blob: f12c76d6e61de009f2a0012d89a390b0d6f92431 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2015, Sony Mobile Communications, AB.
*/
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/ktime.h>
#include <linux/kernel.h>
#include <linux/backlight.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/regmap.h>
/* From DT binding */
#define WLED_MAX_STRINGS 4
#define MOD_A 0
#define MOD_B 1
#define WLED_DEFAULT_BRIGHTNESS 2048
#define WLED_SOFT_START_DLY_US 10000
#define WLED3_SINK_REG_BRIGHT_MAX 0xFFF
#define WLED5_SINK_REG_BRIGHT_MAX_12B 0xFFF
#define WLED5_SINK_REG_BRIGHT_MAX_15B 0x7FFF
/* WLED3/WLED4 control registers */
#define WLED3_CTRL_REG_FAULT_STATUS 0x08
#define WLED3_CTRL_REG_ILIM_FAULT_BIT BIT(0)
#define WLED3_CTRL_REG_OVP_FAULT_BIT BIT(1)
#define WLED4_CTRL_REG_SC_FAULT_BIT BIT(2)
#define WLED5_CTRL_REG_OVP_PRE_ALARM_BIT BIT(4)
#define WLED3_CTRL_REG_INT_RT_STS 0x10
#define WLED3_CTRL_REG_OVP_FAULT_STATUS BIT(1)
#define WLED3_CTRL_REG_MOD_EN 0x46
#define WLED3_CTRL_REG_MOD_EN_MASK BIT(7)
#define WLED3_CTRL_REG_MOD_EN_SHIFT 7
#define WLED3_CTRL_REG_FEEDBACK_CONTROL 0x48
#define WLED3_CTRL_REG_FREQ 0x4c
#define WLED3_CTRL_REG_FREQ_MASK GENMASK(3, 0)
#define WLED3_CTRL_REG_OVP 0x4d
#define WLED3_CTRL_REG_OVP_MASK GENMASK(1, 0)
#define WLED5_CTRL_REG_OVP_MASK GENMASK(3, 0)
#define WLED3_CTRL_REG_ILIMIT 0x4e
#define WLED3_CTRL_REG_ILIMIT_MASK GENMASK(2, 0)
/* WLED3/WLED4 sink registers */
#define WLED3_SINK_REG_SYNC 0x47
#define WLED3_SINK_REG_SYNC_CLEAR 0x00
#define WLED3_SINK_REG_CURR_SINK 0x4f
#define WLED3_SINK_REG_CURR_SINK_MASK GENMASK(7, 5)
#define WLED3_SINK_REG_CURR_SINK_SHFT 5
/* WLED3 specific per-'string' registers below */
#define WLED3_SINK_REG_BRIGHT(n) (0x40 + n)
#define WLED3_SINK_REG_STR_MOD_EN(n) (0x60 + (n * 0x10))
#define WLED3_SINK_REG_STR_MOD_MASK BIT(7)
#define WLED3_SINK_REG_STR_FULL_SCALE_CURR(n) (0x62 + (n * 0x10))
#define WLED3_SINK_REG_STR_FULL_SCALE_CURR_MASK GENMASK(4, 0)
#define WLED3_SINK_REG_STR_MOD_SRC(n) (0x63 + (n * 0x10))
#define WLED3_SINK_REG_STR_MOD_SRC_MASK BIT(0)
#define WLED3_SINK_REG_STR_MOD_SRC_INT 0x00
#define WLED3_SINK_REG_STR_MOD_SRC_EXT 0x01
#define WLED3_SINK_REG_STR_CABC(n) (0x66 + (n * 0x10))
#define WLED3_SINK_REG_STR_CABC_MASK BIT(7)
/* WLED4 specific control registers */
#define WLED4_CTRL_REG_SHORT_PROTECT 0x5e
#define WLED4_CTRL_REG_SHORT_EN_MASK BIT(7)
#define WLED4_CTRL_REG_SEC_ACCESS 0xd0
#define WLED4_CTRL_REG_SEC_UNLOCK 0xa5
#define WLED4_CTRL_REG_TEST1 0xe2
#define WLED4_CTRL_REG_TEST1_EXT_FET_DTEST2 0x09
/* WLED4 specific sink registers */
#define WLED4_SINK_REG_CURR_SINK 0x46
#define WLED4_SINK_REG_CURR_SINK_MASK GENMASK(7, 4)
#define WLED4_SINK_REG_CURR_SINK_SHFT 4
/* WLED4 specific per-'string' registers below */
#define WLED4_SINK_REG_STR_MOD_EN(n) (0x50 + (n * 0x10))
#define WLED4_SINK_REG_STR_MOD_MASK BIT(7)
#define WLED4_SINK_REG_STR_FULL_SCALE_CURR(n) (0x52 + (n * 0x10))
#define WLED4_SINK_REG_STR_FULL_SCALE_CURR_MASK GENMASK(3, 0)
#define WLED4_SINK_REG_STR_MOD_SRC(n) (0x53 + (n * 0x10))
#define WLED4_SINK_REG_STR_MOD_SRC_MASK BIT(0)
#define WLED4_SINK_REG_STR_MOD_SRC_INT 0x00
#define WLED4_SINK_REG_STR_MOD_SRC_EXT 0x01
#define WLED4_SINK_REG_STR_CABC(n) (0x56 + (n * 0x10))
#define WLED4_SINK_REG_STR_CABC_MASK BIT(7)
#define WLED4_SINK_REG_BRIGHT(n) (0x57 + (n * 0x10))
/* WLED5 specific control registers */
#define WLED5_CTRL_REG_OVP_INT_CTL 0x5f
#define WLED5_CTRL_REG_OVP_INT_TIMER_MASK GENMASK(2, 0)
/* WLED5 specific sink registers */
#define WLED5_SINK_REG_MOD_A_EN 0x50
#define WLED5_SINK_REG_MOD_B_EN 0x60
#define WLED5_SINK_REG_MOD_EN_MASK BIT(7)
#define WLED5_SINK_REG_MOD_A_SRC_SEL 0x51
#define WLED5_SINK_REG_MOD_B_SRC_SEL 0x61
#define WLED5_SINK_REG_MOD_SRC_SEL_HIGH 0
#define WLED5_SINK_REG_MOD_SRC_SEL_EXT 0x03
#define WLED5_SINK_REG_MOD_SRC_SEL_MASK GENMASK(1, 0)
#define WLED5_SINK_REG_MOD_A_BRIGHTNESS_WIDTH_SEL 0x52
#define WLED5_SINK_REG_MOD_B_BRIGHTNESS_WIDTH_SEL 0x62
#define WLED5_SINK_REG_BRIGHTNESS_WIDTH_12B 0
#define WLED5_SINK_REG_BRIGHTNESS_WIDTH_15B 1
#define WLED5_SINK_REG_MOD_A_BRIGHTNESS_LSB 0x53
#define WLED5_SINK_REG_MOD_A_BRIGHTNESS_MSB 0x54
#define WLED5_SINK_REG_MOD_B_BRIGHTNESS_LSB 0x63
#define WLED5_SINK_REG_MOD_B_BRIGHTNESS_MSB 0x64
#define WLED5_SINK_REG_MOD_SYNC_BIT 0x65
#define WLED5_SINK_REG_SYNC_MOD_A_BIT BIT(0)
#define WLED5_SINK_REG_SYNC_MOD_B_BIT BIT(1)
#define WLED5_SINK_REG_SYNC_MASK GENMASK(1, 0)
/* WLED5 specific per-'string' registers below */
#define WLED5_SINK_REG_STR_FULL_SCALE_CURR(n) (0x72 + (n * 0x10))
#define WLED5_SINK_REG_STR_SRC_SEL(n) (0x73 + (n * 0x10))
#define WLED5_SINK_REG_SRC_SEL_MOD_A 0
#define WLED5_SINK_REG_SRC_SEL_MOD_B 1
#define WLED5_SINK_REG_SRC_SEL_MASK GENMASK(1, 0)
struct wled_var_cfg {
const u32 *values;
u32 (*fn)(u32);
int size;
};
struct wled_u32_opts {
const char *name;
u32 *val_ptr;
const struct wled_var_cfg *cfg;
};
struct wled_bool_opts {
const char *name;
bool *val_ptr;
};
struct wled_config {
u32 boost_i_limit;
u32 ovp;
u32 switch_freq;
u32 num_strings;
u32 string_i_limit;
u32 enabled_strings[WLED_MAX_STRINGS];
u32 mod_sel;
u32 cabc_sel;
bool cs_out_en;
bool ext_gen;
bool cabc;
bool external_pfet;
bool auto_detection_enabled;
};
struct wled {
const char *name;
struct device *dev;
struct regmap *regmap;
struct mutex lock; /* Lock to avoid race from thread irq handler */
ktime_t last_short_event;
ktime_t start_ovp_fault_time;
u16 ctrl_addr;
u16 sink_addr;
u16 max_string_count;
u16 auto_detection_ovp_count;
u32 brightness;
u32 max_brightness;
u32 short_count;
u32 auto_detect_count;
u32 version;
bool disabled_by_short;
bool has_short_detect;
bool cabc_disabled;
int short_irq;
int ovp_irq;
struct wled_config cfg;
struct delayed_work ovp_work;
/* Configures the brightness. Applicable for wled3, wled4 and wled5 */
int (*wled_set_brightness)(struct wled *wled, u16 brightness);
/* Configures the cabc register. Applicable for wled4 and wled5 */
int (*wled_cabc_config)(struct wled *wled, bool enable);
/*
* Toggles the sync bit for the brightness update to take place.
* Applicable for WLED3, WLED4 and WLED5.
*/
int (*wled_sync_toggle)(struct wled *wled);
/*
* Time to wait before checking the OVP status after wled module enable.
* Applicable for WLED4 and WLED5.
*/
int (*wled_ovp_delay)(struct wled *wled);
/*
* Determines if the auto string detection is required.
* Applicable for WLED4 and WLED5
*/
bool (*wled_auto_detection_required)(struct wled *wled);
};
static int wled3_set_brightness(struct wled *wled, u16 brightness)
{
int rc, i;
__le16 v;
v = cpu_to_le16(brightness & WLED3_SINK_REG_BRIGHT_MAX);
for (i = 0; i < wled->cfg.num_strings; ++i) {
rc = regmap_bulk_write(wled->regmap, wled->ctrl_addr +
WLED3_SINK_REG_BRIGHT(wled->cfg.enabled_strings[i]),
&v, sizeof(v));
if (rc < 0)
return rc;
}
return 0;
}
static int wled4_set_brightness(struct wled *wled, u16 brightness)
{
int rc, i;
u16 low_limit = wled->max_brightness * 4 / 1000;
__le16 v;
/* WLED4's lower limit of operation is 0.4% */
if (brightness > 0 && brightness < low_limit)
brightness = low_limit;
v = cpu_to_le16(brightness & WLED3_SINK_REG_BRIGHT_MAX);
for (i = 0; i < wled->cfg.num_strings; ++i) {
rc = regmap_bulk_write(wled->regmap, wled->sink_addr +
WLED4_SINK_REG_BRIGHT(wled->cfg.enabled_strings[i]),
&v, sizeof(v));
if (rc < 0)
return rc;
}
return 0;
}
static int wled5_set_brightness(struct wled *wled, u16 brightness)
{
int rc, offset;
u16 low_limit = wled->max_brightness * 1 / 1000;
__le16 v;
/* WLED5's lower limit is 0.1% */
if (brightness < low_limit)
brightness = low_limit;
v = cpu_to_le16(brightness & WLED5_SINK_REG_BRIGHT_MAX_15B);
offset = (wled->cfg.mod_sel == MOD_A) ?
WLED5_SINK_REG_MOD_A_BRIGHTNESS_LSB :
WLED5_SINK_REG_MOD_B_BRIGHTNESS_LSB;
rc = regmap_bulk_write(wled->regmap, wled->sink_addr + offset,
&v, sizeof(v));
return rc;
}
static void wled_ovp_work(struct work_struct *work)
{
struct wled *wled = container_of(work,
struct wled, ovp_work.work);
enable_irq(wled->ovp_irq);
}
static int wled_module_enable(struct wled *wled, int val)
{
int rc;
if (wled->disabled_by_short)
return -ENXIO;
rc = regmap_update_bits(wled->regmap, wled->ctrl_addr +
WLED3_CTRL_REG_MOD_EN,
WLED3_CTRL_REG_MOD_EN_MASK,
val << WLED3_CTRL_REG_MOD_EN_SHIFT);
if (rc < 0)
return rc;
if (wled->ovp_irq > 0) {
if (val) {
/*
* The hardware generates a storm of spurious OVP
* interrupts during soft start operations. So defer
* enabling the IRQ for 10ms to ensure that the
* soft start is complete.
*/
schedule_delayed_work(&wled->ovp_work, HZ / 100);
} else {
if (!cancel_delayed_work_sync(&wled->ovp_work))
disable_irq(wled->ovp_irq);
}
}
return 0;
}
static int wled3_sync_toggle(struct wled *wled)
{
int rc;
unsigned int mask = GENMASK(wled->max_string_count - 1, 0);
rc = regmap_update_bits(wled->regmap,
wled->sink_addr + WLED3_SINK_REG_SYNC,
mask, WLED3_SINK_REG_SYNC_CLEAR);
if (rc < 0)
return rc;
rc = regmap_update_bits(wled->regmap,
wled->sink_addr + WLED3_SINK_REG_SYNC,
mask, mask);
return rc;
}
static int wled5_mod_sync_toggle(struct wled *wled)
{
int rc;
u8 val;
rc = regmap_update_bits(wled->regmap,
wled->sink_addr + WLED5_SINK_REG_MOD_SYNC_BIT,
WLED5_SINK_REG_SYNC_MASK, 0);
if (rc < 0)
return rc;
val = (wled->cfg.mod_sel == MOD_A) ? WLED5_SINK_REG_SYNC_MOD_A_BIT :
WLED5_SINK_REG_SYNC_MOD_B_BIT;
return regmap_update_bits(wled->regmap,
wled->sink_addr + WLED5_SINK_REG_MOD_SYNC_BIT,
WLED5_SINK_REG_SYNC_MASK, val);
}
static int wled_ovp_fault_status(struct wled *wled, bool *fault_set)
{
int rc;
u32 int_rt_sts, fault_sts;
*fault_set = false;
rc = regmap_read(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_INT_RT_STS,
&int_rt_sts);
if (rc < 0) {
dev_err(wled->dev, "Failed to read INT_RT_STS rc=%d\n", rc);
return rc;
}
rc = regmap_read(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_FAULT_STATUS,
&fault_sts);
if (rc < 0) {
dev_err(wled->dev, "Failed to read FAULT_STATUS rc=%d\n", rc);
return rc;
}
if (int_rt_sts & WLED3_CTRL_REG_OVP_FAULT_STATUS)
*fault_set = true;
if (wled->version == 4 && (fault_sts & WLED3_CTRL_REG_OVP_FAULT_BIT))
*fault_set = true;
if (wled->version == 5 && (fault_sts & (WLED3_CTRL_REG_OVP_FAULT_BIT |
WLED5_CTRL_REG_OVP_PRE_ALARM_BIT)))
*fault_set = true;
if (*fault_set)
dev_dbg(wled->dev, "WLED OVP fault detected, int_rt_sts=0x%x fault_sts=0x%x\n",
int_rt_sts, fault_sts);
return rc;
}
static int wled4_ovp_delay(struct wled *wled)
{
return WLED_SOFT_START_DLY_US;
}
static int wled5_ovp_delay(struct wled *wled)
{
int rc, delay_us;
u32 val;
u8 ovp_timer_ms[8] = {1, 2, 4, 8, 12, 16, 20, 24};
/* For WLED5, get the delay based on OVP timer */
rc = regmap_read(wled->regmap, wled->ctrl_addr +
WLED5_CTRL_REG_OVP_INT_CTL, &val);
if (rc < 0)
delay_us =
ovp_timer_ms[val & WLED5_CTRL_REG_OVP_INT_TIMER_MASK] * 1000;
else
delay_us = 2 * WLED_SOFT_START_DLY_US;
dev_dbg(wled->dev, "delay_time_us: %d\n", delay_us);
return delay_us;
}
static int wled_update_status(struct backlight_device *bl)
{
struct wled *wled = bl_get_data(bl);
u16 brightness = backlight_get_brightness(bl);
int rc = 0;
mutex_lock(&wled->lock);
if (brightness) {
rc = wled->wled_set_brightness(wled, brightness);
if (rc < 0) {
dev_err(wled->dev, "wled failed to set brightness rc:%d\n",
rc);
goto unlock_mutex;
}
if (wled->version < 5) {
rc = wled->wled_sync_toggle(wled);
if (rc < 0) {
dev_err(wled->dev, "wled sync failed rc:%d\n", rc);
goto unlock_mutex;
}
} else {
/*
* For WLED5 toggling the MOD_SYNC_BIT updates the
* brightness
*/
rc = wled5_mod_sync_toggle(wled);
if (rc < 0) {
dev_err(wled->dev, "wled mod sync failed rc:%d\n",
rc);
goto unlock_mutex;
}
}
}
if (!!brightness != !!wled->brightness) {
rc = wled_module_enable(wled, !!brightness);
if (rc < 0) {
dev_err(wled->dev, "wled enable failed rc:%d\n", rc);
goto unlock_mutex;
}
}
wled->brightness = brightness;
unlock_mutex:
mutex_unlock(&wled->lock);
return rc;
}
static int wled4_cabc_config(struct wled *wled, bool enable)
{
int i, j, rc;
u8 val;
for (i = 0; i < wled->cfg.num_strings; i++) {
j = wled->cfg.enabled_strings[i];
val = enable ? WLED4_SINK_REG_STR_CABC_MASK : 0;
rc = regmap_update_bits(wled->regmap, wled->sink_addr +
WLED4_SINK_REG_STR_CABC(j),
WLED4_SINK_REG_STR_CABC_MASK, val);
if (rc < 0)
return rc;
}
return 0;
}
static int wled5_cabc_config(struct wled *wled, bool enable)
{
int rc, offset;
u8 reg;
if (wled->cabc_disabled)
return 0;
reg = enable ? wled->cfg.cabc_sel : 0;
offset = (wled->cfg.mod_sel == MOD_A) ? WLED5_SINK_REG_MOD_A_SRC_SEL :
WLED5_SINK_REG_MOD_B_SRC_SEL;
rc = regmap_update_bits(wled->regmap, wled->sink_addr + offset,
WLED5_SINK_REG_MOD_SRC_SEL_MASK, reg);
if (rc < 0) {
pr_err("Error in configuring CABC rc=%d\n", rc);
return rc;
}
if (!wled->cfg.cabc_sel)
wled->cabc_disabled = true;
return 0;
}
#define WLED_SHORT_DLY_MS 20
#define WLED_SHORT_CNT_MAX 5
#define WLED_SHORT_RESET_CNT_DLY_US USEC_PER_SEC
static irqreturn_t wled_short_irq_handler(int irq, void *_wled)
{
struct wled *wled = _wled;
int rc;
s64 elapsed_time;
wled->short_count++;
mutex_lock(&wled->lock);
rc = wled_module_enable(wled, false);
if (rc < 0) {
dev_err(wled->dev, "wled disable failed rc:%d\n", rc);
goto unlock_mutex;
}
elapsed_time = ktime_us_delta(ktime_get(),
wled->last_short_event);
if (elapsed_time > WLED_SHORT_RESET_CNT_DLY_US)
wled->short_count = 1;
if (wled->short_count > WLED_SHORT_CNT_MAX) {
dev_err(wled->dev, "Short triggered %d times, disabling WLED forever!\n",
wled->short_count);
wled->disabled_by_short = true;
goto unlock_mutex;
}
wled->last_short_event = ktime_get();
msleep(WLED_SHORT_DLY_MS);
rc = wled_module_enable(wled, true);
if (rc < 0)
dev_err(wled->dev, "wled enable failed rc:%d\n", rc);
unlock_mutex:
mutex_unlock(&wled->lock);
return IRQ_HANDLED;
}
#define AUTO_DETECT_BRIGHTNESS 200
static void wled_auto_string_detection(struct wled *wled)
{
int rc = 0, i, j, delay_time_us;
u32 sink_config = 0;
u8 sink_test = 0, sink_valid = 0, val;
bool fault_set;
/* Read configured sink configuration */
rc = regmap_read(wled->regmap, wled->sink_addr +
WLED4_SINK_REG_CURR_SINK, &sink_config);
if (rc < 0) {
dev_err(wled->dev, "Failed to read SINK configuration rc=%d\n",
rc);
goto failed_detect;
}
/* Disable the module before starting detection */
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_MOD_EN,
WLED3_CTRL_REG_MOD_EN_MASK, 0);
if (rc < 0) {
dev_err(wled->dev, "Failed to disable WLED module rc=%d\n", rc);
goto failed_detect;
}
/* Set low brightness across all sinks */
rc = wled4_set_brightness(wled, AUTO_DETECT_BRIGHTNESS);
if (rc < 0) {
dev_err(wled->dev, "Failed to set brightness for auto detection rc=%d\n",
rc);
goto failed_detect;
}
if (wled->cfg.cabc) {
rc = wled->wled_cabc_config(wled, false);
if (rc < 0)
goto failed_detect;
}
/* Disable all sinks */
rc = regmap_write(wled->regmap,
wled->sink_addr + WLED4_SINK_REG_CURR_SINK, 0);
if (rc < 0) {
dev_err(wled->dev, "Failed to disable all sinks rc=%d\n", rc);
goto failed_detect;
}
/* Iterate through the strings one by one */
for (i = 0; i < wled->cfg.num_strings; i++) {
j = wled->cfg.enabled_strings[i];
sink_test = BIT((WLED4_SINK_REG_CURR_SINK_SHFT + j));
/* Enable feedback control */
rc = regmap_write(wled->regmap, wled->ctrl_addr +
WLED3_CTRL_REG_FEEDBACK_CONTROL, j + 1);
if (rc < 0) {
dev_err(wled->dev, "Failed to enable feedback for SINK %d rc = %d\n",
j + 1, rc);
goto failed_detect;
}
/* Enable the sink */
rc = regmap_write(wled->regmap, wled->sink_addr +
WLED4_SINK_REG_CURR_SINK, sink_test);
if (rc < 0) {
dev_err(wled->dev, "Failed to configure SINK %d rc=%d\n",
j + 1, rc);
goto failed_detect;
}
/* Enable the module */
rc = regmap_update_bits(wled->regmap, wled->ctrl_addr +
WLED3_CTRL_REG_MOD_EN,
WLED3_CTRL_REG_MOD_EN_MASK,
WLED3_CTRL_REG_MOD_EN_MASK);
if (rc < 0) {
dev_err(wled->dev, "Failed to enable WLED module rc=%d\n",
rc);
goto failed_detect;
}
delay_time_us = wled->wled_ovp_delay(wled);
usleep_range(delay_time_us, delay_time_us + 1000);
rc = wled_ovp_fault_status(wled, &fault_set);
if (rc < 0) {
dev_err(wled->dev, "Error in getting OVP fault_sts, rc=%d\n",
rc);
goto failed_detect;
}
if (fault_set)
dev_dbg(wled->dev, "WLED OVP fault detected with SINK %d\n",
j + 1);
else
sink_valid |= sink_test;
/* Disable the module */
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_MOD_EN,
WLED3_CTRL_REG_MOD_EN_MASK, 0);
if (rc < 0) {
dev_err(wled->dev, "Failed to disable WLED module rc=%d\n",
rc);
goto failed_detect;
}
}
if (!sink_valid) {
dev_err(wled->dev, "No valid WLED sinks found\n");
wled->disabled_by_short = true;
goto failed_detect;
}
if (sink_valid != sink_config) {
dev_warn(wled->dev, "%x is not a valid sink configuration - using %x instead\n",
sink_config, sink_valid);
sink_config = sink_valid;
}
/* Write the new sink configuration */
rc = regmap_write(wled->regmap,
wled->sink_addr + WLED4_SINK_REG_CURR_SINK,
sink_config);
if (rc < 0) {
dev_err(wled->dev, "Failed to reconfigure the default sink rc=%d\n",
rc);
goto failed_detect;
}
/* Enable valid sinks */
if (wled->version == 4) {
for (i = 0; i < wled->cfg.num_strings; i++) {
j = wled->cfg.enabled_strings[i];
if (sink_config &
BIT(WLED4_SINK_REG_CURR_SINK_SHFT + j))
val = WLED4_SINK_REG_STR_MOD_MASK;
else
/* Disable modulator_en for unused sink */
val = 0;
rc = regmap_write(wled->regmap, wled->sink_addr +
WLED4_SINK_REG_STR_MOD_EN(j), val);
if (rc < 0) {
dev_err(wled->dev, "Failed to configure MODULATOR_EN rc=%d\n",
rc);
goto failed_detect;
}
}
}
/* Enable CABC */
rc = wled->wled_cabc_config(wled, true);
if (rc < 0)
goto failed_detect;
/* Restore the feedback setting */
rc = regmap_write(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_FEEDBACK_CONTROL, 0);
if (rc < 0) {
dev_err(wled->dev, "Failed to restore feedback setting rc=%d\n",
rc);
goto failed_detect;
}
/* Restore brightness */
rc = wled4_set_brightness(wled, wled->brightness);
if (rc < 0) {
dev_err(wled->dev, "Failed to set brightness after auto detection rc=%d\n",
rc);
goto failed_detect;
}
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_MOD_EN,
WLED3_CTRL_REG_MOD_EN_MASK,
WLED3_CTRL_REG_MOD_EN_MASK);
if (rc < 0) {
dev_err(wled->dev, "Failed to enable WLED module rc=%d\n", rc);
goto failed_detect;
}
failed_detect:
return;
}
#define WLED_AUTO_DETECT_OVP_COUNT 5
#define WLED_AUTO_DETECT_CNT_DLY_US USEC_PER_SEC
static bool wled4_auto_detection_required(struct wled *wled)
{
s64 elapsed_time_us;
if (!wled->cfg.auto_detection_enabled)
return false;
/*
* Check if the OVP fault was an occasional one
* or if it's firing continuously, the latter qualifies
* for an auto-detection check.
*/
if (!wled->auto_detection_ovp_count) {
wled->start_ovp_fault_time = ktime_get();
wled->auto_detection_ovp_count++;
} else {
elapsed_time_us = ktime_us_delta(ktime_get(),
wled->start_ovp_fault_time);
if (elapsed_time_us > WLED_AUTO_DETECT_CNT_DLY_US)
wled->auto_detection_ovp_count = 0;
else
wled->auto_detection_ovp_count++;
if (wled->auto_detection_ovp_count >=
WLED_AUTO_DETECT_OVP_COUNT) {
wled->auto_detection_ovp_count = 0;
return true;
}
}
return false;
}
static bool wled5_auto_detection_required(struct wled *wled)
{
if (!wled->cfg.auto_detection_enabled)
return false;
/*
* Unlike WLED4, WLED5 has OVP fault density interrupt configuration
* i.e. to count the number of OVP alarms for a certain duration before
* triggering OVP fault interrupt. By default, number of OVP fault
* events counted before an interrupt is fired is 32 and the time
* interval is 12 ms. If we see one OVP fault interrupt, then that
* should qualify for a real OVP fault condition to run auto detection
* algorithm.
*/
return true;
}
static int wled_auto_detection_at_init(struct wled *wled)
{
int rc;
bool fault_set;
if (!wled->cfg.auto_detection_enabled)
return 0;
rc = wled_ovp_fault_status(wled, &fault_set);
if (rc < 0) {
dev_err(wled->dev, "Error in getting OVP fault_sts, rc=%d\n",
rc);
return rc;
}
if (fault_set) {
mutex_lock(&wled->lock);
wled_auto_string_detection(wled);
mutex_unlock(&wled->lock);
}
return rc;
}
static irqreturn_t wled_ovp_irq_handler(int irq, void *_wled)
{
struct wled *wled = _wled;
int rc;
u32 int_sts, fault_sts;
rc = regmap_read(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_INT_RT_STS, &int_sts);
if (rc < 0) {
dev_err(wled->dev, "Error in reading WLED3_INT_RT_STS rc=%d\n",
rc);
return IRQ_HANDLED;
}
rc = regmap_read(wled->regmap, wled->ctrl_addr +
WLED3_CTRL_REG_FAULT_STATUS, &fault_sts);
if (rc < 0) {
dev_err(wled->dev, "Error in reading WLED_FAULT_STATUS rc=%d\n",
rc);
return IRQ_HANDLED;
}
if (fault_sts & (WLED3_CTRL_REG_OVP_FAULT_BIT |
WLED3_CTRL_REG_ILIM_FAULT_BIT))
dev_dbg(wled->dev, "WLED OVP fault detected, int_sts=%x fault_sts= %x\n",
int_sts, fault_sts);
if (fault_sts & WLED3_CTRL_REG_OVP_FAULT_BIT) {
if (wled->wled_auto_detection_required(wled)) {
mutex_lock(&wled->lock);
wled_auto_string_detection(wled);
mutex_unlock(&wled->lock);
}
}
return IRQ_HANDLED;
}
static int wled3_setup(struct wled *wled)
{
u16 addr;
u8 sink_en = 0;
int rc, i, j;
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_OVP,
WLED3_CTRL_REG_OVP_MASK, wled->cfg.ovp);
if (rc)
return rc;
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_ILIMIT,
WLED3_CTRL_REG_ILIMIT_MASK,
wled->cfg.boost_i_limit);
if (rc)
return rc;
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_FREQ,
WLED3_CTRL_REG_FREQ_MASK,
wled->cfg.switch_freq);
if (rc)
return rc;
for (i = 0; i < wled->cfg.num_strings; ++i) {
j = wled->cfg.enabled_strings[i];
addr = wled->ctrl_addr + WLED3_SINK_REG_STR_MOD_EN(j);
rc = regmap_update_bits(wled->regmap, addr,
WLED3_SINK_REG_STR_MOD_MASK,
WLED3_SINK_REG_STR_MOD_MASK);
if (rc)
return rc;
if (wled->cfg.ext_gen) {
addr = wled->ctrl_addr + WLED3_SINK_REG_STR_MOD_SRC(j);
rc = regmap_update_bits(wled->regmap, addr,
WLED3_SINK_REG_STR_MOD_SRC_MASK,
WLED3_SINK_REG_STR_MOD_SRC_EXT);
if (rc)
return rc;
}
addr = wled->ctrl_addr + WLED3_SINK_REG_STR_FULL_SCALE_CURR(j);
rc = regmap_update_bits(wled->regmap, addr,
WLED3_SINK_REG_STR_FULL_SCALE_CURR_MASK,
wled->cfg.string_i_limit);
if (rc)
return rc;
addr = wled->ctrl_addr + WLED3_SINK_REG_STR_CABC(j);
rc = regmap_update_bits(wled->regmap, addr,
WLED3_SINK_REG_STR_CABC_MASK,
wled->cfg.cabc ?
WLED3_SINK_REG_STR_CABC_MASK : 0);
if (rc)
return rc;
sink_en |= BIT(j + WLED3_SINK_REG_CURR_SINK_SHFT);
}
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_SINK_REG_CURR_SINK,
WLED3_SINK_REG_CURR_SINK_MASK, sink_en);
if (rc)
return rc;
return 0;
}
static const struct wled_config wled3_config_defaults = {
.boost_i_limit = 3,
.string_i_limit = 20,
.ovp = 2,
.num_strings = 3,
.switch_freq = 5,
.cs_out_en = false,
.ext_gen = false,
.cabc = false,
.enabled_strings = {0, 1, 2, 3},
};
static int wled4_setup(struct wled *wled)
{
int rc, temp, i, j;
u16 addr;
u8 sink_en = 0;
u32 sink_cfg;
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_OVP,
WLED3_CTRL_REG_OVP_MASK, wled->cfg.ovp);
if (rc < 0)
return rc;
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_ILIMIT,
WLED3_CTRL_REG_ILIMIT_MASK,
wled->cfg.boost_i_limit);
if (rc < 0)
return rc;
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_FREQ,
WLED3_CTRL_REG_FREQ_MASK,
wled->cfg.switch_freq);
if (rc < 0)
return rc;
if (wled->cfg.external_pfet) {
/* Unlock the secure register access */
rc = regmap_write(wled->regmap, wled->ctrl_addr +
WLED4_CTRL_REG_SEC_ACCESS,
WLED4_CTRL_REG_SEC_UNLOCK);
if (rc < 0)
return rc;
rc = regmap_write(wled->regmap,
wled->ctrl_addr + WLED4_CTRL_REG_TEST1,
WLED4_CTRL_REG_TEST1_EXT_FET_DTEST2);
if (rc < 0)
return rc;
}
rc = regmap_read(wled->regmap, wled->sink_addr +
WLED4_SINK_REG_CURR_SINK, &sink_cfg);
if (rc < 0)
return rc;
for (i = 0; i < wled->cfg.num_strings; i++) {
j = wled->cfg.enabled_strings[i];
temp = j + WLED4_SINK_REG_CURR_SINK_SHFT;
sink_en |= 1 << temp;
}
if (sink_cfg == sink_en) {
rc = wled_auto_detection_at_init(wled);
return rc;
}
rc = regmap_update_bits(wled->regmap,
wled->sink_addr + WLED4_SINK_REG_CURR_SINK,
WLED4_SINK_REG_CURR_SINK_MASK, 0);
if (rc < 0)
return rc;
rc = regmap_update_bits(wled->regmap, wled->ctrl_addr +
WLED3_CTRL_REG_MOD_EN,
WLED3_CTRL_REG_MOD_EN_MASK, 0);
if (rc < 0)
return rc;
/* Per sink/string configuration */
for (i = 0; i < wled->cfg.num_strings; i++) {
j = wled->cfg.enabled_strings[i];
addr = wled->sink_addr +
WLED4_SINK_REG_STR_MOD_EN(j);
rc = regmap_update_bits(wled->regmap, addr,
WLED4_SINK_REG_STR_MOD_MASK,
WLED4_SINK_REG_STR_MOD_MASK);
if (rc < 0)
return rc;
addr = wled->sink_addr +
WLED4_SINK_REG_STR_FULL_SCALE_CURR(j);
rc = regmap_update_bits(wled->regmap, addr,
WLED4_SINK_REG_STR_FULL_SCALE_CURR_MASK,
wled->cfg.string_i_limit);
if (rc < 0)
return rc;
}
rc = wled4_cabc_config(wled, wled->cfg.cabc);
if (rc < 0)
return rc;
rc = regmap_update_bits(wled->regmap, wled->ctrl_addr +
WLED3_CTRL_REG_MOD_EN,
WLED3_CTRL_REG_MOD_EN_MASK,
WLED3_CTRL_REG_MOD_EN_MASK);
if (rc < 0)
return rc;
rc = regmap_update_bits(wled->regmap,
wled->sink_addr + WLED4_SINK_REG_CURR_SINK,
WLED4_SINK_REG_CURR_SINK_MASK, sink_en);
if (rc < 0)
return rc;
rc = wled->wled_sync_toggle(wled);
if (rc < 0) {
dev_err(wled->dev, "Failed to toggle sync reg rc:%d\n", rc);
return rc;
}
rc = wled_auto_detection_at_init(wled);
return rc;
}
static const struct wled_config wled4_config_defaults = {
.boost_i_limit = 4,
.string_i_limit = 10,
.ovp = 1,
.num_strings = 4,
.switch_freq = 11,
.cabc = false,
.external_pfet = false,
.auto_detection_enabled = false,
};
static int wled5_setup(struct wled *wled)
{
int rc, temp, i, j, offset;
u8 sink_en = 0;
u16 addr;
u32 val;
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_OVP,
WLED5_CTRL_REG_OVP_MASK, wled->cfg.ovp);
if (rc < 0)
return rc;
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_ILIMIT,
WLED3_CTRL_REG_ILIMIT_MASK,
wled->cfg.boost_i_limit);
if (rc < 0)
return rc;
rc = regmap_update_bits(wled->regmap,
wled->ctrl_addr + WLED3_CTRL_REG_FREQ,
WLED3_CTRL_REG_FREQ_MASK,
wled->cfg.switch_freq);
if (rc < 0)
return rc;
/* Per sink/string configuration */
for (i = 0; i < wled->cfg.num_strings; ++i) {
j = wled->cfg.enabled_strings[i];
addr = wled->sink_addr +
WLED4_SINK_REG_STR_FULL_SCALE_CURR(j);
rc = regmap_update_bits(wled->regmap, addr,
WLED4_SINK_REG_STR_FULL_SCALE_CURR_MASK,
wled->cfg.string_i_limit);
if (rc < 0)
return rc;
addr = wled->sink_addr + WLED5_SINK_REG_STR_SRC_SEL(j);
rc = regmap_update_bits(wled->regmap, addr,
WLED5_SINK_REG_SRC_SEL_MASK,
wled->cfg.mod_sel == MOD_A ?
WLED5_SINK_REG_SRC_SEL_MOD_A :
WLED5_SINK_REG_SRC_SEL_MOD_B);
temp = j + WLED4_SINK_REG_CURR_SINK_SHFT;
sink_en |= 1 << temp;
}
rc = wled5_cabc_config(wled, wled->cfg.cabc_sel ? true : false);
if (rc < 0)
return rc;
/* Enable one of the modulators A or B based on mod_sel */
addr = wled->sink_addr + WLED5_SINK_REG_MOD_A_EN;
val = (wled->cfg.mod_sel == MOD_A) ? WLED5_SINK_REG_MOD_EN_MASK : 0;
rc = regmap_update_bits(wled->regmap, addr,
WLED5_SINK_REG_MOD_EN_MASK, val);
if (rc < 0)
return rc;
addr = wled->sink_addr + WLED5_SINK_REG_MOD_B_EN;
val = (wled->cfg.mod_sel == MOD_B) ? WLED5_SINK_REG_MOD_EN_MASK : 0;
rc = regmap_update_bits(wled->regmap, addr,
WLED5_SINK_REG_MOD_EN_MASK, val);
if (rc < 0)
return rc;
offset = (wled->cfg.mod_sel == MOD_A) ?
WLED5_SINK_REG_MOD_A_BRIGHTNESS_WIDTH_SEL :
WLED5_SINK_REG_MOD_B_BRIGHTNESS_WIDTH_SEL;
addr = wled->sink_addr + offset;
val = (wled->max_brightness == WLED5_SINK_REG_BRIGHT_MAX_15B) ?
WLED5_SINK_REG_BRIGHTNESS_WIDTH_15B :
WLED5_SINK_REG_BRIGHTNESS_WIDTH_12B;
rc = regmap_write(wled->regmap, addr, val);
if (rc < 0)
return rc;
rc = regmap_update_bits(wled->regmap,
wled->sink_addr + WLED4_SINK_REG_CURR_SINK,
WLED4_SINK_REG_CURR_SINK_MASK, sink_en);
if (rc < 0)
return rc;
/* This updates only FSC configuration in WLED5 */
rc = wled->wled_sync_toggle(wled);
if (rc < 0) {
pr_err("Failed to toggle sync reg rc:%d\n", rc);
return rc;
}
rc = wled_auto_detection_at_init(wled);
if (rc < 0)
return rc;
return 0;
}
static const struct wled_config wled5_config_defaults = {
.boost_i_limit = 5,
.string_i_limit = 10,
.ovp = 4,
.num_strings = 4,
.switch_freq = 11,
.mod_sel = 0,
.cabc_sel = 0,
.cabc = false,
.external_pfet = false,
.auto_detection_enabled = false,
};
static const u32 wled3_boost_i_limit_values[] = {
105, 385, 525, 805, 980, 1260, 1400, 1680,
};
static const struct wled_var_cfg wled3_boost_i_limit_cfg = {
.values = wled3_boost_i_limit_values,
.size = ARRAY_SIZE(wled3_boost_i_limit_values),
};
static const u32 wled4_boost_i_limit_values[] = {
105, 280, 450, 620, 970, 1150, 1300, 1500,
};
static const struct wled_var_cfg wled4_boost_i_limit_cfg = {
.values = wled4_boost_i_limit_values,
.size = ARRAY_SIZE(wled4_boost_i_limit_values),
};
static inline u32 wled5_boost_i_limit_values_fn(u32 idx)
{
return 525 + (idx * 175);
}
static const struct wled_var_cfg wled5_boost_i_limit_cfg = {
.fn = wled5_boost_i_limit_values_fn,
.size = 8,
};
static const u32 wled3_ovp_values[] = {
35, 32, 29, 27,
};
static const struct wled_var_cfg wled3_ovp_cfg = {
.values = wled3_ovp_values,
.size = ARRAY_SIZE(wled3_ovp_values),
};
static const u32 wled4_ovp_values[] = {
31100, 29600, 19600, 18100,
};
static const struct wled_var_cfg wled4_ovp_cfg = {
.values = wled4_ovp_values,
.size = ARRAY_SIZE(wled4_ovp_values),
};
static inline u32 wled5_ovp_values_fn(u32 idx)
{
/*
* 0000 - 38.5 V
* 0001 - 37 V ..
* 1111 - 16 V
*/
return 38500 - (idx * 1500);
}
static const struct wled_var_cfg wled5_ovp_cfg = {
.fn = wled5_ovp_values_fn,
.size = 16,
};
static u32 wled3_switch_freq_values_fn(u32 idx)
{
return 19200 / (2 * (1 + idx));
}
static const struct wled_var_cfg wled3_switch_freq_cfg = {
.fn = wled3_switch_freq_values_fn,
.size = 16,
};
static const struct wled_var_cfg wled3_string_i_limit_cfg = {
.size = 26,
};
static const u32 wled4_string_i_limit_values[] = {
0, 2500, 5000, 7500, 10000, 12500, 15000, 17500, 20000,
22500, 25000, 27500, 30000,
};
static const struct wled_var_cfg wled4_string_i_limit_cfg = {
.values = wled4_string_i_limit_values,
.size = ARRAY_SIZE(wled4_string_i_limit_values),
};
static const struct wled_var_cfg wled5_mod_sel_cfg = {
.size = 2,
};
static const struct wled_var_cfg wled5_cabc_sel_cfg = {
.size = 4,
};
static u32 wled_values(const struct wled_var_cfg *cfg, u32 idx)
{
if (idx >= cfg->size)
return UINT_MAX;
if (cfg->fn)
return cfg->fn(idx);
if (cfg->values)
return cfg->values[idx];
return idx;
}
static int wled_configure(struct wled *wled)
{
struct wled_config *cfg = &wled->cfg;
struct device *dev = wled->dev;
const __be32 *prop_addr;
u32 size, val, c;
int rc, i, j, string_len;
const struct wled_u32_opts *u32_opts = NULL;
const struct wled_u32_opts wled3_opts[] = {
{
.name = "qcom,current-boost-limit",
.val_ptr = &cfg->boost_i_limit,
.cfg = &wled3_boost_i_limit_cfg,
},
{
.name = "qcom,current-limit",
.val_ptr = &cfg->string_i_limit,
.cfg = &wled3_string_i_limit_cfg,
},
{
.name = "qcom,ovp",
.val_ptr = &cfg->ovp,
.cfg = &wled3_ovp_cfg,
},
{
.name = "qcom,switching-freq",
.val_ptr = &cfg->switch_freq,
.cfg = &wled3_switch_freq_cfg,
},
};
const struct wled_u32_opts wled4_opts[] = {
{
.name = "qcom,current-boost-limit",
.val_ptr = &cfg->boost_i_limit,
.cfg = &wled4_boost_i_limit_cfg,
},
{
.name = "qcom,current-limit-microamp",
.val_ptr = &cfg->string_i_limit,
.cfg = &wled4_string_i_limit_cfg,
},
{
.name = "qcom,ovp-millivolt",
.val_ptr = &cfg->ovp,
.cfg = &wled4_ovp_cfg,
},
{
.name = "qcom,switching-freq",
.val_ptr = &cfg->switch_freq,
.cfg = &wled3_switch_freq_cfg,
},
};
const struct wled_u32_opts wled5_opts[] = {
{
.name = "qcom,current-boost-limit",
.val_ptr = &cfg->boost_i_limit,
.cfg = &wled5_boost_i_limit_cfg,
},
{
.name = "qcom,current-limit-microamp",
.val_ptr = &cfg->string_i_limit,
.cfg = &wled4_string_i_limit_cfg,
},
{
.name = "qcom,ovp-millivolt",
.val_ptr = &cfg->ovp,
.cfg = &wled5_ovp_cfg,
},
{
.name = "qcom,switching-freq",
.val_ptr = &cfg->switch_freq,
.cfg = &wled3_switch_freq_cfg,
},
{
.name = "qcom,modulator-sel",
.val_ptr = &cfg->mod_sel,
.cfg = &wled5_mod_sel_cfg,
},
{
.name = "qcom,cabc-sel",
.val_ptr = &cfg->cabc_sel,
.cfg = &wled5_cabc_sel_cfg,
},
};
const struct wled_bool_opts bool_opts[] = {
{ "qcom,cs-out", &cfg->cs_out_en, },
{ "qcom,ext-gen", &cfg->ext_gen, },
{ "qcom,cabc", &cfg->cabc, },
{ "qcom,external-pfet", &cfg->external_pfet, },
{ "qcom,auto-string-detection", &cfg->auto_detection_enabled, },
};
prop_addr = of_get_address(dev->of_node, 0, NULL, NULL);
if (!prop_addr) {
dev_err(wled->dev, "invalid IO resources\n");
return -EINVAL;
}
wled->ctrl_addr = be32_to_cpu(*prop_addr);
rc = of_property_read_string(dev->of_node, "label", &wled->name);
if (rc)
wled->name = devm_kasprintf(dev, GFP_KERNEL, "%pOFn", dev->of_node);
switch (wled->version) {
case 3:
u32_opts = wled3_opts;
size = ARRAY_SIZE(wled3_opts);
*cfg = wled3_config_defaults;
wled->wled_set_brightness = wled3_set_brightness;
wled->wled_sync_toggle = wled3_sync_toggle;
wled->max_string_count = 3;
wled->sink_addr = wled->ctrl_addr;
break;
case 4:
u32_opts = wled4_opts;
size = ARRAY_SIZE(wled4_opts);
*cfg = wled4_config_defaults;
wled->wled_set_brightness = wled4_set_brightness;
wled->wled_sync_toggle = wled3_sync_toggle;
wled->wled_cabc_config = wled4_cabc_config;
wled->wled_ovp_delay = wled4_ovp_delay;
wled->wled_auto_detection_required =
wled4_auto_detection_required;
wled->max_string_count = 4;
prop_addr = of_get_address(dev->of_node, 1, NULL, NULL);
if (!prop_addr) {
dev_err(wled->dev, "invalid IO resources\n");
return -EINVAL;
}
wled->sink_addr = be32_to_cpu(*prop_addr);
break;
case 5:
u32_opts = wled5_opts;
size = ARRAY_SIZE(wled5_opts);
*cfg = wled5_config_defaults;
wled->wled_set_brightness = wled5_set_brightness;
wled->wled_sync_toggle = wled3_sync_toggle;
wled->wled_cabc_config = wled5_cabc_config;
wled->wled_ovp_delay = wled5_ovp_delay;
wled->wled_auto_detection_required =
wled5_auto_detection_required;
wled->max_string_count = 4;
prop_addr = of_get_address(dev->of_node, 1, NULL, NULL);
if (!prop_addr) {
dev_err(wled->dev, "invalid IO resources\n");
return -EINVAL;
}
wled->sink_addr = be32_to_cpu(*prop_addr);
break;
default:
dev_err(wled->dev, "Invalid WLED version\n");
return -EINVAL;
}
for (i = 0; i < size; ++i) {
rc = of_property_read_u32(dev->of_node, u32_opts[i].name, &val);
if (rc == -EINVAL) {
continue;
} else if (rc) {
dev_err(dev, "error reading '%s'\n", u32_opts[i].name);
return rc;
}
c = UINT_MAX;
for (j = 0; c != val; j++) {
c = wled_values(u32_opts[i].cfg, j);
if (c == UINT_MAX) {
dev_err(dev, "invalid value for '%s'\n",
u32_opts[i].name);
return -EINVAL;
}
if (c == val)
break;
}
dev_dbg(dev, "'%s' = %u\n", u32_opts[i].name, c);
*u32_opts[i].val_ptr = j;
}
for (i = 0; i < ARRAY_SIZE(bool_opts); ++i) {
if (of_property_read_bool(dev->of_node, bool_opts[i].name))
*bool_opts[i].val_ptr = true;
}
string_len = of_property_count_elems_of_size(dev->of_node,
"qcom,enabled-strings",
sizeof(u32));
if (string_len > 0) {
if (string_len > wled->max_string_count) {
dev_err(dev, "Cannot have more than %d strings\n",
wled->max_string_count);
return -EINVAL;
}
rc = of_property_read_u32_array(dev->of_node,
"qcom,enabled-strings",
wled->cfg.enabled_strings,
string_len);
if (rc) {
dev_err(dev, "Failed to read %d elements from qcom,enabled-strings: %d\n",
string_len, rc);
return rc;
}
for (i = 0; i < string_len; ++i) {
if (wled->cfg.enabled_strings[i] >= wled->max_string_count) {
dev_err(dev,
"qcom,enabled-strings index %d at %d is out of bounds\n",
wled->cfg.enabled_strings[i], i);
return -EINVAL;
}
}
cfg->num_strings = string_len;
}
rc = of_property_read_u32(dev->of_node, "qcom,num-strings", &val);
if (!rc) {
if (val < 1 || val > wled->max_string_count) {
dev_err(dev, "qcom,num-strings must be between 1 and %d\n",
wled->max_string_count);
return -EINVAL;
}
if (string_len > 0) {
dev_warn(dev, "Only one of qcom,num-strings or qcom,enabled-strings"
" should be set\n");
if (val > string_len) {
dev_err(dev, "qcom,num-strings exceeds qcom,enabled-strings\n");
return -EINVAL;
}
}
cfg->num_strings = val;
}
return 0;
}
static int wled_configure_short_irq(struct wled *wled,
struct platform_device *pdev)
{
int rc;
if (!wled->has_short_detect)
return 0;
rc = regmap_update_bits(wled->regmap, wled->ctrl_addr +
WLED4_CTRL_REG_SHORT_PROTECT,
WLED4_CTRL_REG_SHORT_EN_MASK,
WLED4_CTRL_REG_SHORT_EN_MASK);
if (rc < 0)
return rc;
wled->short_irq = platform_get_irq_byname(pdev, "short");
if (wled->short_irq < 0) {
dev_dbg(&pdev->dev, "short irq is not used\n");
return 0;
}
rc = devm_request_threaded_irq(wled->dev, wled->short_irq,
NULL, wled_short_irq_handler,
IRQF_ONESHOT,
"wled_short_irq", wled);
if (rc < 0)
dev_err(wled->dev, "Unable to request short_irq (err:%d)\n",
rc);
return rc;
}
static int wled_configure_ovp_irq(struct wled *wled,
struct platform_device *pdev)
{
int rc;
u32 val;
wled->ovp_irq = platform_get_irq_byname(pdev, "ovp");
if (wled->ovp_irq < 0) {
dev_dbg(&pdev->dev, "OVP IRQ not found - disabling automatic string detection\n");
return 0;
}
rc = devm_request_threaded_irq(wled->dev, wled->ovp_irq, NULL,
wled_ovp_irq_handler, IRQF_ONESHOT,
"wled_ovp_irq", wled);
if (rc < 0) {
dev_err(wled->dev, "Unable to request ovp_irq (err:%d)\n",
rc);
wled->ovp_irq = 0;
return 0;
}
rc = regmap_read(wled->regmap, wled->ctrl_addr +
WLED3_CTRL_REG_MOD_EN, &val);
if (rc < 0)
return rc;
/* Keep OVP irq disabled until module is enabled */
if (!(val & WLED3_CTRL_REG_MOD_EN_MASK))
disable_irq(wled->ovp_irq);
return 0;
}
static const struct backlight_ops wled_ops = {
.update_status = wled_update_status,
};
static int wled_probe(struct platform_device *pdev)
{
struct backlight_properties props;
struct backlight_device *bl;
struct wled *wled;
struct regmap *regmap;
u32 val;
int rc;
regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!regmap) {
dev_err(&pdev->dev, "Unable to get regmap\n");
return -EINVAL;
}
wled = devm_kzalloc(&pdev->dev, sizeof(*wled), GFP_KERNEL);
if (!wled)
return -ENOMEM;
wled->regmap = regmap;
wled->dev = &pdev->dev;
wled->version = (uintptr_t)of_device_get_match_data(&pdev->dev);
if (!wled->version) {
dev_err(&pdev->dev, "Unknown device version\n");
return -ENODEV;
}
mutex_init(&wled->lock);
rc = wled_configure(wled);
if (rc)
return rc;
val = WLED3_SINK_REG_BRIGHT_MAX;
of_property_read_u32(pdev->dev.of_node, "max-brightness", &val);
wled->max_brightness = val;
switch (wled->version) {
case 3:
wled->cfg.auto_detection_enabled = false;
rc = wled3_setup(wled);
if (rc) {
dev_err(&pdev->dev, "wled3_setup failed\n");
return rc;
}
break;
case 4:
wled->has_short_detect = true;
rc = wled4_setup(wled);
if (rc) {
dev_err(&pdev->dev, "wled4_setup failed\n");
return rc;
}
break;
case 5:
wled->has_short_detect = true;
if (wled->cfg.cabc_sel)
wled->max_brightness = WLED5_SINK_REG_BRIGHT_MAX_12B;
rc = wled5_setup(wled);
if (rc) {
dev_err(&pdev->dev, "wled5_setup failed\n");
return rc;
}
break;
default:
dev_err(wled->dev, "Invalid WLED version\n");
break;
}
INIT_DELAYED_WORK(&wled->ovp_work, wled_ovp_work);
rc = wled_configure_short_irq(wled, pdev);
if (rc < 0)
return rc;
rc = wled_configure_ovp_irq(wled, pdev);
if (rc < 0)
return rc;
val = WLED_DEFAULT_BRIGHTNESS;
of_property_read_u32(pdev->dev.of_node, "default-brightness", &val);
memset(&props, 0, sizeof(struct backlight_properties));
props.type = BACKLIGHT_RAW;
props.brightness = val;
props.max_brightness = wled->max_brightness;
bl = devm_backlight_device_register(&pdev->dev, wled->name,
&pdev->dev, wled,
&wled_ops, &props);
return PTR_ERR_OR_ZERO(bl);
};
static int wled_remove(struct platform_device *pdev)
{
struct wled *wled = platform_get_drvdata(pdev);
mutex_destroy(&wled->lock);
cancel_delayed_work_sync(&wled->ovp_work);
disable_irq(wled->short_irq);
disable_irq(wled->ovp_irq);
return 0;
}
static const struct of_device_id wled_match_table[] = {
{ .compatible = "qcom,pm8941-wled", .data = (void *)3 },
{ .compatible = "qcom,pmi8994-wled", .data = (void *)4 },
{ .compatible = "qcom,pmi8998-wled", .data = (void *)4 },
{ .compatible = "qcom,pm660l-wled", .data = (void *)4 },
{ .compatible = "qcom,pm8150l-wled", .data = (void *)5 },
{}
};
MODULE_DEVICE_TABLE(of, wled_match_table);
static struct platform_driver wled_driver = {
.probe = wled_probe,
.remove = wled_remove,
.driver = {
.name = "qcom,wled",
.of_match_table = wled_match_table,
},
};
module_platform_driver(wled_driver);
MODULE_DESCRIPTION("Qualcomm WLED driver");
MODULE_LICENSE("GPL v2");