	struct shmem_sb_info config = *sbinfo; | 
 | 	unsigned long inodes; | 
 | 	int error = -EINVAL; | 
 |  | 
 | 	config.mpol = NULL; | 
 | 	if (shmem_parse_options(data, &config, true)) | 
 | 		return error; | 
 |  | 
 | 	spin_lock(&sbinfo->stat_lock); | 
 | 	inodes = sbinfo->max_inodes - sbinfo->free_inodes; | 
 | 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) | 
 | 		goto out; | 
 | 	if (config.max_inodes < inodes) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * Those tests disallow limited->unlimited while any are in use; | 
 | 	 * but we must separately disallow unlimited->limited, because | 
 | 	 * in that case we have no record of how much is already in use. | 
 | 	 */ | 
 | 	if (config.max_blocks && !sbinfo->max_blocks) | 
 | 		goto out; | 
 | 	if (config.max_inodes && !sbinfo->max_inodes) | 
 | 		goto out; | 
 |  | 
 | 	error = 0; | 
 | 	sbinfo->max_blocks  = config.max_blocks; | 
 | 	sbinfo->max_inodes  = config.max_inodes; | 
 | 	sbinfo->free_inodes = config.max_inodes - inodes; | 
 |  | 
 | 	/* | 
 | 	 * Preserve previous mempolicy unless mpol remount option was specified. | 
 | 	 */ | 
 | 	if (config.mpol) { | 
 | 		mpol_put(sbinfo->mpol); | 
 | 		sbinfo->mpol = config.mpol;	/* transfers initial ref */ | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&sbinfo->stat_lock); | 
 | 	return error; | 
 | } | 
 |  | 
 | static int shmem_show_options(struct seq_file *seq, struct dentry *root) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); | 
 |  | 
 | 	if (sbinfo->max_blocks != shmem_default_max_blocks()) | 
 | 		seq_printf(seq, ",size=%luk", | 
 | 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); | 
 | 	if (sbinfo->max_inodes != shmem_default_max_inodes()) | 
 | 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); | 
 | 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) | 
 | 		seq_printf(seq, ",mode=%03ho", sbinfo->mode); | 
 | 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) | 
 | 		seq_printf(seq, ",uid=%u", | 
 | 				from_kuid_munged(&init_user_ns, sbinfo->uid)); | 
 | 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) | 
 | 		seq_printf(seq, ",gid=%u", | 
 | 				from_kgid_munged(&init_user_ns, sbinfo->gid)); | 
 | 	shmem_show_mpol(seq, sbinfo->mpol); | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_TMPFS */ | 
 |  | 
 | static void shmem_put_super(struct super_block *sb) | 
 | { | 
 | 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
 |  | 
 | 	percpu_counter_destroy(&sbinfo->used_blocks); | 
 | 	mpol_put(sbinfo->mpol); | 
 | 	kfree(sbinfo); | 
 | 	sb->s_fs_info = NULL; | 
 | } | 
 |  | 
 | int shmem_fill_super(struct super_block *sb, void *data, int silent) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct shmem_sb_info *sbinfo; | 
 | 	int err = -ENOMEM; | 
 |  | 
 | 	/* Round up to L1_CACHE_BYTES to resist false sharing */ | 
 | 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), | 
 | 				L1_CACHE_BYTES), GFP_KERNEL); | 
 | 	if (!sbinfo) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sbinfo->mode = S_IRWXUGO | S_ISVTX; | 
 | 	sbinfo->uid = current_fsuid(); | 
 | 	sbinfo->gid = current_fsgid(); | 
 | 	sb->s_fs_info = sbinfo; | 
 |  | 
 | #ifdef CONFIG_TMPFS | 
 | 	/* | 
 | 	 * Per default we only allow half of the physical ram per | 
 | 	 * tmpfs instance, limiting inodes to one per page of lowmem; | 
 | 	 * but the internal instance is left unlimited. | 
 | 	 */ | 
 | 	if (!(sb->s_flags & MS_NOUSER)) { | 
 | 		sbinfo->max_blocks = shmem_default_max_blocks(); | 
 | 		sbinfo->max_inodes = shmem_default_max_inodes(); | 
 | 		if (shmem_parse_options(data, sbinfo, false)) { | 
 | 			err = -EINVAL; | 
 | 			goto failed; | 
 | 		} | 
 | 	} | 
 | 	sb->s_export_op = &shmem_export_ops; | 
 | 	sb->s_flags |= MS_NOSEC; | 
 | #else | 
 | 	sb->s_flags |= MS_NOUSER; | 
 | #endif | 
 |  | 
 | 	spin_lock_init(&sbinfo->stat_lock); | 
 | 	if (percpu_counter_init(&sbinfo->used_blocks, 0)) | 
 | 		goto failed; | 
 | 	sbinfo->free_inodes = sbinfo->max_inodes; | 
 |  | 
 | 	sb->s_maxbytes = MAX_LFS_FILESIZE; | 
 | 	sb->s_blocksize = PAGE_CACHE_SIZE; | 
 | 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 
 | 	sb->s_magic = TMPFS_MAGIC; | 
 | 	sb->s_op = &shmem_ops; | 
 | 	sb->s_time_gran = 1; | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | 	sb->s_xattr = shmem_xattr_handlers; | 
 | #endif | 
 | #ifdef CONFIG_TMPFS_POSIX_ACL | 
 | 	sb->s_flags |= MS_POSIXACL; | 
 | #endif | 
 |  | 
 | 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); | 
 | 	if (!inode) | 
 | 		goto failed; | 
 | 	inode->i_uid = sbinfo->uid; | 
 | 	inode->i_gid = sbinfo->gid; | 
 | 	sb->s_root = d_make_root(inode); | 
 | 	if (!sb->s_root) | 
 | 		goto failed; | 
 | 	return 0; | 
 |  | 
 | failed: | 
 | 	shmem_put_super(sb); | 
 | 	return err; | 
 | } | 
 |  | 
 | static struct kmem_cache *shmem_inode_cachep; | 
 |  | 
 | static struct inode *shmem_alloc_inode(struct super_block *sb) | 
 | { | 
 | 	struct shmem_inode_info *info; | 
 | 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); | 
 | 	if (!info) | 
 | 		return NULL; | 
 | 	return &info->vfs_inode; | 
 | } | 
 |  | 
 | static void shmem_destroy_callback(struct rcu_head *head) | 
 | { | 
 | 	struct inode *inode = container_of(head, struct inode, i_rcu); | 
 | 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); | 
 | } | 
 |  | 
 | static void shmem_destroy_inode(struct inode *inode) | 
 | { | 
 | 	if (S_ISREG(inode->i_mode)) | 
 | 		mpol_free_shared_policy(&SHMEM_I(inode)->policy); | 
 | 	call_rcu(&inode->i_rcu, shmem_destroy_callback); | 
 | } | 
 |  | 
 | static void shmem_init_inode(void *foo) | 
 | { | 
 | 	struct shmem_inode_info *info = foo; | 
 | 	inode_init_once(&info->vfs_inode); | 
 | } | 
 |  | 
 | static int shmem_init_inodecache(void) | 
 | { | 
 | 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", | 
 | 				sizeof(struct shmem_inode_info), | 
 | 				0, SLAB_PANIC, shmem_init_inode); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void shmem_destroy_inodecache(void) | 
 | { | 
 | 	kmem_cache_destroy(shmem_inode_cachep); | 
 | } | 
 |  | 
 | static const struct address_space_operations shmem_aops = { | 
 | 	.writepage	= shmem_writepage, | 
 | 	.set_page_dirty	= __set_page_dirty_no_writeback, | 
 | #ifdef CONFIG_TMPFS | 
 | 	.write_begin	= shmem_write_begin, | 
 | 	.write_end	= shmem_write_end, | 
 | #endif | 
 | 	.migratepage	= migrate_page, | 
 | 	.error_remove_page = generic_error_remove_page, | 
 | }; | 
 |  | 
 | static const struct file_operations shmem_file_operations = { | 
 | 	.mmap		= shmem_mmap, | 
 | #ifdef CONFIG_TMPFS | 
 | 	.llseek		= shmem_file_llseek, | 
 | 	.read		= do_sync_read, | 
 | 	.write		= do_sync_write, | 
 | 	.aio_read	= shmem_file_aio_read, | 
 | 	.aio_write	= generic_file_aio_write, | 
 | 	.fsync		= noop_fsync, | 
 | 	.splice_read	= shmem_file_splice_read, | 
 | 	.splice_write	= generic_file_splice_write, | 
 | 	.fallocate	= shmem_fallocate, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct inode_operations shmem_inode_operations = { | 
 | 	.setattr	= shmem_setattr, | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | 	.setxattr	= shmem_setxattr, | 
 | 	.getxattr	= shmem_getxattr, | 
 | 	.listxattr	= shmem_listxattr, | 
 | 	.removexattr	= shmem_removexattr, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct inode_operations shmem_dir_inode_operations = { | 
 | #ifdef CONFIG_TMPFS | 
 | 	.create		= shmem_create, | 
 | 	.lookup		= simple_lookup, | 
 | 	.link		= shmem_link, | 
 | 	.unlink		= shmem_unlink, | 
 | 	.symlink	= shmem_symlink, | 
 | 	.mkdir		= shmem_mkdir, | 
 | 	.rmdir		= shmem_rmdir, | 
 | 	.mknod		= shmem_mknod, | 
 | 	.rename		= shmem_rename, | 
 | 	.tmpfile	= shmem_tmpfile, | 
 | #endif | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | 	.setxattr	= shmem_setxattr, | 
 | 	.getxattr	= shmem_getxattr, | 
 | 	.listxattr	= shmem_listxattr, | 
 | 	.removexattr	= shmem_removexattr, | 
 | #endif | 
 | #ifdef CONFIG_TMPFS_POSIX_ACL | 
 | 	.setattr	= shmem_setattr, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct inode_operations shmem_special_inode_operations = { | 
 | #ifdef CONFIG_TMPFS_XATTR | 
 | 	.setxattr	= shmem_setxattr, | 
 | 	.getxattr	= shmem_getxattr, | 
 | 	.listxattr	= shmem_listxattr, | 
 | 	.removexattr	= shmem_removexattr, | 
 | #endif | 
 | #ifdef CONFIG_TMPFS_POSIX_ACL | 
 | 	.setattr	= shmem_setattr, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct super_operations shmem_ops = { | 
 | 	.alloc_inode	= shmem_alloc_inode, | 
 | 	.destroy_inode	= shmem_destroy_inode, | 
 | #ifdef CONFIG_TMPFS | 
 | 	.statfs		= shmem_statfs, | 
 | 	.remount_fs	= shmem_remount_fs, | 
 | 	.show_options	= shmem_show_options, | 
 | #endif | 
 | 	.evict_inode	= shmem_evict_inode, | 
 | 	.drop_inode	= generic_delete_inode, | 
 | 	.put_super	= shmem_put_super, | 
 | }; | 
 |  | 
 | static const struct vm_operations_struct shmem_vm_ops = { | 
 | 	.fault		= shmem_fault, | 
 | #ifdef CONFIG_NUMA | 
 | 	.set_policy     = shmem_set_policy, | 
 | 	.get_policy     = shmem_get_policy, | 
 | #endif | 
 | 	.remap_pages	= generic_file_remap_pages, | 
 | }; | 
 |  | 
 | static struct dentry *shmem_mount(struct file_system_type *fs_type, | 
 | 	int flags, const char *dev_name, void *data) | 
 | { | 
 | 	return mount_nodev(fs_type, flags, data, shmem_fill_super); | 
 | } | 
 |  | 
 | static struct file_system_type shmem_fs_type = { | 
 | 	.owner		= THIS_MODULE, | 
 | 	.name		= "tmpfs", | 
 | 	.mount		= shmem_mount, | 
 | 	.kill_sb	= kill_litter_super, | 
 | 	.fs_flags	= FS_USERNS_MOUNT, | 
 | }; | 
 |  | 
 | int __init shmem_init(void) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	error = bdi_init(&shmem_backing_dev_info); | 
 | 	if (error) | 
 | 		goto out4; | 
 |  | 
 | 	error = shmem_init_inodecache(); | 
 | 	if (error) | 
 | 		goto out3; | 
 |  | 
 | 	error = register_filesystem(&shmem_fs_type); | 
 | 	if (error) { | 
 | 		printk(KERN_ERR "Could not register tmpfs\n"); | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER, | 
 | 				 shmem_fs_type.name, NULL); | 
 | 	if (IS_ERR(shm_mnt)) { | 
 | 		error = PTR_ERR(shm_mnt); | 
 | 		printk(KERN_ERR "Could not kern_mount tmpfs\n"); | 
 | 		goto out1; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | out1: | 
 | 	unregister_filesystem(&shmem_fs_type); | 
 | out2: | 
 | 	shmem_destroy_inodecache(); | 
 | out3: | 
 | 	bdi_destroy(&shmem_backing_dev_info); | 
 | out4: | 
 | 	shm_mnt = ERR_PTR(error); | 
 | 	return error; | 
 | } | 
 |  | 
 | #else /* !CONFIG_SHMEM */ | 
 |  | 
 | /* | 
 |  * tiny-shmem: simple shmemfs and tmpfs using ramfs code | 
 |  * | 
 |  * This is intended for small system where the benefits of the full | 
 |  * shmem code (swap-backed and resource-limited) are outweighed by | 
 |  * their complexity. On systems without swap this code should be | 
 |  * effectively equivalent, but much lighter weight. | 
 |  */ | 
 |  | 
 | static struct file_system_type shmem_fs_type = { | 
 | 	.name		= "tmpfs", | 
 | 	.mount		= ramfs_mount, | 
 | 	.kill_sb	= kill_litter_super, | 
 | 	.fs_flags	= FS_USERNS_MOUNT, | 
 | }; | 
 |  | 
 | int __init shmem_init(void) | 
 | { | 
 | 	BUG_ON(register_filesystem(&shmem_fs_type) != 0); | 
 |  | 
 | 	shm_mnt = kern_mount(&shmem_fs_type); | 
 | 	BUG_ON(IS_ERR(shm_mnt)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int shmem_unuse(swp_entry_t swap, struct page *page) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | int shmem_lock(struct file *file, int lock, struct user_struct *user) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | void shmem_unlock_mapping(struct address_space *mapping) | 
 | { | 
 | } | 
 |  | 
 | void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) | 
 | { | 
 | 	truncate_inode_pages_range(inode->i_mapping, lstart, lend); | 
 | } | 
 | EXPORT_SYMBOL_GPL(shmem_truncate_range); | 
 |  | 
 | #define shmem_vm_ops				generic_file_vm_ops | 
 | #define shmem_file_operations			ramfs_file_operations | 
 | #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev) | 
 | #define shmem_acct_size(flags, size)		0 | 
 | #define shmem_unacct_size(flags, size)		do {} while (0) | 
 |  | 
 | #endif /* CONFIG_SHMEM */ | 
 |  | 
 | /* common code */ | 
 |  | 
 | static char *shmem_dname(struct dentry *dentry, char *buffer, int buflen) | 
 | { | 
 | 	return dynamic_dname(dentry, buffer, buflen, "/%s (deleted)", | 
 | 				dentry->d_name.name); | 
 | } | 
 |  | 
 | static struct dentry_operations anon_ops = { | 
 | 	.d_dname = shmem_dname | 
 | }; | 
 |  | 
 | /** | 
 |  * shmem_file_setup - get an unlinked file living in tmpfs | 
 |  * @name: name for dentry (to be seen in /proc/<pid>/maps | 
 |  * @size: size to be set for the file | 
 |  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size | 
 |  */ | 
 | struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) | 
 | { | 
 | 	struct file *res; | 
 | 	struct inode *inode; | 
 | 	struct path path; | 
 | 	struct super_block *sb; | 
 | 	struct qstr this; | 
 |  | 
 | 	if (IS_ERR(shm_mnt)) | 
 | 		return ERR_CAST(shm_mnt); | 
 |  | 
 | 	if (size < 0 || size > MAX_LFS_FILESIZE) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	if (shmem_acct_size(flags, size)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	res = ERR_PTR(-ENOMEM); | 
 | 	this.name = name; | 
 | 	this.len = strlen(name); | 
 | 	this.hash = 0; /* will go */ | 
 | 	sb = shm_mnt->mnt_sb; | 
 | 	path.dentry = d_alloc_pseudo(sb, &this); | 
 | 	if (!path.dentry) | 
 | 		goto put_memory; | 
 | 	d_set_d_op(path.dentry, &anon_ops); | 
 | 	path.mnt = mntget(shm_mnt); | 
 |  | 
 | 	res = ERR_PTR(-ENOSPC); | 
 | 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); | 
 | 	if (!inode) | 
 | 		goto put_dentry; | 
 |  | 
 | 	d_instantiate(path.dentry, inode); | 
 | 	inode->i_size = size; | 
 | 	clear_nlink(inode);	/* It is unlinked */ | 
 | 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); | 
 | 	if (IS_ERR(res)) | 
 | 		goto put_dentry; | 
 |  | 
 | 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ, | 
 | 		  &shmem_file_operations); | 
 | 	if (IS_ERR(res)) | 
 | 		goto put_dentry; | 
 |  | 
 | 	return res; | 
 |  | 
 | put_dentry: | 
 | 	path_put(&path); | 
 | put_memory: | 
 | 	shmem_unacct_size(flags, size); | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL_GPL(shmem_file_setup); | 
 |  | 
 | /** | 
 |  * shmem_zero_setup - setup a shared anonymous mapping | 
 |  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff | 
 |  */ | 
 | int shmem_zero_setup(struct vm_area_struct *vma) | 
 | { | 
 | 	struct file *file; | 
 | 	loff_t size = vma->vm_end - vma->vm_start; | 
 |  | 
 | 	file = shmem_file_setup("dev/zero", size, vma->vm_flags); | 
 | 	if (IS_ERR(file)) | 
 | 		return PTR_ERR(file); | 
 |  | 
 | 	if (vma->vm_file) | 
 | 		fput(vma->vm_file); | 
 | 	vma->vm_file = file; | 
 | 	vma->vm_ops = &shmem_vm_ops; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. | 
 |  * @mapping:	the page's address_space | 
 |  * @index:	the page index | 
 |  * @gfp:	the page allocator flags to use if allocating | 
 |  * | 
 |  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", | 
 |  * with any new page allocations done using the specified allocation flags. | 
 |  * But read_cache_page_gfp() uses the ->readpage() method: which does not | 
 |  * suit tmpfs, since it may have pages in swapcache, and needs to find those | 
 |  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. | 
 |  * | 
 |  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in | 
 |  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. | 
 |  */ | 
 | struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, | 
 | 					 pgoff_t index, gfp_t gfp) | 
 | { | 
 | #ifdef CONFIG_SHMEM | 
 | 	struct inode *inode = mapping->host; | 
 | 	struct page *page; | 
 | 	int error; | 
 |  | 
 | 	BUG_ON(mapping->a_ops != &shmem_aops); | 
 | 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); | 
 | 	if (error) | 
 | 		page = ERR_PTR(error); | 
 | 	else | 
 | 		unlock_page(page); | 
 | 	return page; | 
 | #else | 
 | 	/* | 
 | 	 * The tiny !SHMEM case uses ramfs without swap | 
 | 	 */ | 
 | 	return read_cache_page_gfp(mapping, index, gfp); | 
 | #endif | 
 | } | 
 | EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); |