| /* | 
 |  *  Copyright (C) 2009  Red Hat, Inc. | 
 |  * | 
 |  *  This work is licensed under the terms of the GNU GPL, version 2. See | 
 |  *  the COPYING file in the top-level directory. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/shrinker.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/khugepaged.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/hashtable.h> | 
 |  | 
 | #include <asm/tlb.h> | 
 | #include <asm/pgalloc.h> | 
 | #include "internal.h" | 
 |  | 
 | /* | 
 |  * By default transparent hugepage support is disabled in order that avoid | 
 |  * to risk increase the memory footprint of applications without a guaranteed | 
 |  * benefit. When transparent hugepage support is enabled, is for all mappings, | 
 |  * and khugepaged scans all mappings. | 
 |  * Defrag is invoked by khugepaged hugepage allocations and by page faults | 
 |  * for all hugepage allocations. | 
 |  */ | 
 | unsigned long transparent_hugepage_flags __read_mostly = | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS | 
 | 	(1<<TRANSPARENT_HUGEPAGE_FLAG)| | 
 | #endif | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE | 
 | 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| | 
 | #endif | 
 | 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| | 
 | 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| | 
 | 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); | 
 |  | 
 | /* default scan 8*512 pte (or vmas) every 30 second */ | 
 | static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; | 
 | static unsigned int khugepaged_pages_collapsed; | 
 | static unsigned int khugepaged_full_scans; | 
 | static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; | 
 | /* during fragmentation poll the hugepage allocator once every minute */ | 
 | static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; | 
 | static struct task_struct *khugepaged_thread __read_mostly; | 
 | static DEFINE_MUTEX(khugepaged_mutex); | 
 | static DEFINE_SPINLOCK(khugepaged_mm_lock); | 
 | static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); | 
 | /* | 
 |  * default collapse hugepages if there is at least one pte mapped like | 
 |  * it would have happened if the vma was large enough during page | 
 |  * fault. | 
 |  */ | 
 | static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; | 
 |  | 
 | static int khugepaged(void *none); | 
 | static int khugepaged_slab_init(void); | 
 |  | 
 | #define MM_SLOTS_HASH_BITS 10 | 
 | static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); | 
 |  | 
 | static struct kmem_cache *mm_slot_cache __read_mostly; | 
 |  | 
 | /** | 
 |  * struct mm_slot - hash lookup from mm to mm_slot | 
 |  * @hash: hash collision list | 
 |  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head | 
 |  * @mm: the mm that this information is valid for | 
 |  */ | 
 | struct mm_slot { | 
 | 	struct hlist_node hash; | 
 | 	struct list_head mm_node; | 
 | 	struct mm_struct *mm; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct khugepaged_scan - cursor for scanning | 
 |  * @mm_head: the head of the mm list to scan | 
 |  * @mm_slot: the current mm_slot we are scanning | 
 |  * @address: the next address inside that to be scanned | 
 |  * | 
 |  * There is only the one khugepaged_scan instance of this cursor structure. | 
 |  */ | 
 | struct khugepaged_scan { | 
 | 	struct list_head mm_head; | 
 | 	struct mm_slot *mm_slot; | 
 | 	unsigned long address; | 
 | }; | 
 | static struct khugepaged_scan khugepaged_scan = { | 
 | 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), | 
 | }; | 
 |  | 
 |  | 
 | static int set_recommended_min_free_kbytes(void) | 
 | { | 
 | 	struct zone *zone; | 
 | 	int nr_zones = 0; | 
 | 	unsigned long recommended_min; | 
 |  | 
 | 	if (!khugepaged_enabled()) | 
 | 		return 0; | 
 |  | 
 | 	for_each_populated_zone(zone) | 
 | 		nr_zones++; | 
 |  | 
 | 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ | 
 | 	recommended_min = pageblock_nr_pages * nr_zones * 2; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that on average at least two pageblocks are almost free | 
 | 	 * of another type, one for a migratetype to fall back to and a | 
 | 	 * second to avoid subsequent fallbacks of other types There are 3 | 
 | 	 * MIGRATE_TYPES we care about. | 
 | 	 */ | 
 | 	recommended_min += pageblock_nr_pages * nr_zones * | 
 | 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; | 
 |  | 
 | 	/* don't ever allow to reserve more than 5% of the lowmem */ | 
 | 	recommended_min = min(recommended_min, | 
 | 			      (unsigned long) nr_free_buffer_pages() / 20); | 
 | 	recommended_min <<= (PAGE_SHIFT-10); | 
 |  | 
 | 	if (recommended_min > min_free_kbytes) { | 
 | 		if (user_min_free_kbytes >= 0) | 
 | 			pr_info("raising min_free_kbytes from %d to %lu " | 
 | 				"to help transparent hugepage allocations\n", | 
 | 				min_free_kbytes, recommended_min); | 
 |  | 
 | 		min_free_kbytes = recommended_min; | 
 | 	} | 
 | 	setup_per_zone_wmarks(); | 
 | 	return 0; | 
 | } | 
 | late_initcall(set_recommended_min_free_kbytes); | 
 |  | 
 | static int start_khugepaged(void) | 
 | { | 
 | 	int err = 0; | 
 | 	if (khugepaged_enabled()) { | 
 | 		if (!khugepaged_thread) | 
 | 			khugepaged_thread = kthread_run(khugepaged, NULL, | 
 | 							"khugepaged"); | 
 | 		if (unlikely(IS_ERR(khugepaged_thread))) { | 
 | 			pr_err("khugepaged: kthread_run(khugepaged) failed\n"); | 
 | 			err = PTR_ERR(khugepaged_thread); | 
 | 			khugepaged_thread = NULL; | 
 | 		} | 
 |  | 
 | 		if (!list_empty(&khugepaged_scan.mm_head)) | 
 | 			wake_up_interruptible(&khugepaged_wait); | 
 |  | 
 | 		set_recommended_min_free_kbytes(); | 
 | 	} else if (khugepaged_thread) { | 
 | 		kthread_stop(khugepaged_thread); | 
 | 		khugepaged_thread = NULL; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static atomic_t huge_zero_refcount; | 
 | static struct page *huge_zero_page __read_mostly; | 
 |  | 
 | static inline bool is_huge_zero_page(struct page *page) | 
 | { | 
 | 	return ACCESS_ONCE(huge_zero_page) == page; | 
 | } | 
 |  | 
 | static inline bool is_huge_zero_pmd(pmd_t pmd) | 
 | { | 
 | 	return is_huge_zero_page(pmd_page(pmd)); | 
 | } | 
 |  | 
 | static struct page *get_huge_zero_page(void) | 
 | { | 
 | 	struct page *zero_page; | 
 | retry: | 
 | 	if (likely(atomic_inc_not_zero(&huge_zero_refcount))) | 
 | 		return ACCESS_ONCE(huge_zero_page); | 
 |  | 
 | 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, | 
 | 			HPAGE_PMD_ORDER); | 
 | 	if (!zero_page) { | 
 | 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); | 
 | 		return NULL; | 
 | 	} | 
 | 	count_vm_event(THP_ZERO_PAGE_ALLOC); | 
 | 	preempt_disable(); | 
 | 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) { | 
 | 		preempt_enable(); | 
 | 		__free_page(zero_page); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* We take additional reference here. It will be put back by shrinker */ | 
 | 	atomic_set(&huge_zero_refcount, 2); | 
 | 	preempt_enable(); | 
 | 	return ACCESS_ONCE(huge_zero_page); | 
 | } | 
 |  | 
 | static void put_huge_zero_page(void) | 
 | { | 
 | 	/* | 
 | 	 * Counter should never go to zero here. Only shrinker can put | 
 | 	 * last reference. | 
 | 	 */ | 
 | 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); | 
 | } | 
 |  | 
 | static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, | 
 | 					struct shrink_control *sc) | 
 | { | 
 | 	/* we can free zero page only if last reference remains */ | 
 | 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; | 
 | } | 
 |  | 
 | static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, | 
 | 				       struct shrink_control *sc) | 
 | { | 
 | 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { | 
 | 		struct page *zero_page = xchg(&huge_zero_page, NULL); | 
 | 		BUG_ON(zero_page == NULL); | 
 | 		__free_page(zero_page); | 
 | 		return HPAGE_PMD_NR; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct shrinker huge_zero_page_shrinker = { | 
 | 	.count_objects = shrink_huge_zero_page_count, | 
 | 	.scan_objects = shrink_huge_zero_page_scan, | 
 | 	.seeks = DEFAULT_SEEKS, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SYSFS | 
 |  | 
 | static ssize_t double_flag_show(struct kobject *kobj, | 
 | 				struct kobj_attribute *attr, char *buf, | 
 | 				enum transparent_hugepage_flag enabled, | 
 | 				enum transparent_hugepage_flag req_madv) | 
 | { | 
 | 	if (test_bit(enabled, &transparent_hugepage_flags)) { | 
 | 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); | 
 | 		return sprintf(buf, "[always] madvise never\n"); | 
 | 	} else if (test_bit(req_madv, &transparent_hugepage_flags)) | 
 | 		return sprintf(buf, "always [madvise] never\n"); | 
 | 	else | 
 | 		return sprintf(buf, "always madvise [never]\n"); | 
 | } | 
 | static ssize_t double_flag_store(struct kobject *kobj, | 
 | 				 struct kobj_attribute *attr, | 
 | 				 const char *buf, size_t count, | 
 | 				 enum transparent_hugepage_flag enabled, | 
 | 				 enum transparent_hugepage_flag req_madv) | 
 | { | 
 | 	if (!memcmp("always", buf, | 
 | 		    min(sizeof("always")-1, count))) { | 
 | 		set_bit(enabled, &transparent_hugepage_flags); | 
 | 		clear_bit(req_madv, &transparent_hugepage_flags); | 
 | 	} else if (!memcmp("madvise", buf, | 
 | 			   min(sizeof("madvise")-1, count))) { | 
 | 		clear_bit(enabled, &transparent_hugepage_flags); | 
 | 		set_bit(req_madv, &transparent_hugepage_flags); | 
 | 	} else if (!memcmp("never", buf, | 
 | 			   min(sizeof("never")-1, count))) { | 
 | 		clear_bit(enabled, &transparent_hugepage_flags); | 
 | 		clear_bit(req_madv, &transparent_hugepage_flags); | 
 | 	} else | 
 | 		return -EINVAL; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t enabled_show(struct kobject *kobj, | 
 | 			    struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return double_flag_show(kobj, attr, buf, | 
 | 				TRANSPARENT_HUGEPAGE_FLAG, | 
 | 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); | 
 | } | 
 | static ssize_t enabled_store(struct kobject *kobj, | 
 | 			     struct kobj_attribute *attr, | 
 | 			     const char *buf, size_t count) | 
 | { | 
 | 	ssize_t ret; | 
 |  | 
 | 	ret = double_flag_store(kobj, attr, buf, count, | 
 | 				TRANSPARENT_HUGEPAGE_FLAG, | 
 | 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); | 
 |  | 
 | 	if (ret > 0) { | 
 | 		int err; | 
 |  | 
 | 		mutex_lock(&khugepaged_mutex); | 
 | 		err = start_khugepaged(); | 
 | 		mutex_unlock(&khugepaged_mutex); | 
 |  | 
 | 		if (err) | 
 | 			ret = err; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | static struct kobj_attribute enabled_attr = | 
 | 	__ATTR(enabled, 0644, enabled_show, enabled_store); | 
 |  | 
 | static ssize_t single_flag_show(struct kobject *kobj, | 
 | 				struct kobj_attribute *attr, char *buf, | 
 | 				enum transparent_hugepage_flag flag) | 
 | { | 
 | 	return sprintf(buf, "%d\n", | 
 | 		       !!test_bit(flag, &transparent_hugepage_flags)); | 
 | } | 
 |  | 
 | static ssize_t single_flag_store(struct kobject *kobj, | 
 | 				 struct kobj_attribute *attr, | 
 | 				 const char *buf, size_t count, | 
 | 				 enum transparent_hugepage_flag flag) | 
 | { | 
 | 	unsigned long value; | 
 | 	int ret; | 
 |  | 
 | 	ret = kstrtoul(buf, 10, &value); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	if (value > 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (value) | 
 | 		set_bit(flag, &transparent_hugepage_flags); | 
 | 	else | 
 | 		clear_bit(flag, &transparent_hugepage_flags); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind | 
 |  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of | 
 |  * memory just to allocate one more hugepage. | 
 |  */ | 
 | static ssize_t defrag_show(struct kobject *kobj, | 
 | 			   struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return double_flag_show(kobj, attr, buf, | 
 | 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, | 
 | 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); | 
 | } | 
 | static ssize_t defrag_store(struct kobject *kobj, | 
 | 			    struct kobj_attribute *attr, | 
 | 			    const char *buf, size_t count) | 
 | { | 
 | 	return double_flag_store(kobj, attr, buf, count, | 
 | 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, | 
 | 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); | 
 | } | 
 | static struct kobj_attribute defrag_attr = | 
 | 	__ATTR(defrag, 0644, defrag_show, defrag_store); | 
 |  | 
 | static ssize_t use_zero_page_show(struct kobject *kobj, | 
 | 		struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return single_flag_show(kobj, attr, buf, | 
 | 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); | 
 | } | 
 | static ssize_t use_zero_page_store(struct kobject *kobj, | 
 | 		struct kobj_attribute *attr, const char *buf, size_t count) | 
 | { | 
 | 	return single_flag_store(kobj, attr, buf, count, | 
 | 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); | 
 | } | 
 | static struct kobj_attribute use_zero_page_attr = | 
 | 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); | 
 | #ifdef CONFIG_DEBUG_VM | 
 | static ssize_t debug_cow_show(struct kobject *kobj, | 
 | 				struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return single_flag_show(kobj, attr, buf, | 
 | 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); | 
 | } | 
 | static ssize_t debug_cow_store(struct kobject *kobj, | 
 | 			       struct kobj_attribute *attr, | 
 | 			       const char *buf, size_t count) | 
 | { | 
 | 	return single_flag_store(kobj, attr, buf, count, | 
 | 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); | 
 | } | 
 | static struct kobj_attribute debug_cow_attr = | 
 | 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); | 
 | #endif /* CONFIG_DEBUG_VM */ | 
 |  | 
 | static struct attribute *hugepage_attr[] = { | 
 | 	&enabled_attr.attr, | 
 | 	&defrag_attr.attr, | 
 | 	&use_zero_page_attr.attr, | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 	&debug_cow_attr.attr, | 
 | #endif | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct attribute_group hugepage_attr_group = { | 
 | 	.attrs = hugepage_attr, | 
 | }; | 
 |  | 
 | static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, | 
 | 					 struct kobj_attribute *attr, | 
 | 					 char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); | 
 | } | 
 |  | 
 | static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, | 
 | 					  struct kobj_attribute *attr, | 
 | 					  const char *buf, size_t count) | 
 | { | 
 | 	unsigned long msecs; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &msecs); | 
 | 	if (err || msecs > UINT_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_scan_sleep_millisecs = msecs; | 
 | 	wake_up_interruptible(&khugepaged_wait); | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute scan_sleep_millisecs_attr = | 
 | 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, | 
 | 	       scan_sleep_millisecs_store); | 
 |  | 
 | static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, | 
 | 					  struct kobj_attribute *attr, | 
 | 					  char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); | 
 | } | 
 |  | 
 | static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, | 
 | 					   struct kobj_attribute *attr, | 
 | 					   const char *buf, size_t count) | 
 | { | 
 | 	unsigned long msecs; | 
 | 	int err; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &msecs); | 
 | 	if (err || msecs > UINT_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_alloc_sleep_millisecs = msecs; | 
 | 	wake_up_interruptible(&khugepaged_wait); | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute alloc_sleep_millisecs_attr = | 
 | 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, | 
 | 	       alloc_sleep_millisecs_store); | 
 |  | 
 | static ssize_t pages_to_scan_show(struct kobject *kobj, | 
 | 				  struct kobj_attribute *attr, | 
 | 				  char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan); | 
 | } | 
 | static ssize_t pages_to_scan_store(struct kobject *kobj, | 
 | 				   struct kobj_attribute *attr, | 
 | 				   const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long pages; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &pages); | 
 | 	if (err || !pages || pages > UINT_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_pages_to_scan = pages; | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute pages_to_scan_attr = | 
 | 	__ATTR(pages_to_scan, 0644, pages_to_scan_show, | 
 | 	       pages_to_scan_store); | 
 |  | 
 | static ssize_t pages_collapsed_show(struct kobject *kobj, | 
 | 				    struct kobj_attribute *attr, | 
 | 				    char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed); | 
 | } | 
 | static struct kobj_attribute pages_collapsed_attr = | 
 | 	__ATTR_RO(pages_collapsed); | 
 |  | 
 | static ssize_t full_scans_show(struct kobject *kobj, | 
 | 			       struct kobj_attribute *attr, | 
 | 			       char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_full_scans); | 
 | } | 
 | static struct kobj_attribute full_scans_attr = | 
 | 	__ATTR_RO(full_scans); | 
 |  | 
 | static ssize_t khugepaged_defrag_show(struct kobject *kobj, | 
 | 				      struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return single_flag_show(kobj, attr, buf, | 
 | 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
 | } | 
 | static ssize_t khugepaged_defrag_store(struct kobject *kobj, | 
 | 				       struct kobj_attribute *attr, | 
 | 				       const char *buf, size_t count) | 
 | { | 
 | 	return single_flag_store(kobj, attr, buf, count, | 
 | 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
 | } | 
 | static struct kobj_attribute khugepaged_defrag_attr = | 
 | 	__ATTR(defrag, 0644, khugepaged_defrag_show, | 
 | 	       khugepaged_defrag_store); | 
 |  | 
 | /* | 
 |  * max_ptes_none controls if khugepaged should collapse hugepages over | 
 |  * any unmapped ptes in turn potentially increasing the memory | 
 |  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not | 
 |  * reduce the available free memory in the system as it | 
 |  * runs. Increasing max_ptes_none will instead potentially reduce the | 
 |  * free memory in the system during the khugepaged scan. | 
 |  */ | 
 | static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, | 
 | 					     struct kobj_attribute *attr, | 
 | 					     char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none); | 
 | } | 
 | static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, | 
 | 					      struct kobj_attribute *attr, | 
 | 					      const char *buf, size_t count) | 
 | { | 
 | 	int err; | 
 | 	unsigned long max_ptes_none; | 
 |  | 
 | 	err = kstrtoul(buf, 10, &max_ptes_none); | 
 | 	if (err || max_ptes_none > HPAGE_PMD_NR-1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	khugepaged_max_ptes_none = max_ptes_none; | 
 |  | 
 | 	return count; | 
 | } | 
 | static struct kobj_attribute khugepaged_max_ptes_none_attr = | 
 | 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, | 
 | 	       khugepaged_max_ptes_none_store); | 
 |  | 
 | static struct attribute *khugepaged_attr[] = { | 
 | 	&khugepaged_defrag_attr.attr, | 
 | 	&khugepaged_max_ptes_none_attr.attr, | 
 | 	&pages_to_scan_attr.attr, | 
 | 	&pages_collapsed_attr.attr, | 
 | 	&full_scans_attr.attr, | 
 | 	&scan_sleep_millisecs_attr.attr, | 
 | 	&alloc_sleep_millisecs_attr.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct attribute_group khugepaged_attr_group = { | 
 | 	.attrs = khugepaged_attr, | 
 | 	.name = "khugepaged", | 
 | }; | 
 |  | 
 | static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); | 
 | 	if (unlikely(!*hugepage_kobj)) { | 
 | 		pr_err("failed to create transparent hugepage kobject\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); | 
 | 	if (err) { | 
 | 		pr_err("failed to register transparent hugepage group\n"); | 
 | 		goto delete_obj; | 
 | 	} | 
 |  | 
 | 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); | 
 | 	if (err) { | 
 | 		pr_err("failed to register transparent hugepage group\n"); | 
 | 		goto remove_hp_group; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | remove_hp_group: | 
 | 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); | 
 | delete_obj: | 
 | 	kobject_put(*hugepage_kobj); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) | 
 | { | 
 | 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); | 
 | 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); | 
 | 	kobject_put(hugepage_kobj); | 
 | } | 
 | #else | 
 | static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) | 
 | { | 
 | } | 
 | #endif /* CONFIG_SYSFS */ | 
 |  | 
 | static int __init hugepage_init(void) | 
 | { | 
 | 	int err; | 
 | 	struct kobject *hugepage_kobj; | 
 |  | 
 | 	if (!has_transparent_hugepage()) { | 
 | 		transparent_hugepage_flags = 0; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	err = hugepage_init_sysfs(&hugepage_kobj); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = khugepaged_slab_init(); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	register_shrinker(&huge_zero_page_shrinker); | 
 |  | 
 | 	/* | 
 | 	 * By default disable transparent hugepages on smaller systems, | 
 | 	 * where the extra memory used could hurt more than TLB overhead | 
 | 	 * is likely to save.  The admin can still enable it through /sys. | 
 | 	 */ | 
 | 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) | 
 | 		transparent_hugepage_flags = 0; | 
 |  | 
 | 	start_khugepaged(); | 
 |  | 
 | 	return 0; | 
 | out: | 
 | 	hugepage_exit_sysfs(hugepage_kobj); | 
 | 	return err; | 
 | } | 
 | subsys_initcall(hugepage_init); | 
 |  | 
 | static int __init setup_transparent_hugepage(char *str) | 
 | { | 
 | 	int ret = 0; | 
 | 	if (!str) | 
 | 		goto out; | 
 | 	if (!strcmp(str, "always")) { | 
 | 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, | 
 | 			&transparent_hugepage_flags); | 
 | 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | 
 | 			  &transparent_hugepage_flags); | 
 | 		ret = 1; | 
 | 	} else if (!strcmp(str, "madvise")) { | 
 | 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, | 
 | 			  &transparent_hugepage_flags); | 
 | 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | 
 | 			&transparent_hugepage_flags); | 
 | 		ret = 1; | 
 | 	} else if (!strcmp(str, "never")) { | 
 | 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, | 
 | 			  &transparent_hugepage_flags); | 
 | 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | 
 | 			  &transparent_hugepage_flags); | 
 | 		ret = 1; | 
 | 	} | 
 | out: | 
 | 	if (!ret) | 
 | 		pr_warn("transparent_hugepage= cannot parse, ignored\n"); | 
 | 	return ret; | 
 | } | 
 | __setup("transparent_hugepage=", setup_transparent_hugepage); | 
 |  | 
 | pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) | 
 | { | 
 | 	if (likely(vma->vm_flags & VM_WRITE)) | 
 | 		pmd = pmd_mkwrite(pmd); | 
 | 	return pmd; | 
 | } | 
 |  | 
 | static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot) | 
 | { | 
 | 	pmd_t entry; | 
 | 	entry = mk_pmd(page, prot); | 
 | 	entry = pmd_mkhuge(entry); | 
 | 	return entry; | 
 | } | 
 |  | 
 | static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, | 
 | 					struct vm_area_struct *vma, | 
 | 					unsigned long haddr, pmd_t *pmd, | 
 | 					struct page *page) | 
 | { | 
 | 	pgtable_t pgtable; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageCompound(page), page); | 
 | 	pgtable = pte_alloc_one(mm, haddr); | 
 | 	if (unlikely(!pgtable)) | 
 | 		return VM_FAULT_OOM; | 
 |  | 
 | 	clear_huge_page(page, haddr, HPAGE_PMD_NR); | 
 | 	/* | 
 | 	 * The memory barrier inside __SetPageUptodate makes sure that | 
 | 	 * clear_huge_page writes become visible before the set_pmd_at() | 
 | 	 * write. | 
 | 	 */ | 
 | 	__SetPageUptodate(page); | 
 |  | 
 | 	ptl = pmd_lock(mm, pmd); | 
 | 	if (unlikely(!pmd_none(*pmd))) { | 
 | 		spin_unlock(ptl); | 
 | 		mem_cgroup_uncharge_page(page); | 
 | 		put_page(page); | 
 | 		pte_free(mm, pgtable); | 
 | 	} else { | 
 | 		pmd_t entry; | 
 | 		entry = mk_huge_pmd(page, vma->vm_page_prot); | 
 | 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | 
 | 		page_add_new_anon_rmap(page, vma, haddr); | 
 | 		pgtable_trans_huge_deposit(mm, pmd, pgtable); | 
 | 		set_pmd_at(mm, haddr, pmd, entry); | 
 | 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); | 
 | 		atomic_long_inc(&mm->nr_ptes); | 
 | 		spin_unlock(ptl); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) | 
 | { | 
 | 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; | 
 | } | 
 |  | 
 | static inline struct page *alloc_hugepage_vma(int defrag, | 
 | 					      struct vm_area_struct *vma, | 
 | 					      unsigned long haddr, int nd, | 
 | 					      gfp_t extra_gfp) | 
 | { | 
 | 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp), | 
 | 			       HPAGE_PMD_ORDER, vma, haddr, nd); | 
 | } | 
 |  | 
 | /* Caller must hold page table lock. */ | 
 | static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, | 
 | 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, | 
 | 		struct page *zero_page) | 
 | { | 
 | 	pmd_t entry; | 
 | 	if (!pmd_none(*pmd)) | 
 | 		return false; | 
 | 	entry = mk_pmd(zero_page, vma->vm_page_prot); | 
 | 	entry = pmd_wrprotect(entry); | 
 | 	entry = pmd_mkhuge(entry); | 
 | 	pgtable_trans_huge_deposit(mm, pmd, pgtable); | 
 | 	set_pmd_at(mm, haddr, pmd, entry); | 
 | 	atomic_long_inc(&mm->nr_ptes); | 
 | 	return true; | 
 | } | 
 |  | 
 | int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			       unsigned long address, pmd_t *pmd, | 
 | 			       unsigned int flags) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long haddr = address & HPAGE_PMD_MASK; | 
 |  | 
 | 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) | 
 | 		return VM_FAULT_FALLBACK; | 
 | 	if (unlikely(anon_vma_prepare(vma))) | 
 | 		return VM_FAULT_OOM; | 
 | 	if (unlikely(khugepaged_enter(vma))) | 
 | 		return VM_FAULT_OOM; | 
 | 	if (!(flags & FAULT_FLAG_WRITE) && | 
 | 			transparent_hugepage_use_zero_page()) { | 
 | 		spinlock_t *ptl; | 
 | 		pgtable_t pgtable; | 
 | 		struct page *zero_page; | 
 | 		bool set; | 
 | 		pgtable = pte_alloc_one(mm, haddr); | 
 | 		if (unlikely(!pgtable)) | 
 | 			return VM_FAULT_OOM; | 
 | 		zero_page = get_huge_zero_page(); | 
 | 		if (unlikely(!zero_page)) { | 
 | 			pte_free(mm, pgtable); | 
 | 			count_vm_event(THP_FAULT_FALLBACK); | 
 | 			return VM_FAULT_FALLBACK; | 
 | 		} | 
 | 		ptl = pmd_lock(mm, pmd); | 
 | 		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd, | 
 | 				zero_page); | 
 | 		spin_unlock(ptl); | 
 | 		if (!set) { | 
 | 			pte_free(mm, pgtable); | 
 | 			put_huge_zero_page(); | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 | 	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), | 
 | 			vma, haddr, numa_node_id(), 0); | 
 | 	if (unlikely(!page)) { | 
 | 		count_vm_event(THP_FAULT_FALLBACK); | 
 | 		return VM_FAULT_FALLBACK; | 
 | 	} | 
 | 	if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) { | 
 | 		put_page(page); | 
 | 		count_vm_event(THP_FAULT_FALLBACK); | 
 | 		return VM_FAULT_FALLBACK; | 
 | 	} | 
 | 	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) { | 
 | 		mem_cgroup_uncharge_page(page); | 
 | 		put_page(page); | 
 | 		count_vm_event(THP_FAULT_FALLBACK); | 
 | 		return VM_FAULT_FALLBACK; | 
 | 	} | 
 |  | 
 | 	count_vm_event(THP_FAULT_ALLOC); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, | 
 | 		  struct vm_area_struct *vma) | 
 | { | 
 | 	spinlock_t *dst_ptl, *src_ptl; | 
 | 	struct page *src_page; | 
 | 	pmd_t pmd; | 
 | 	pgtable_t pgtable; | 
 | 	int ret; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	pgtable = pte_alloc_one(dst_mm, addr); | 
 | 	if (unlikely(!pgtable)) | 
 | 		goto out; | 
 |  | 
 | 	dst_ptl = pmd_lock(dst_mm, dst_pmd); | 
 | 	src_ptl = pmd_lockptr(src_mm, src_pmd); | 
 | 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
 |  | 
 | 	ret = -EAGAIN; | 
 | 	pmd = *src_pmd; | 
 | 	if (unlikely(!pmd_trans_huge(pmd))) { | 
 | 		pte_free(dst_mm, pgtable); | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	/* | 
 | 	 * When page table lock is held, the huge zero pmd should not be | 
 | 	 * under splitting since we don't split the page itself, only pmd to | 
 | 	 * a page table. | 
 | 	 */ | 
 | 	if (is_huge_zero_pmd(pmd)) { | 
 | 		struct page *zero_page; | 
 | 		bool set; | 
 | 		/* | 
 | 		 * get_huge_zero_page() will never allocate a new page here, | 
 | 		 * since we already have a zero page to copy. It just takes a | 
 | 		 * reference. | 
 | 		 */ | 
 | 		zero_page = get_huge_zero_page(); | 
 | 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, | 
 | 				zero_page); | 
 | 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */ | 
 | 		ret = 0; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	if (unlikely(pmd_trans_splitting(pmd))) { | 
 | 		/* split huge page running from under us */ | 
 | 		spin_unlock(src_ptl); | 
 | 		spin_unlock(dst_ptl); | 
 | 		pte_free(dst_mm, pgtable); | 
 |  | 
 | 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ | 
 | 		goto out; | 
 | 	} | 
 | 	src_page = pmd_page(pmd); | 
 | 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page); | 
 | 	get_page(src_page); | 
 | 	page_dup_rmap(src_page); | 
 | 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); | 
 |  | 
 | 	pmdp_set_wrprotect(src_mm, addr, src_pmd); | 
 | 	pmd = pmd_mkold(pmd_wrprotect(pmd)); | 
 | 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); | 
 | 	set_pmd_at(dst_mm, addr, dst_pmd, pmd); | 
 | 	atomic_long_inc(&dst_mm->nr_ptes); | 
 |  | 
 | 	ret = 0; | 
 | out_unlock: | 
 | 	spin_unlock(src_ptl); | 
 | 	spin_unlock(dst_ptl); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | void huge_pmd_set_accessed(struct mm_struct *mm, | 
 | 			   struct vm_area_struct *vma, | 
 | 			   unsigned long address, | 
 | 			   pmd_t *pmd, pmd_t orig_pmd, | 
 | 			   int dirty) | 
 | { | 
 | 	spinlock_t *ptl; | 
 | 	pmd_t entry; | 
 | 	unsigned long haddr; | 
 |  | 
 | 	ptl = pmd_lock(mm, pmd); | 
 | 	if (unlikely(!pmd_same(*pmd, orig_pmd))) | 
 | 		goto unlock; | 
 |  | 
 | 	entry = pmd_mkyoung(orig_pmd); | 
 | 	haddr = address & HPAGE_PMD_MASK; | 
 | 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty)) | 
 | 		update_mmu_cache_pmd(vma, address, pmd); | 
 |  | 
 | unlock: | 
 | 	spin_unlock(ptl); | 
 | } | 
 |  | 
 | /* | 
 |  * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages | 
 |  * during copy_user_huge_page()'s copy_page_rep(): in the case when | 
 |  * the source page gets split and a tail freed before copy completes. | 
 |  * Called under pmd_lock of checked pmd, so safe from splitting itself. | 
 |  */ | 
 | static void get_user_huge_page(struct page *page) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) { | 
 | 		struct page *endpage = page + HPAGE_PMD_NR; | 
 |  | 
 | 		atomic_add(HPAGE_PMD_NR, &page->_count); | 
 | 		while (++page < endpage) | 
 | 			get_huge_page_tail(page); | 
 | 	} else { | 
 | 		get_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | static void put_user_huge_page(struct page *page) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) { | 
 | 		struct page *endpage = page + HPAGE_PMD_NR; | 
 |  | 
 | 		while (page < endpage) | 
 | 			put_page(page++); | 
 | 	} else { | 
 | 		put_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, | 
 | 					struct vm_area_struct *vma, | 
 | 					unsigned long address, | 
 | 					pmd_t *pmd, pmd_t orig_pmd, | 
 | 					struct page *page, | 
 | 					unsigned long haddr) | 
 | { | 
 | 	spinlock_t *ptl; | 
 | 	pgtable_t pgtable; | 
 | 	pmd_t _pmd; | 
 | 	int ret = 0, i; | 
 | 	struct page **pages; | 
 | 	unsigned long mmun_start;	/* For mmu_notifiers */ | 
 | 	unsigned long mmun_end;		/* For mmu_notifiers */ | 
 |  | 
 | 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, | 
 | 			GFP_KERNEL); | 
 | 	if (unlikely(!pages)) { | 
 | 		ret |= VM_FAULT_OOM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < HPAGE_PMD_NR; i++) { | 
 | 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | | 
 | 					       __GFP_OTHER_NODE, | 
 | 					       vma, address, page_to_nid(page)); | 
 | 		if (unlikely(!pages[i] || | 
 | 			     mem_cgroup_charge_anon(pages[i], mm, | 
 | 						       GFP_KERNEL))) { | 
 | 			if (pages[i]) | 
 | 				put_page(pages[i]); | 
 | 			mem_cgroup_uncharge_start(); | 
 | 			while (--i >= 0) { | 
 | 				mem_cgroup_uncharge_page(pages[i]); | 
 | 				put_page(pages[i]); | 
 | 			} | 
 | 			mem_cgroup_uncharge_end(); | 
 | 			kfree(pages); | 
 | 			ret |= VM_FAULT_OOM; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < HPAGE_PMD_NR; i++) { | 
 | 		copy_user_highpage(pages[i], page + i, | 
 | 				   haddr + PAGE_SIZE * i, vma); | 
 | 		__SetPageUptodate(pages[i]); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	mmun_start = haddr; | 
 | 	mmun_end   = haddr + HPAGE_PMD_SIZE; | 
 | 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
 |  | 
 | 	ptl = pmd_lock(mm, pmd); | 
 | 	if (unlikely(!pmd_same(*pmd, orig_pmd))) | 
 | 		goto out_free_pages; | 
 | 	VM_BUG_ON_PAGE(!PageHead(page), page); | 
 |  | 
 | 	pmdp_clear_flush(vma, haddr, pmd); | 
 | 	/* leave pmd empty until pte is filled */ | 
 |  | 
 | 	pgtable = pgtable_trans_huge_withdraw(mm, pmd); | 
 | 	pmd_populate(mm, &_pmd, pgtable); | 
 |  | 
 | 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { | 
 | 		pte_t *pte, entry; | 
 | 		entry = mk_pte(pages[i], vma->vm_page_prot); | 
 | 		entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
 | 		page_add_new_anon_rmap(pages[i], vma, haddr); | 
 | 		pte = pte_offset_map(&_pmd, haddr); | 
 | 		VM_BUG_ON(!pte_none(*pte)); | 
 | 		set_pte_at(mm, haddr, pte, entry); | 
 | 		pte_unmap(pte); | 
 | 	} | 
 | 	kfree(pages); | 
 |  | 
 | 	smp_wmb(); /* make pte visible before pmd */ | 
 | 	pmd_populate(mm, pmd, pgtable); | 
 | 	page_remove_rmap(page); | 
 | 	spin_unlock(ptl); | 
 |  | 
 | 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
 |  | 
 | 	ret |= VM_FAULT_WRITE; | 
 | 	put_page(page); | 
 |  | 
 | out: | 
 | 	return ret; | 
 |  | 
 | out_free_pages: | 
 | 	spin_unlock(ptl); | 
 | 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
 | 	mem_cgroup_uncharge_start(); | 
 | 	for (i = 0; i < HPAGE_PMD_NR; i++) { | 
 | 		mem_cgroup_uncharge_page(pages[i]); | 
 | 		put_page(pages[i]); | 
 | 	} | 
 | 	mem_cgroup_uncharge_end(); | 
 | 	kfree(pages); | 
 | 	goto out; | 
 | } | 
 |  | 
 | int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd) | 
 | { | 
 | 	spinlock_t *ptl; | 
 | 	int ret = 0; | 
 | 	struct page *page = NULL, *new_page; | 
 | 	unsigned long haddr; | 
 | 	unsigned long mmun_start;	/* For mmu_notifiers */ | 
 | 	unsigned long mmun_end;		/* For mmu_notifiers */ | 
 |  | 
 | 	ptl = pmd_lockptr(mm, pmd); | 
 | 	VM_BUG_ON(!vma->anon_vma); | 
 | 	haddr = address & HPAGE_PMD_MASK; | 
 | 	if (is_huge_zero_pmd(orig_pmd)) | 
 | 		goto alloc; | 
 | 	spin_lock(ptl); | 
 | 	if (unlikely(!pmd_same(*pmd, orig_pmd))) | 
 | 		goto out_unlock; | 
 |  | 
 | 	page = pmd_page(orig_pmd); | 
 | 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); | 
 | 	if (page_mapcount(page) == 1) { | 
 | 		pmd_t entry; | 
 | 		entry = pmd_mkyoung(orig_pmd); | 
 | 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | 
 | 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1)) | 
 | 			update_mmu_cache_pmd(vma, address, pmd); | 
 | 		ret |= VM_FAULT_WRITE; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	get_user_huge_page(page); | 
 | 	spin_unlock(ptl); | 
 | alloc: | 
 | 	if (transparent_hugepage_enabled(vma) && | 
 | 	    !transparent_hugepage_debug_cow()) | 
 | 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), | 
 | 					      vma, haddr, numa_node_id(), 0); | 
 | 	else | 
 | 		new_page = NULL; | 
 |  | 
 | 	if (unlikely(!new_page)) { | 
 | 		if (!page) { | 
 | 			split_huge_page_pmd(vma, address, pmd); | 
 | 			ret |= VM_FAULT_FALLBACK; | 
 | 		} else { | 
 | 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address, | 
 | 					pmd, orig_pmd, page, haddr); | 
 | 			if (ret & VM_FAULT_OOM) { | 
 | 				split_huge_page(page); | 
 | 				ret |= VM_FAULT_FALLBACK; | 
 | 			} | 
 | 			put_user_huge_page(page); | 
 | 		} | 
 | 		count_vm_event(THP_FAULT_FALLBACK); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) { | 
 | 		put_page(new_page); | 
 | 		if (page) { | 
 | 			split_huge_page(page); | 
 | 			put_user_huge_page(page); | 
 | 		} else | 
 | 			split_huge_page_pmd(vma, address, pmd); | 
 | 		ret |= VM_FAULT_FALLBACK; | 
 | 		count_vm_event(THP_FAULT_FALLBACK); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	count_vm_event(THP_FAULT_ALLOC); | 
 |  | 
 | 	if (!page) | 
 | 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR); | 
 | 	else | 
 | 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); | 
 | 	__SetPageUptodate(new_page); | 
 |  | 
 | 	mmun_start = haddr; | 
 | 	mmun_end   = haddr + HPAGE_PMD_SIZE; | 
 | 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
 |  | 
 | 	spin_lock(ptl); | 
 | 	if (page) | 
 | 		put_user_huge_page(page); | 
 | 	if (unlikely(!pmd_same(*pmd, orig_pmd))) { | 
 | 		spin_unlock(ptl); | 
 | 		mem_cgroup_uncharge_page(new_page); | 
 | 		put_page(new_page); | 
 | 		goto out_mn; | 
 | 	} else { | 
 | 		pmd_t entry; | 
 | 		entry = mk_huge_pmd(new_page, vma->vm_page_prot); | 
 | 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | 
 | 		pmdp_clear_flush(vma, haddr, pmd); | 
 | 		page_add_new_anon_rmap(new_page, vma, haddr); | 
 | 		set_pmd_at(mm, haddr, pmd, entry); | 
 | 		update_mmu_cache_pmd(vma, address, pmd); | 
 | 		if (!page) { | 
 | 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); | 
 | 			put_huge_zero_page(); | 
 | 		} else { | 
 | 			VM_BUG_ON_PAGE(!PageHead(page), page); | 
 | 			page_remove_rmap(page); | 
 | 			put_page(page); | 
 | 		} | 
 | 		ret |= VM_FAULT_WRITE; | 
 | 	} | 
 | 	spin_unlock(ptl); | 
 | out_mn: | 
 | 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
 | out: | 
 | 	return ret; | 
 | out_unlock: | 
 | 	spin_unlock(ptl); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, | 
 | 				   unsigned long addr, | 
 | 				   pmd_t *pmd, | 
 | 				   unsigned int flags) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct page *page = NULL; | 
 |  | 
 | 	assert_spin_locked(pmd_lockptr(mm, pmd)); | 
 |  | 
 | 	if (flags & FOLL_WRITE && !pmd_write(*pmd)) | 
 | 		goto out; | 
 |  | 
 | 	/* Avoid dumping huge zero page */ | 
 | 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) | 
 | 		return ERR_PTR(-EFAULT); | 
 |  | 
 | 	/* Full NUMA hinting faults to serialise migration in fault paths */ | 
 | 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) | 
 | 		goto out; | 
 |  | 
 | 	page = pmd_page(*pmd); | 
 | 	VM_BUG_ON_PAGE(!PageHead(page), page); | 
 | 	if (flags & FOLL_TOUCH) { | 
 | 		pmd_t _pmd; | 
 | 		/* | 
 | 		 * We should set the dirty bit only for FOLL_WRITE but | 
 | 		 * for now the dirty bit in the pmd is meaningless. | 
 | 		 * And if the dirty bit will become meaningful and | 
 | 		 * we'll only set it with FOLL_WRITE, an atomic | 
 | 		 * set_bit will be required on the pmd to set the | 
 | 		 * young bit, instead of the current set_pmd_at. | 
 | 		 */ | 
 | 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); | 
 | 		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, | 
 | 					  pmd, _pmd,  1)) | 
 | 			update_mmu_cache_pmd(vma, addr, pmd); | 
 | 	} | 
 | 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { | 
 | 		if (page->mapping && trylock_page(page)) { | 
 | 			lru_add_drain(); | 
 | 			if (page->mapping) | 
 | 				mlock_vma_page(page); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 	} | 
 | 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; | 
 | 	VM_BUG_ON_PAGE(!PageCompound(page), page); | 
 | 	if (flags & FOLL_GET) | 
 | 		get_page_foll(page); | 
 |  | 
 | out: | 
 | 	return page; | 
 | } | 
 |  | 
 | /* NUMA hinting page fault entry point for trans huge pmds */ | 
 | int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 				unsigned long addr, pmd_t pmd, pmd_t *pmdp) | 
 | { | 
 | 	spinlock_t *ptl; | 
 | 	struct anon_vma *anon_vma = NULL; | 
 | 	struct page *page; | 
 | 	unsigned long haddr = addr & HPAGE_PMD_MASK; | 
 | 	int page_nid = -1, this_nid = numa_node_id(); | 
 | 	int target_nid, last_cpupid = -1; | 
 | 	bool page_locked; | 
 | 	bool migrated = false; | 
 | 	int flags = 0; | 
 |  | 
 | 	ptl = pmd_lock(mm, pmdp); | 
 | 	if (unlikely(!pmd_same(pmd, *pmdp))) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * If there are potential migrations, wait for completion and retry | 
 | 	 * without disrupting NUMA hinting information. Do not relock and | 
 | 	 * check_same as the page may no longer be mapped. | 
 | 	 */ | 
 | 	if (unlikely(pmd_trans_migrating(*pmdp))) { | 
 | 		spin_unlock(ptl); | 
 | 		wait_migrate_huge_page(vma->anon_vma, pmdp); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	page = pmd_page(pmd); | 
 | 	BUG_ON(is_huge_zero_page(page)); | 
 | 	page_nid = page_to_nid(page); | 
 | 	last_cpupid = page_cpupid_last(page); | 
 | 	count_vm_numa_event(NUMA_HINT_FAULTS); | 
 | 	if (page_nid == this_nid) { | 
 | 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); | 
 | 		flags |= TNF_FAULT_LOCAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Avoid grouping on DSO/COW pages in specific and RO pages | 
 | 	 * in general, RO pages shouldn't hurt as much anyway since | 
 | 	 * they can be in shared cache state. | 
 | 	 */ | 
 | 	if (!pmd_write(pmd)) | 
 | 		flags |= TNF_NO_GROUP; | 
 |  | 
 | 	/* | 
 | 	 * Acquire the page lock to serialise THP migrations but avoid dropping | 
 | 	 * page_table_lock if at all possible | 
 | 	 */ | 
 | 	page_locked = trylock_page(page); | 
 | 	target_nid = mpol_misplaced(page, vma, haddr); | 
 | 	if (target_nid == -1) { | 
 | 		/* If the page was locked, there are no parallel migrations */ | 
 | 		if (page_locked) | 
 | 			goto clear_pmdnuma; | 
 | 	} | 
 |  | 
 | 	/* Migration could have started since the pmd_trans_migrating check */ | 
 | 	if (!page_locked) { | 
 | 		spin_unlock(ptl); | 
 | 		wait_on_page_locked(page); | 
 | 		page_nid = -1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma | 
 | 	 * to serialises splits | 
 | 	 */ | 
 | 	get_page(page); | 
 | 	spin_unlock(ptl); | 
 | 	anon_vma = page_lock_anon_vma_read(page); | 
 |  | 
 | 	/* Confirm the PMD did not change while page_table_lock was released */ | 
 | 	spin_lock(ptl); | 
 | 	if (unlikely(!pmd_same(pmd, *pmdp))) { | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 		page_nid = -1; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* Bail if we fail to protect against THP splits for any reason */ | 
 | 	if (unlikely(!anon_vma)) { | 
 | 		put_page(page); | 
 | 		page_nid = -1; | 
 | 		goto clear_pmdnuma; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Migrate the THP to the requested node, returns with page unlocked | 
 | 	 * and pmd_numa cleared. | 
 | 	 */ | 
 | 	spin_unlock(ptl); | 
 | 	migrated = migrate_misplaced_transhuge_page(mm, vma, | 
 | 				pmdp, pmd, addr, page, target_nid); | 
 | 	if (migrated) { | 
 | 		flags |= TNF_MIGRATED; | 
 | 		page_nid = target_nid; | 
 | 	} | 
 |  | 
 | 	goto out; | 
 | clear_pmdnuma: | 
 | 	BUG_ON(!PageLocked(page)); | 
 | 	pmd = pmd_mknonnuma(pmd); | 
 | 	set_pmd_at(mm, haddr, pmdp, pmd); | 
 | 	VM_BUG_ON(pmd_numa(*pmdp)); | 
 | 	update_mmu_cache_pmd(vma, addr, pmdp); | 
 | 	unlock_page(page); | 
 | out_unlock: | 
 | 	spin_unlock(ptl); | 
 |  | 
 | out: | 
 | 	if (anon_vma) | 
 | 		page_unlock_anon_vma_read(anon_vma); | 
 |  | 
 | 	if (page_nid != -1) | 
 | 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
 | 		 pmd_t *pmd, unsigned long addr) | 
 | { | 
 | 	spinlock_t *ptl; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { | 
 | 		struct page *page; | 
 | 		pgtable_t pgtable; | 
 | 		pmd_t orig_pmd; | 
 | 		/* | 
 | 		 * For architectures like ppc64 we look at deposited pgtable | 
 | 		 * when calling pmdp_get_and_clear. So do the | 
 | 		 * pgtable_trans_huge_withdraw after finishing pmdp related | 
 | 		 * operations. | 
 | 		 */ | 
 | 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd); | 
 | 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr); | 
 | 		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); | 
 | 		if (is_huge_zero_pmd(orig_pmd)) { | 
 | 			atomic_long_dec(&tlb->mm->nr_ptes); | 
 | 			spin_unlock(ptl); | 
 | 			put_huge_zero_page(); | 
 | 		} else { | 
 | 			page = pmd_page(orig_pmd); | 
 | 			page_remove_rmap(page); | 
 | 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); | 
 | 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); | 
 | 			VM_BUG_ON_PAGE(!PageHead(page), page); | 
 | 			atomic_long_dec(&tlb->mm->nr_ptes); | 
 | 			spin_unlock(ptl); | 
 | 			tlb_remove_page(tlb, page); | 
 | 		} | 
 | 		pte_free(tlb->mm, pgtable); | 
 | 		ret = 1; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, | 
 | 		unsigned long addr, unsigned long end, | 
 | 		unsigned char *vec) | 
 | { | 
 | 	spinlock_t *ptl; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { | 
 | 		/* | 
 | 		 * All logical pages in the range are present | 
 | 		 * if backed by a huge page. | 
 | 		 */ | 
 | 		spin_unlock(ptl); | 
 | 		memset(vec, 1, (end - addr) >> PAGE_SHIFT); | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, | 
 | 		  unsigned long old_addr, | 
 | 		  unsigned long new_addr, unsigned long old_end, | 
 | 		  pmd_t *old_pmd, pmd_t *new_pmd) | 
 | { | 
 | 	spinlock_t *old_ptl, *new_ptl; | 
 | 	int ret = 0; | 
 | 	pmd_t pmd; | 
 |  | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	if ((old_addr & ~HPAGE_PMD_MASK) || | 
 | 	    (new_addr & ~HPAGE_PMD_MASK) || | 
 | 	    old_end - old_addr < HPAGE_PMD_SIZE || | 
 | 	    (new_vma->vm_flags & VM_NOHUGEPAGE)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * The destination pmd shouldn't be established, free_pgtables() | 
 | 	 * should have release it. | 
 | 	 */ | 
 | 	if (WARN_ON(!pmd_none(*new_pmd))) { | 
 | 		VM_BUG_ON(pmd_trans_huge(*new_pmd)); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We don't have to worry about the ordering of src and dst | 
 | 	 * ptlocks because exclusive mmap_sem prevents deadlock. | 
 | 	 */ | 
 | 	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl); | 
 | 	if (ret == 1) { | 
 | 		new_ptl = pmd_lockptr(mm, new_pmd); | 
 | 		if (new_ptl != old_ptl) | 
 | 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); | 
 | 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd); | 
 | 		VM_BUG_ON(!pmd_none(*new_pmd)); | 
 |  | 
 | 		if (pmd_move_must_withdraw(new_ptl, old_ptl)) { | 
 | 			pgtable_t pgtable; | 
 | 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); | 
 | 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable); | 
 | 		} | 
 | 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); | 
 | 		if (new_ptl != old_ptl) | 
 | 			spin_unlock(new_ptl); | 
 | 		spin_unlock(old_ptl); | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns | 
 |  *  - 0 if PMD could not be locked | 
 |  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary | 
 |  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary | 
 |  */ | 
 | int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, | 
 | 		unsigned long addr, pgprot_t newprot, int prot_numa) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	spinlock_t *ptl; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { | 
 | 		pmd_t entry; | 
 | 		ret = 1; | 
 | 		if (!prot_numa) { | 
 | 			entry = pmdp_get_and_clear(mm, addr, pmd); | 
 | 			if (pmd_numa(entry)) | 
 | 				entry = pmd_mknonnuma(entry); | 
 | 			entry = pmd_modify(entry, newprot); | 
 | 			ret = HPAGE_PMD_NR; | 
 | 			set_pmd_at(mm, addr, pmd, entry); | 
 | 			BUG_ON(pmd_write(entry)); | 
 | 		} else { | 
 | 			struct page *page = pmd_page(*pmd); | 
 |  | 
 | 			/* | 
 | 			 * Do not trap faults against the zero page. The | 
 | 			 * read-only data is likely to be read-cached on the | 
 | 			 * local CPU cache and it is less useful to know about | 
 | 			 * local vs remote hits on the zero page. | 
 | 			 */ | 
 | 			if (!is_huge_zero_page(page) && | 
 | 			    !pmd_numa(*pmd)) { | 
 | 				pmdp_set_numa(mm, addr, pmd); | 
 | 				ret = HPAGE_PMD_NR; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock(ptl); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns 1 if a given pmd maps a stable (not under splitting) thp. | 
 |  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise. | 
 |  * | 
 |  * Note that if it returns 1, this routine returns without unlocking page | 
 |  * table locks. So callers must unlock them. | 
 |  */ | 
 | int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma, | 
 | 		spinlock_t **ptl) | 
 | { | 
 | 	*ptl = pmd_lock(vma->vm_mm, pmd); | 
 | 	if (likely(pmd_trans_huge(*pmd))) { | 
 | 		if (unlikely(pmd_trans_splitting(*pmd))) { | 
 | 			spin_unlock(*ptl); | 
 | 			wait_split_huge_page(vma->anon_vma, pmd); | 
 | 			return -1; | 
 | 		} else { | 
 | 			/* Thp mapped by 'pmd' is stable, so we can | 
 | 			 * handle it as it is. */ | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(*ptl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This function returns whether a given @page is mapped onto the @address | 
 |  * in the virtual space of @mm. | 
 |  * | 
 |  * When it's true, this function returns *pmd with holding the page table lock | 
 |  * and passing it back to the caller via @ptl. | 
 |  * If it's false, returns NULL without holding the page table lock. | 
 |  */ | 
 | pmd_t *page_check_address_pmd(struct page *page, | 
 | 			      struct mm_struct *mm, | 
 | 			      unsigned long address, | 
 | 			      enum page_check_address_pmd_flag flag, | 
 | 			      spinlock_t **ptl) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 |  | 
 | 	if (address & ~HPAGE_PMD_MASK) | 
 | 		return NULL; | 
 |  | 
 | 	pgd = pgd_offset(mm, address); | 
 | 	if (!pgd_present(*pgd)) | 
 | 		return NULL; | 
 | 	pud = pud_offset(pgd, address); | 
 | 	if (!pud_present(*pud)) | 
 | 		return NULL; | 
 | 	pmd = pmd_offset(pud, address); | 
 |  | 
 | 	*ptl = pmd_lock(mm, pmd); | 
 | 	if (!pmd_present(*pmd)) | 
 | 		goto unlock; | 
 | 	if (pmd_page(*pmd) != page) | 
 | 		goto unlock; | 
 | 	/* | 
 | 	 * split_vma() may create temporary aliased mappings. There is | 
 | 	 * no risk as long as all huge pmd are found and have their | 
 | 	 * splitting bit set before __split_huge_page_refcount | 
 | 	 * runs. Finding the same huge pmd more than once during the | 
 | 	 * same rmap walk is not a problem. | 
 | 	 */ | 
 | 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && | 
 | 	    pmd_trans_splitting(*pmd)) | 
 | 		goto unlock; | 
 | 	if (pmd_trans_huge(*pmd)) { | 
 | 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && | 
 | 			  !pmd_trans_splitting(*pmd)); | 
 | 		return pmd; | 
 | 	} | 
 | unlock: | 
 | 	spin_unlock(*ptl); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int __split_huge_page_splitting(struct page *page, | 
 | 				       struct vm_area_struct *vma, | 
 | 				       unsigned long address) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	spinlock_t *ptl; | 
 | 	pmd_t *pmd; | 
 | 	int ret = 0; | 
 | 	/* For mmu_notifiers */ | 
 | 	const unsigned long mmun_start = address; | 
 | 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE; | 
 |  | 
 | 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
 | 	pmd = page_check_address_pmd(page, mm, address, | 
 | 			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl); | 
 | 	if (pmd) { | 
 | 		/* | 
 | 		 * We can't temporarily set the pmd to null in order | 
 | 		 * to split it, the pmd must remain marked huge at all | 
 | 		 * times or the VM won't take the pmd_trans_huge paths | 
 | 		 * and it won't wait on the anon_vma->root->rwsem to | 
 | 		 * serialize against split_huge_page*. | 
 | 		 */ | 
 | 		pmdp_splitting_flush(vma, address, pmd); | 
 | 		ret = 1; | 
 | 		spin_unlock(ptl); | 
 | 	} | 
 | 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __split_huge_page_refcount(struct page *page, | 
 | 				       struct list_head *list) | 
 | { | 
 | 	int i; | 
 | 	struct zone *zone = page_zone(page); | 
 | 	struct lruvec *lruvec; | 
 | 	int tail_count = 0; | 
 |  | 
 | 	/* prevent PageLRU to go away from under us, and freeze lru stats */ | 
 | 	spin_lock_irq(&zone->lru_lock); | 
 | 	lruvec = mem_cgroup_page_lruvec(page, zone); | 
 |  | 
 | 	compound_lock(page); | 
 | 	/* complete memcg works before add pages to LRU */ | 
 | 	mem_cgroup_split_huge_fixup(page); | 
 |  | 
 | 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { | 
 | 		struct page *page_tail = page + i; | 
 |  | 
 | 		/* tail_page->_mapcount cannot change */ | 
 | 		BUG_ON(page_mapcount(page_tail) < 0); | 
 | 		tail_count += page_mapcount(page_tail); | 
 | 		/* check for overflow */ | 
 | 		BUG_ON(tail_count < 0); | 
 | 		BUG_ON(atomic_read(&page_tail->_count) != 0); | 
 | 		/* | 
 | 		 * tail_page->_count is zero and not changing from | 
 | 		 * under us. But get_page_unless_zero() may be running | 
 | 		 * from under us on the tail_page. If we used | 
 | 		 * atomic_set() below instead of atomic_add(), we | 
 | 		 * would then run atomic_set() concurrently with | 
 | 		 * get_page_unless_zero(), and atomic_set() is | 
 | 		 * implemented in C not using locked ops. spin_unlock | 
 | 		 * on x86 sometime uses locked ops because of PPro | 
 | 		 * errata 66, 92, so unless somebody can guarantee | 
 | 		 * atomic_set() here would be safe on all archs (and | 
 | 		 * not only on x86), it's safer to use atomic_add(). | 
 | 		 */ | 
 | 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1, | 
 | 			   &page_tail->_count); | 
 |  | 
 | 		/* after clearing PageTail the gup refcount can be released */ | 
 | 		smp_mb(); | 
 |  | 
 | 		/* | 
 | 		 * retain hwpoison flag of the poisoned tail page: | 
 | 		 *   fix for the unsuitable process killed on Guest Machine(KVM) | 
 | 		 *   by the memory-failure. | 
 | 		 */ | 
 | 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON; | 
 | 		page_tail->flags |= (page->flags & | 
 | 				     ((1L << PG_referenced) | | 
 | 				      (1L << PG_swapbacked) | | 
 | 				      (1L << PG_mlocked) | | 
 | 				      (1L << PG_uptodate) | | 
 | 				      (1L << PG_active) | | 
 | 				      (1L << PG_unevictable))); | 
 | 		page_tail->flags |= (1L << PG_dirty); | 
 |  | 
 | 		/* clear PageTail before overwriting first_page */ | 
 | 		smp_wmb(); | 
 |  | 
 | 		/* | 
 | 		 * __split_huge_page_splitting() already set the | 
 | 		 * splitting bit in all pmd that could map this | 
 | 		 * hugepage, that will ensure no CPU can alter the | 
 | 		 * mapcount on the head page. The mapcount is only | 
 | 		 * accounted in the head page and it has to be | 
 | 		 * transferred to all tail pages in the below code. So | 
 | 		 * for this code to be safe, the split the mapcount | 
 | 		 * can't change. But that doesn't mean userland can't | 
 | 		 * keep changing and reading the page contents while | 
 | 		 * we transfer the mapcount, so the pmd splitting | 
 | 		 * status is achieved setting a reserved bit in the | 
 | 		 * pmd, not by clearing the present bit. | 
 | 		*/ | 
 | 		page_tail->_mapcount = page->_mapcount; | 
 |  | 
 | 		BUG_ON(page_tail->mapping); | 
 | 		page_tail->mapping = page->mapping; | 
 |  | 
 | 		page_tail->index = page->index + i; | 
 | 		page_cpupid_xchg_last(page_tail, page_cpupid_last(page)); | 
 |  | 
 | 		BUG_ON(!PageAnon(page_tail)); | 
 | 		BUG_ON(!PageUptodate(page_tail)); | 
 | 		BUG_ON(!PageDirty(page_tail)); | 
 | 		BUG_ON(!PageSwapBacked(page_tail)); | 
 |  | 
 | 		lru_add_page_tail(page, page_tail, lruvec, list); | 
 | 	} | 
 | 	atomic_sub(tail_count, &page->_count); | 
 | 	BUG_ON(atomic_read(&page->_count) <= 0); | 
 |  | 
 | 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1); | 
 |  | 
 | 	ClearPageCompound(page); | 
 | 	compound_unlock(page); | 
 | 	spin_unlock_irq(&zone->lru_lock); | 
 |  | 
 | 	for (i = 1; i < HPAGE_PMD_NR; i++) { | 
 | 		struct page *page_tail = page + i; | 
 | 		BUG_ON(page_count(page_tail) <= 0); | 
 | 		/* | 
 | 		 * Tail pages may be freed if there wasn't any mapping | 
 | 		 * like if add_to_swap() is running on a lru page that | 
 | 		 * had its mapping zapped. And freeing these pages | 
 | 		 * requires taking the lru_lock so we do the put_page | 
 | 		 * of the tail pages after the split is complete. | 
 | 		 */ | 
 | 		put_page(page_tail); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only the head page (now become a regular page) is required | 
 | 	 * to be pinned by the caller. | 
 | 	 */ | 
 | 	BUG_ON(page_count(page) <= 0); | 
 | } | 
 |  | 
 | static int __split_huge_page_map(struct page *page, | 
 | 				 struct vm_area_struct *vma, | 
 | 				 unsigned long address) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	spinlock_t *ptl; | 
 | 	pmd_t *pmd, _pmd; | 
 | 	int ret = 0, i; | 
 | 	pgtable_t pgtable; | 
 | 	unsigned long haddr; | 
 |  | 
 | 	pmd = page_check_address_pmd(page, mm, address, | 
 | 			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl); | 
 | 	if (pmd) { | 
 | 		pgtable = pgtable_trans_huge_withdraw(mm, pmd); | 
 | 		pmd_populate(mm, &_pmd, pgtable); | 
 |  | 
 | 		haddr = address; | 
 | 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { | 
 | 			pte_t *pte, entry; | 
 | 			BUG_ON(PageCompound(page+i)); | 
 | 			entry = mk_pte(page + i, vma->vm_page_prot); | 
 | 			entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
 | 			if (!pmd_write(*pmd)) | 
 | 				entry = pte_wrprotect(entry); | 
 | 			else | 
 | 				BUG_ON(page_mapcount(page) != 1); | 
 | 			if (!pmd_young(*pmd)) | 
 | 				entry = pte_mkold(entry); | 
 | 			if (pmd_numa(*pmd)) | 
 | 				entry = pte_mknuma(entry); | 
 | 			pte = pte_offset_map(&_pmd, haddr); | 
 | 			BUG_ON(!pte_none(*pte)); | 
 | 			set_pte_at(mm, haddr, pte, entry); | 
 | 			pte_unmap(pte); | 
 | 		} | 
 |  | 
 | 		smp_wmb(); /* make pte visible before pmd */ | 
 | 		/* | 
 | 		 * Up to this point the pmd is present and huge and | 
 | 		 * userland has the whole access to the hugepage | 
 | 		 * during the split (which happens in place). If we | 
 | 		 * overwrite the pmd with the not-huge version | 
 | 		 * pointing to the pte here (which of course we could | 
 | 		 * if all CPUs were bug free), userland could trigger | 
 | 		 * a small page size TLB miss on the small sized TLB | 
 | 		 * while the hugepage TLB entry is still established | 
 | 		 * in the huge TLB. Some CPU doesn't like that. See | 
 | 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf, | 
 | 		 * Erratum 383 on page 93. Intel should be safe but is | 
 | 		 * also warns that it's only safe if the permission | 
 | 		 * and cache attributes of the two entries loaded in | 
 | 		 * the two TLB is identical (which should be the case | 
 | 		 * here). But it is generally safer to never allow | 
 | 		 * small and huge TLB entries for the same virtual | 
 | 		 * address to be loaded simultaneously. So instead of | 
 | 		 * doing "pmd_populate(); flush_tlb_range();" we first | 
 | 		 * mark the current pmd notpresent (atomically because | 
 | 		 * here the pmd_trans_huge and pmd_trans_splitting | 
 | 		 * must remain set at all times on the pmd until the | 
 | 		 * split is complete for this pmd), then we flush the | 
 | 		 * SMP TLB and finally we write the non-huge version | 
 | 		 * of the pmd entry with pmd_populate. | 
 | 		 */ | 
 | 		pmdp_invalidate(vma, address, pmd); | 
 | 		pmd_populate(mm, pmd, pgtable); | 
 | 		ret = 1; | 
 | 		spin_unlock(ptl); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* must be called with anon_vma->root->rwsem held */ | 
 | static void __split_huge_page(struct page *page, | 
 | 			      struct anon_vma *anon_vma, | 
 | 			      struct list_head *list) | 
 | { | 
 | 	int mapcount, mapcount2; | 
 | 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
 | 	struct anon_vma_chain *avc; | 
 |  | 
 | 	BUG_ON(!PageHead(page)); | 
 | 	BUG_ON(PageTail(page)); | 
 |  | 
 | 	mapcount = 0; | 
 | 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { | 
 | 		struct vm_area_struct *vma = avc->vma; | 
 | 		unsigned long addr = vma_address(page, vma); | 
 | 		BUG_ON(is_vma_temporary_stack(vma)); | 
 | 		mapcount += __split_huge_page_splitting(page, vma, addr); | 
 | 	} | 
 | 	/* | 
 | 	 * It is critical that new vmas are added to the tail of the | 
 | 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs | 
 | 	 * and establishes a child pmd before | 
 | 	 * __split_huge_page_splitting() freezes the parent pmd (so if | 
 | 	 * we fail to prevent copy_huge_pmd() from running until the | 
 | 	 * whole __split_huge_page() is complete), we will still see | 
 | 	 * the newly established pmd of the child later during the | 
 | 	 * walk, to be able to set it as pmd_trans_splitting too. | 
 | 	 */ | 
 | 	if (mapcount != page_mapcount(page)) { | 
 | 		pr_err("mapcount %d page_mapcount %d\n", | 
 | 			mapcount, page_mapcount(page)); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	__split_huge_page_refcount(page, list); | 
 |  | 
 | 	mapcount2 = 0; | 
 | 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { | 
 | 		struct vm_area_struct *vma = avc->vma; | 
 | 		unsigned long addr = vma_address(page, vma); | 
 | 		BUG_ON(is_vma_temporary_stack(vma)); | 
 | 		mapcount2 += __split_huge_page_map(page, vma, addr); | 
 | 	} | 
 | 	if (mapcount != mapcount2) { | 
 | 		pr_err("mapcount %d mapcount2 %d page_mapcount %d\n", | 
 | 			mapcount, mapcount2, page_mapcount(page)); | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Split a hugepage into normal pages. This doesn't change the position of head | 
 |  * page. If @list is null, tail pages will be added to LRU list, otherwise, to | 
 |  * @list. Both head page and tail pages will inherit mapping, flags, and so on | 
 |  * from the hugepage. | 
 |  * Return 0 if the hugepage is split successfully otherwise return 1. | 
 |  */ | 
 | int split_huge_page_to_list(struct page *page, struct list_head *list) | 
 | { | 
 | 	struct anon_vma *anon_vma; | 
 | 	int ret = 1; | 
 |  | 
 | 	BUG_ON(is_huge_zero_page(page)); | 
 | 	BUG_ON(!PageAnon(page)); | 
 |  | 
 | 	/* | 
 | 	 * The caller does not necessarily hold an mmap_sem that would prevent | 
 | 	 * the anon_vma disappearing so we first we take a reference to it | 
 | 	 * and then lock the anon_vma for write. This is similar to | 
 | 	 * page_lock_anon_vma_read except the write lock is taken to serialise | 
 | 	 * against parallel split or collapse operations. | 
 | 	 */ | 
 | 	anon_vma = page_get_anon_vma(page); | 
 | 	if (!anon_vma) | 
 | 		goto out; | 
 | 	anon_vma_lock_write(anon_vma); | 
 |  | 
 | 	ret = 0; | 
 | 	if (!PageCompound(page)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	BUG_ON(!PageSwapBacked(page)); | 
 | 	__split_huge_page(page, anon_vma, list); | 
 | 	count_vm_event(THP_SPLIT); | 
 |  | 
 | 	BUG_ON(PageCompound(page)); | 
 | out_unlock: | 
 | 	anon_vma_unlock_write(anon_vma); | 
 | 	put_anon_vma(anon_vma); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE) | 
 |  | 
 | int hugepage_madvise(struct vm_area_struct *vma, | 
 | 		     unsigned long *vm_flags, int advice) | 
 | { | 
 | 	switch (advice) { | 
 | 	case MADV_HUGEPAGE: | 
 | #ifdef CONFIG_S390 | 
 | 		/* | 
 | 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 | 
 | 		 * can't handle this properly after s390_enable_sie, so we simply | 
 | 		 * ignore the madvise to prevent qemu from causing a SIGSEGV. | 
 | 		 */ | 
 | 		if (mm_has_pgste(vma->vm_mm)) | 
 | 			return 0; | 
 | #endif | 
 | 		/* | 
 | 		 * Be somewhat over-protective like KSM for now! | 
 | 		 */ | 
 | 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) | 
 | 			return -EINVAL; | 
 | 		*vm_flags &= ~VM_NOHUGEPAGE; | 
 | 		*vm_flags |= VM_HUGEPAGE; | 
 | 		/* | 
 | 		 * If the vma become good for khugepaged to scan, | 
 | 		 * register it here without waiting a page fault that | 
 | 		 * may not happen any time soon. | 
 | 		 */ | 
 | 		if (unlikely(khugepaged_enter_vma_merge(vma))) | 
 | 			return -ENOMEM; | 
 | 		break; | 
 | 	case MADV_NOHUGEPAGE: | 
 | 		/* | 
 | 		 * Be somewhat over-protective like KSM for now! | 
 | 		 */ | 
 | 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) | 
 | 			return -EINVAL; | 
 | 		*vm_flags &= ~VM_HUGEPAGE; | 
 | 		*vm_flags |= VM_NOHUGEPAGE; | 
 | 		/* | 
 | 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning | 
 | 		 * this vma even if we leave the mm registered in khugepaged if | 
 | 		 * it got registered before VM_NOHUGEPAGE was set. | 
 | 		 */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init khugepaged_slab_init(void) | 
 | { | 
 | 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", | 
 | 					  sizeof(struct mm_slot), | 
 | 					  __alignof__(struct mm_slot), 0, NULL); | 
 | 	if (!mm_slot_cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline struct mm_slot *alloc_mm_slot(void) | 
 | { | 
 | 	if (!mm_slot_cache)	/* initialization failed */ | 
 | 		return NULL; | 
 | 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | 
 | } | 
 |  | 
 | static inline void free_mm_slot(struct mm_slot *mm_slot) | 
 | { | 
 | 	kmem_cache_free(mm_slot_cache, mm_slot); | 
 | } | 
 |  | 
 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 |  | 
 | 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) | 
 | 		if (mm == mm_slot->mm) | 
 | 			return mm_slot; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void insert_to_mm_slots_hash(struct mm_struct *mm, | 
 | 				    struct mm_slot *mm_slot) | 
 | { | 
 | 	mm_slot->mm = mm; | 
 | 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); | 
 | } | 
 |  | 
 | static inline int khugepaged_test_exit(struct mm_struct *mm) | 
 | { | 
 | 	return atomic_read(&mm->mm_users) == 0; | 
 | } | 
 |  | 
 | int __khugepaged_enter(struct mm_struct *mm) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 | 	int wakeup; | 
 |  | 
 | 	mm_slot = alloc_mm_slot(); | 
 | 	if (!mm_slot) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* __khugepaged_exit() must not run from under us */ | 
 | 	VM_BUG_ON(khugepaged_test_exit(mm)); | 
 | 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { | 
 | 		free_mm_slot(mm_slot); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	insert_to_mm_slots_hash(mm, mm_slot); | 
 | 	/* | 
 | 	 * Insert just behind the scanning cursor, to let the area settle | 
 | 	 * down a little. | 
 | 	 */ | 
 | 	wakeup = list_empty(&khugepaged_scan.mm_head); | 
 | 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 |  | 
 | 	atomic_inc(&mm->mm_count); | 
 | 	if (wakeup) | 
 | 		wake_up_interruptible(&khugepaged_wait); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int khugepaged_enter_vma_merge(struct vm_area_struct *vma) | 
 | { | 
 | 	unsigned long hstart, hend; | 
 | 	if (!vma->anon_vma) | 
 | 		/* | 
 | 		 * Not yet faulted in so we will register later in the | 
 | 		 * page fault if needed. | 
 | 		 */ | 
 | 		return 0; | 
 | 	if (vma->vm_ops) | 
 | 		/* khugepaged not yet working on file or special mappings */ | 
 | 		return 0; | 
 | 	VM_BUG_ON(vma->vm_flags & VM_NO_THP); | 
 | 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
 | 	hend = vma->vm_end & HPAGE_PMD_MASK; | 
 | 	if (hstart < hend) | 
 | 		return khugepaged_enter(vma); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __khugepaged_exit(struct mm_struct *mm) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 | 	int free = 0; | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	mm_slot = get_mm_slot(mm); | 
 | 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { | 
 | 		hash_del(&mm_slot->hash); | 
 | 		list_del(&mm_slot->mm_node); | 
 | 		free = 1; | 
 | 	} | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 |  | 
 | 	if (free) { | 
 | 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags); | 
 | 		free_mm_slot(mm_slot); | 
 | 		mmdrop(mm); | 
 | 	} else if (mm_slot) { | 
 | 		/* | 
 | 		 * This is required to serialize against | 
 | 		 * khugepaged_test_exit() (which is guaranteed to run | 
 | 		 * under mmap sem read mode). Stop here (after we | 
 | 		 * return all pagetables will be destroyed) until | 
 | 		 * khugepaged has finished working on the pagetables | 
 | 		 * under the mmap_sem. | 
 | 		 */ | 
 | 		down_write(&mm->mmap_sem); | 
 | 		up_write(&mm->mmap_sem); | 
 | 	} | 
 | } | 
 |  | 
 | static void release_pte_page(struct page *page) | 
 | { | 
 | 	/* 0 stands for page_is_file_cache(page) == false */ | 
 | 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0); | 
 | 	unlock_page(page); | 
 | 	putback_lru_page(page); | 
 | } | 
 |  | 
 | static void release_pte_pages(pte_t *pte, pte_t *_pte) | 
 | { | 
 | 	while (--_pte >= pte) { | 
 | 		pte_t pteval = *_pte; | 
 | 		if (!pte_none(pteval)) | 
 | 			release_pte_page(pte_page(pteval)); | 
 | 	} | 
 | } | 
 |  | 
 | static int __collapse_huge_page_isolate(struct vm_area_struct *vma, | 
 | 					unsigned long address, | 
 | 					pte_t *pte) | 
 | { | 
 | 	struct page *page; | 
 | 	pte_t *_pte; | 
 | 	int referenced = 0, none = 0; | 
 | 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; | 
 | 	     _pte++, address += PAGE_SIZE) { | 
 | 		pte_t pteval = *_pte; | 
 | 		if (pte_none(pteval)) { | 
 | 			if (++none <= khugepaged_max_ptes_none) | 
 | 				continue; | 
 | 			else | 
 | 				goto out; | 
 | 		} | 
 | 		if (!pte_present(pteval) || !pte_write(pteval)) | 
 | 			goto out; | 
 | 		page = vm_normal_page(vma, address, pteval); | 
 | 		if (unlikely(!page)) | 
 | 			goto out; | 
 |  | 
 | 		VM_BUG_ON_PAGE(PageCompound(page), page); | 
 | 		VM_BUG_ON_PAGE(!PageAnon(page), page); | 
 | 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | 
 |  | 
 | 		/* cannot use mapcount: can't collapse if there's a gup pin */ | 
 | 		if (page_count(page) != 1) | 
 | 			goto out; | 
 | 		/* | 
 | 		 * We can do it before isolate_lru_page because the | 
 | 		 * page can't be freed from under us. NOTE: PG_lock | 
 | 		 * is needed to serialize against split_huge_page | 
 | 		 * when invoked from the VM. | 
 | 		 */ | 
 | 		if (!trylock_page(page)) | 
 | 			goto out; | 
 | 		/* | 
 | 		 * Isolate the page to avoid collapsing an hugepage | 
 | 		 * currently in use by the VM. | 
 | 		 */ | 
 | 		if (isolate_lru_page(page)) { | 
 | 			unlock_page(page); | 
 | 			goto out; | 
 | 		} | 
 | 		/* 0 stands for page_is_file_cache(page) == false */ | 
 | 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0); | 
 | 		VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 		VM_BUG_ON_PAGE(PageLRU(page), page); | 
 |  | 
 | 		/* If there is no mapped pte young don't collapse the page */ | 
 | 		if (pte_young(pteval) || PageReferenced(page) || | 
 | 		    mmu_notifier_test_young(vma->vm_mm, address)) | 
 | 			referenced = 1; | 
 | 	} | 
 | 	if (likely(referenced)) | 
 | 		return 1; | 
 | out: | 
 | 	release_pte_pages(pte, _pte); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __collapse_huge_page_copy(pte_t *pte, struct page *page, | 
 | 				      struct vm_area_struct *vma, | 
 | 				      unsigned long address, | 
 | 				      spinlock_t *ptl) | 
 | { | 
 | 	pte_t *_pte; | 
 | 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { | 
 | 		pte_t pteval = *_pte; | 
 | 		struct page *src_page; | 
 |  | 
 | 		if (pte_none(pteval)) { | 
 | 			clear_user_highpage(page, address); | 
 | 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); | 
 | 		} else { | 
 | 			src_page = pte_page(pteval); | 
 | 			copy_user_highpage(page, src_page, address, vma); | 
 | 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page); | 
 | 			release_pte_page(src_page); | 
 | 			/* | 
 | 			 * ptl mostly unnecessary, but preempt has to | 
 | 			 * be disabled to update the per-cpu stats | 
 | 			 * inside page_remove_rmap(). | 
 | 			 */ | 
 | 			spin_lock(ptl); | 
 | 			/* | 
 | 			 * paravirt calls inside pte_clear here are | 
 | 			 * superfluous. | 
 | 			 */ | 
 | 			pte_clear(vma->vm_mm, address, _pte); | 
 | 			page_remove_rmap(src_page); | 
 | 			spin_unlock(ptl); | 
 | 			free_page_and_swap_cache(src_page); | 
 | 		} | 
 |  | 
 | 		address += PAGE_SIZE; | 
 | 		page++; | 
 | 	} | 
 | } | 
 |  | 
 | static void khugepaged_alloc_sleep(void) | 
 | { | 
 | 	wait_event_freezable_timeout(khugepaged_wait, false, | 
 | 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); | 
 | } | 
 |  | 
 | static int khugepaged_node_load[MAX_NUMNODES]; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static int khugepaged_find_target_node(void) | 
 | { | 
 | 	static int last_khugepaged_target_node = NUMA_NO_NODE; | 
 | 	int nid, target_node = 0, max_value = 0; | 
 |  | 
 | 	/* find first node with max normal pages hit */ | 
 | 	for (nid = 0; nid < MAX_NUMNODES; nid++) | 
 | 		if (khugepaged_node_load[nid] > max_value) { | 
 | 			max_value = khugepaged_node_load[nid]; | 
 | 			target_node = nid; | 
 | 		} | 
 |  | 
 | 	/* do some balance if several nodes have the same hit record */ | 
 | 	if (target_node <= last_khugepaged_target_node) | 
 | 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; | 
 | 				nid++) | 
 | 			if (max_value == khugepaged_node_load[nid]) { | 
 | 				target_node = nid; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 	last_khugepaged_target_node = target_node; | 
 | 	return target_node; | 
 | } | 
 |  | 
 | static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) | 
 | { | 
 | 	if (IS_ERR(*hpage)) { | 
 | 		if (!*wait) | 
 | 			return false; | 
 |  | 
 | 		*wait = false; | 
 | 		*hpage = NULL; | 
 | 		khugepaged_alloc_sleep(); | 
 | 	} else if (*hpage) { | 
 | 		put_page(*hpage); | 
 | 		*hpage = NULL; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct page | 
 | *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm, | 
 | 		       struct vm_area_struct *vma, unsigned long address, | 
 | 		       int node) | 
 | { | 
 | 	VM_BUG_ON_PAGE(*hpage, *hpage); | 
 | 	/* | 
 | 	 * Allocate the page while the vma is still valid and under | 
 | 	 * the mmap_sem read mode so there is no memory allocation | 
 | 	 * later when we take the mmap_sem in write mode. This is more | 
 | 	 * friendly behavior (OTOH it may actually hide bugs) to | 
 | 	 * filesystems in userland with daemons allocating memory in | 
 | 	 * the userland I/O paths.  Allocating memory with the | 
 | 	 * mmap_sem in read mode is good idea also to allow greater | 
 | 	 * scalability. | 
 | 	 */ | 
 | 	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask( | 
 | 		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER); | 
 | 	/* | 
 | 	 * After allocating the hugepage, release the mmap_sem read lock in | 
 | 	 * preparation for taking it in write mode. | 
 | 	 */ | 
 | 	up_read(&mm->mmap_sem); | 
 | 	if (unlikely(!*hpage)) { | 
 | 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | 
 | 		*hpage = ERR_PTR(-ENOMEM); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	count_vm_event(THP_COLLAPSE_ALLOC); | 
 | 	return *hpage; | 
 | } | 
 | #else | 
 | static int khugepaged_find_target_node(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline struct page *alloc_hugepage(int defrag) | 
 | { | 
 | 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), | 
 | 			   HPAGE_PMD_ORDER); | 
 | } | 
 |  | 
 | static struct page *khugepaged_alloc_hugepage(bool *wait) | 
 | { | 
 | 	struct page *hpage; | 
 |  | 
 | 	do { | 
 | 		hpage = alloc_hugepage(khugepaged_defrag()); | 
 | 		if (!hpage) { | 
 | 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | 
 | 			if (!*wait) | 
 | 				return NULL; | 
 |  | 
 | 			*wait = false; | 
 | 			khugepaged_alloc_sleep(); | 
 | 		} else | 
 | 			count_vm_event(THP_COLLAPSE_ALLOC); | 
 | 	} while (unlikely(!hpage) && likely(khugepaged_enabled())); | 
 |  | 
 | 	return hpage; | 
 | } | 
 |  | 
 | static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) | 
 | { | 
 | 	if (!*hpage) | 
 | 		*hpage = khugepaged_alloc_hugepage(wait); | 
 |  | 
 | 	if (unlikely(!*hpage)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static struct page | 
 | *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm, | 
 | 		       struct vm_area_struct *vma, unsigned long address, | 
 | 		       int node) | 
 | { | 
 | 	up_read(&mm->mmap_sem); | 
 | 	VM_BUG_ON(!*hpage); | 
 | 	return  *hpage; | 
 | } | 
 | #endif | 
 |  | 
 | static bool hugepage_vma_check(struct vm_area_struct *vma) | 
 | { | 
 | 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || | 
 | 	    (vma->vm_flags & VM_NOHUGEPAGE)) | 
 | 		return false; | 
 |  | 
 | 	if (!vma->anon_vma || vma->vm_ops) | 
 | 		return false; | 
 | 	if (is_vma_temporary_stack(vma)) | 
 | 		return false; | 
 | 	VM_BUG_ON(vma->vm_flags & VM_NO_THP); | 
 | 	return true; | 
 | } | 
 |  | 
 | static void collapse_huge_page(struct mm_struct *mm, | 
 | 				   unsigned long address, | 
 | 				   struct page **hpage, | 
 | 				   struct vm_area_struct *vma, | 
 | 				   int node) | 
 | { | 
 | 	pmd_t *pmd, _pmd; | 
 | 	pte_t *pte; | 
 | 	pgtable_t pgtable; | 
 | 	struct page *new_page; | 
 | 	spinlock_t *pmd_ptl, *pte_ptl; | 
 | 	int isolated; | 
 | 	unsigned long hstart, hend; | 
 | 	unsigned long mmun_start;	/* For mmu_notifiers */ | 
 | 	unsigned long mmun_end;		/* For mmu_notifiers */ | 
 |  | 
 | 	VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
 |  | 
 | 	/* release the mmap_sem read lock. */ | 
 | 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node); | 
 | 	if (!new_page) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Prevent all access to pagetables with the exception of | 
 | 	 * gup_fast later hanlded by the ptep_clear_flush and the VM | 
 | 	 * handled by the anon_vma lock + PG_lock. | 
 | 	 */ | 
 | 	down_write(&mm->mmap_sem); | 
 | 	if (unlikely(khugepaged_test_exit(mm))) | 
 | 		goto out; | 
 |  | 
 | 	vma = find_vma(mm, address); | 
 | 	if (!vma) | 
 | 		goto out; | 
 | 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
 | 	hend = vma->vm_end & HPAGE_PMD_MASK; | 
 | 	if (address < hstart || address + HPAGE_PMD_SIZE > hend) | 
 | 		goto out; | 
 | 	if (!hugepage_vma_check(vma)) | 
 | 		goto out; | 
 | 	pmd = mm_find_pmd(mm, address); | 
 | 	if (!pmd) | 
 | 		goto out; | 
 |  | 
 | 	anon_vma_lock_write(vma->anon_vma); | 
 |  | 
 | 	pte = pte_offset_map(pmd, address); | 
 | 	pte_ptl = pte_lockptr(mm, pmd); | 
 |  | 
 | 	mmun_start = address; | 
 | 	mmun_end   = address + HPAGE_PMD_SIZE; | 
 | 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
 | 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ | 
 | 	/* | 
 | 	 * After this gup_fast can't run anymore. This also removes | 
 | 	 * any huge TLB entry from the CPU so we won't allow | 
 | 	 * huge and small TLB entries for the same virtual address | 
 | 	 * to avoid the risk of CPU bugs in that area. | 
 | 	 */ | 
 | 	_pmd = pmdp_clear_flush(vma, address, pmd); | 
 | 	spin_unlock(pmd_ptl); | 
 | 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
 |  | 
 | 	spin_lock(pte_ptl); | 
 | 	isolated = __collapse_huge_page_isolate(vma, address, pte); | 
 | 	spin_unlock(pte_ptl); | 
 |  | 
 | 	if (unlikely(!isolated)) { | 
 | 		pte_unmap(pte); | 
 | 		spin_lock(pmd_ptl); | 
 | 		BUG_ON(!pmd_none(*pmd)); | 
 | 		/* | 
 | 		 * We can only use set_pmd_at when establishing | 
 | 		 * hugepmds and never for establishing regular pmds that | 
 | 		 * points to regular pagetables. Use pmd_populate for that | 
 | 		 */ | 
 | 		pmd_populate(mm, pmd, pmd_pgtable(_pmd)); | 
 | 		spin_unlock(pmd_ptl); | 
 | 		anon_vma_unlock_write(vma->anon_vma); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * All pages are isolated and locked so anon_vma rmap | 
 | 	 * can't run anymore. | 
 | 	 */ | 
 | 	anon_vma_unlock_write(vma->anon_vma); | 
 |  | 
 | 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl); | 
 | 	pte_unmap(pte); | 
 | 	__SetPageUptodate(new_page); | 
 | 	pgtable = pmd_pgtable(_pmd); | 
 |  | 
 | 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot); | 
 | 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); | 
 |  | 
 | 	/* | 
 | 	 * spin_lock() below is not the equivalent of smp_wmb(), so | 
 | 	 * this is needed to avoid the copy_huge_page writes to become | 
 | 	 * visible after the set_pmd_at() write. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	spin_lock(pmd_ptl); | 
 | 	BUG_ON(!pmd_none(*pmd)); | 
 | 	page_add_new_anon_rmap(new_page, vma, address); | 
 | 	pgtable_trans_huge_deposit(mm, pmd, pgtable); | 
 | 	set_pmd_at(mm, address, pmd, _pmd); | 
 | 	update_mmu_cache_pmd(vma, address, pmd); | 
 | 	spin_unlock(pmd_ptl); | 
 |  | 
 | 	*hpage = NULL; | 
 |  | 
 | 	khugepaged_pages_collapsed++; | 
 | out_up_write: | 
 | 	up_write(&mm->mmap_sem); | 
 | 	return; | 
 |  | 
 | out: | 
 | 	mem_cgroup_uncharge_page(new_page); | 
 | 	goto out_up_write; | 
 | } | 
 |  | 
 | static int khugepaged_scan_pmd(struct mm_struct *mm, | 
 | 			       struct vm_area_struct *vma, | 
 | 			       unsigned long address, | 
 | 			       struct page **hpage) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte, *_pte; | 
 | 	int ret = 0, referenced = 0, none = 0; | 
 | 	struct page *page; | 
 | 	unsigned long _address; | 
 | 	spinlock_t *ptl; | 
 | 	int node = NUMA_NO_NODE; | 
 |  | 
 | 	VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
 |  | 
 | 	pmd = mm_find_pmd(mm, address); | 
 | 	if (!pmd) | 
 | 		goto out; | 
 |  | 
 | 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); | 
 | 	pte = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; | 
 | 	     _pte++, _address += PAGE_SIZE) { | 
 | 		pte_t pteval = *_pte; | 
 | 		if (pte_none(pteval)) { | 
 | 			if (++none <= khugepaged_max_ptes_none) | 
 | 				continue; | 
 | 			else | 
 | 				goto out_unmap; | 
 | 		} | 
 | 		if (!pte_present(pteval) || !pte_write(pteval)) | 
 | 			goto out_unmap; | 
 | 		page = vm_normal_page(vma, _address, pteval); | 
 | 		if (unlikely(!page)) | 
 | 			goto out_unmap; | 
 | 		/* | 
 | 		 * Record which node the original page is from and save this | 
 | 		 * information to khugepaged_node_load[]. | 
 | 		 * Khupaged will allocate hugepage from the node has the max | 
 | 		 * hit record. | 
 | 		 */ | 
 | 		node = page_to_nid(page); | 
 | 		khugepaged_node_load[node]++; | 
 | 		VM_BUG_ON_PAGE(PageCompound(page), page); | 
 | 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) | 
 | 			goto out_unmap; | 
 | 		/* cannot use mapcount: can't collapse if there's a gup pin */ | 
 | 		if (page_count(page) != 1) | 
 | 			goto out_unmap; | 
 | 		if (pte_young(pteval) || PageReferenced(page) || | 
 | 		    mmu_notifier_test_young(vma->vm_mm, address)) | 
 | 			referenced = 1; | 
 | 	} | 
 | 	if (referenced) | 
 | 		ret = 1; | 
 | out_unmap: | 
 | 	pte_unmap_unlock(pte, ptl); | 
 | 	if (ret) { | 
 | 		node = khugepaged_find_target_node(); | 
 | 		/* collapse_huge_page will return with the mmap_sem released */ | 
 | 		collapse_huge_page(mm, address, hpage, vma, node); | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void collect_mm_slot(struct mm_slot *mm_slot) | 
 | { | 
 | 	struct mm_struct *mm = mm_slot->mm; | 
 |  | 
 | 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); | 
 |  | 
 | 	if (khugepaged_test_exit(mm)) { | 
 | 		/* free mm_slot */ | 
 | 		hash_del(&mm_slot->hash); | 
 | 		list_del(&mm_slot->mm_node); | 
 |  | 
 | 		/* | 
 | 		 * Not strictly needed because the mm exited already. | 
 | 		 * | 
 | 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); | 
 | 		 */ | 
 |  | 
 | 		/* khugepaged_mm_lock actually not necessary for the below */ | 
 | 		free_mm_slot(mm_slot); | 
 | 		mmdrop(mm); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned int khugepaged_scan_mm_slot(unsigned int pages, | 
 | 					    struct page **hpage) | 
 | 	__releases(&khugepaged_mm_lock) | 
 | 	__acquires(&khugepaged_mm_lock) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 | 	struct mm_struct *mm; | 
 | 	struct vm_area_struct *vma; | 
 | 	int progress = 0; | 
 |  | 
 | 	VM_BUG_ON(!pages); | 
 | 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); | 
 |  | 
 | 	if (khugepaged_scan.mm_slot) | 
 | 		mm_slot = khugepaged_scan.mm_slot; | 
 | 	else { | 
 | 		mm_slot = list_entry(khugepaged_scan.mm_head.next, | 
 | 				     struct mm_slot, mm_node); | 
 | 		khugepaged_scan.address = 0; | 
 | 		khugepaged_scan.mm_slot = mm_slot; | 
 | 	} | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 |  | 
 | 	mm = mm_slot->mm; | 
 | 	down_read(&mm->mmap_sem); | 
 | 	if (unlikely(khugepaged_test_exit(mm))) | 
 | 		vma = NULL; | 
 | 	else | 
 | 		vma = find_vma(mm, khugepaged_scan.address); | 
 |  | 
 | 	progress++; | 
 | 	for (; vma; vma = vma->vm_next) { | 
 | 		unsigned long hstart, hend; | 
 |  | 
 | 		cond_resched(); | 
 | 		if (unlikely(khugepaged_test_exit(mm))) { | 
 | 			progress++; | 
 | 			break; | 
 | 		} | 
 | 		if (!hugepage_vma_check(vma)) { | 
 | skip: | 
 | 			progress++; | 
 | 			continue; | 
 | 		} | 
 | 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
 | 		hend = vma->vm_end & HPAGE_PMD_MASK; | 
 | 		if (hstart >= hend) | 
 | 			goto skip; | 
 | 		if (khugepaged_scan.address > hend) | 
 | 			goto skip; | 
 | 		if (khugepaged_scan.address < hstart) | 
 | 			khugepaged_scan.address = hstart; | 
 | 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); | 
 |  | 
 | 		while (khugepaged_scan.address < hend) { | 
 | 			int ret; | 
 | 			cond_resched(); | 
 | 			if (unlikely(khugepaged_test_exit(mm))) | 
 | 				goto breakouterloop; | 
 |  | 
 | 			VM_BUG_ON(khugepaged_scan.address < hstart || | 
 | 				  khugepaged_scan.address + HPAGE_PMD_SIZE > | 
 | 				  hend); | 
 | 			ret = khugepaged_scan_pmd(mm, vma, | 
 | 						  khugepaged_scan.address, | 
 | 						  hpage); | 
 | 			/* move to next address */ | 
 | 			khugepaged_scan.address += HPAGE_PMD_SIZE; | 
 | 			progress += HPAGE_PMD_NR; | 
 | 			if (ret) | 
 | 				/* we released mmap_sem so break loop */ | 
 | 				goto breakouterloop_mmap_sem; | 
 | 			if (progress >= pages) | 
 | 				goto breakouterloop; | 
 | 		} | 
 | 	} | 
 | breakouterloop: | 
 | 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ | 
 | breakouterloop_mmap_sem: | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); | 
 | 	/* | 
 | 	 * Release the current mm_slot if this mm is about to die, or | 
 | 	 * if we scanned all vmas of this mm. | 
 | 	 */ | 
 | 	if (khugepaged_test_exit(mm) || !vma) { | 
 | 		/* | 
 | 		 * Make sure that if mm_users is reaching zero while | 
 | 		 * khugepaged runs here, khugepaged_exit will find | 
 | 		 * mm_slot not pointing to the exiting mm. | 
 | 		 */ | 
 | 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { | 
 | 			khugepaged_scan.mm_slot = list_entry( | 
 | 				mm_slot->mm_node.next, | 
 | 				struct mm_slot, mm_node); | 
 | 			khugepaged_scan.address = 0; | 
 | 		} else { | 
 | 			khugepaged_scan.mm_slot = NULL; | 
 | 			khugepaged_full_scans++; | 
 | 		} | 
 |  | 
 | 		collect_mm_slot(mm_slot); | 
 | 	} | 
 |  | 
 | 	return progress; | 
 | } | 
 |  | 
 | static int khugepaged_has_work(void) | 
 | { | 
 | 	return !list_empty(&khugepaged_scan.mm_head) && | 
 | 		khugepaged_enabled(); | 
 | } | 
 |  | 
 | static int khugepaged_wait_event(void) | 
 | { | 
 | 	return !list_empty(&khugepaged_scan.mm_head) || | 
 | 		kthread_should_stop(); | 
 | } | 
 |  | 
 | static void khugepaged_do_scan(void) | 
 | { | 
 | 	struct page *hpage = NULL; | 
 | 	unsigned int progress = 0, pass_through_head = 0; | 
 | 	unsigned int pages = khugepaged_pages_to_scan; | 
 | 	bool wait = true; | 
 |  | 
 | 	barrier(); /* write khugepaged_pages_to_scan to local stack */ | 
 |  | 
 | 	while (progress < pages) { | 
 | 		if (!khugepaged_prealloc_page(&hpage, &wait)) | 
 | 			break; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		if (unlikely(kthread_should_stop() || freezing(current))) | 
 | 			break; | 
 |  | 
 | 		spin_lock(&khugepaged_mm_lock); | 
 | 		if (!khugepaged_scan.mm_slot) | 
 | 			pass_through_head++; | 
 | 		if (khugepaged_has_work() && | 
 | 		    pass_through_head < 2) | 
 | 			progress += khugepaged_scan_mm_slot(pages - progress, | 
 | 							    &hpage); | 
 | 		else | 
 | 			progress = pages; | 
 | 		spin_unlock(&khugepaged_mm_lock); | 
 | 	} | 
 |  | 
 | 	if (!IS_ERR_OR_NULL(hpage)) | 
 | 		put_page(hpage); | 
 | } | 
 |  | 
 | static void khugepaged_wait_work(void) | 
 | { | 
 | 	try_to_freeze(); | 
 |  | 
 | 	if (khugepaged_has_work()) { | 
 | 		if (!khugepaged_scan_sleep_millisecs) | 
 | 			return; | 
 |  | 
 | 		wait_event_freezable_timeout(khugepaged_wait, | 
 | 					     kthread_should_stop(), | 
 | 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (khugepaged_enabled()) | 
 | 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); | 
 | } | 
 |  | 
 | static int khugepaged(void *none) | 
 | { | 
 | 	struct mm_slot *mm_slot; | 
 |  | 
 | 	set_freezable(); | 
 | 	set_user_nice(current, MAX_NICE); | 
 |  | 
 | 	while (!kthread_should_stop()) { | 
 | 		khugepaged_do_scan(); | 
 | 		khugepaged_wait_work(); | 
 | 	} | 
 |  | 
 | 	spin_lock(&khugepaged_mm_lock); | 
 | 	mm_slot = khugepaged_scan.mm_slot; | 
 | 	khugepaged_scan.mm_slot = NULL; | 
 | 	if (mm_slot) | 
 | 		collect_mm_slot(mm_slot); | 
 | 	spin_unlock(&khugepaged_mm_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, | 
 | 		unsigned long haddr, pmd_t *pmd) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	pgtable_t pgtable; | 
 | 	pmd_t _pmd; | 
 | 	int i; | 
 |  | 
 | 	pmdp_clear_flush(vma, haddr, pmd); | 
 | 	/* leave pmd empty until pte is filled */ | 
 |  | 
 | 	pgtable = pgtable_trans_huge_withdraw(mm, pmd); | 
 | 	pmd_populate(mm, &_pmd, pgtable); | 
 |  | 
 | 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { | 
 | 		pte_t *pte, entry; | 
 | 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); | 
 | 		entry = pte_mkspecial(entry); | 
 | 		pte = pte_offset_map(&_pmd, haddr); | 
 | 		VM_BUG_ON(!pte_none(*pte)); | 
 | 		set_pte_at(mm, haddr, pte, entry); | 
 | 		pte_unmap(pte); | 
 | 	} | 
 | 	smp_wmb(); /* make pte visible before pmd */ | 
 | 	pmd_populate(mm, pmd, pgtable); | 
 | 	put_huge_zero_page(); | 
 | } | 
 |  | 
 | void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address, | 
 | 		pmd_t *pmd) | 
 | { | 
 | 	spinlock_t *ptl; | 
 | 	struct page *page; | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long haddr = address & HPAGE_PMD_MASK; | 
 | 	unsigned long mmun_start;	/* For mmu_notifiers */ | 
 | 	unsigned long mmun_end;		/* For mmu_notifiers */ | 
 |  | 
 | 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE); | 
 |  | 
 | 	mmun_start = haddr; | 
 | 	mmun_end   = haddr + HPAGE_PMD_SIZE; | 
 | again: | 
 | 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
 | 	ptl = pmd_lock(mm, pmd); | 
 | 	if (unlikely(!pmd_trans_huge(*pmd))) { | 
 | 		spin_unlock(ptl); | 
 | 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
 | 		return; | 
 | 	} | 
 | 	if (is_huge_zero_pmd(*pmd)) { | 
 | 		__split_huge_zero_page_pmd(vma, haddr, pmd); | 
 | 		spin_unlock(ptl); | 
 | 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
 | 		return; | 
 | 	} | 
 | 	page = pmd_page(*pmd); | 
 | 	VM_BUG_ON_PAGE(!page_count(page), page); | 
 | 	get_page(page); | 
 | 	spin_unlock(ptl); | 
 | 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
 |  | 
 | 	split_huge_page(page); | 
 |  | 
 | 	put_page(page); | 
 |  | 
 | 	/* | 
 | 	 * We don't always have down_write of mmap_sem here: a racing | 
 | 	 * do_huge_pmd_wp_page() might have copied-on-write to another | 
 | 	 * huge page before our split_huge_page() got the anon_vma lock. | 
 | 	 */ | 
 | 	if (unlikely(pmd_trans_huge(*pmd))) | 
 | 		goto again; | 
 | } | 
 |  | 
 | void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address, | 
 | 		pmd_t *pmd) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	vma = find_vma(mm, address); | 
 | 	BUG_ON(vma == NULL); | 
 | 	split_huge_page_pmd(vma, address, pmd); | 
 | } | 
 |  | 
 | static void split_huge_page_address(struct mm_struct *mm, | 
 | 				    unsigned long address) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 |  | 
 | 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); | 
 |  | 
 | 	pgd = pgd_offset(mm, address); | 
 | 	if (!pgd_present(*pgd)) | 
 | 		return; | 
 |  | 
 | 	pud = pud_offset(pgd, address); | 
 | 	if (!pud_present(*pud)) | 
 | 		return; | 
 |  | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	if (!pmd_present(*pmd)) | 
 | 		return; | 
 | 	/* | 
 | 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot | 
 | 	 * materialize from under us. | 
 | 	 */ | 
 | 	split_huge_page_pmd_mm(mm, address, pmd); | 
 | } | 
 |  | 
 | void __vma_adjust_trans_huge(struct vm_area_struct *vma, | 
 | 			     unsigned long start, | 
 | 			     unsigned long end, | 
 | 			     long adjust_next) | 
 | { | 
 | 	/* | 
 | 	 * If the new start address isn't hpage aligned and it could | 
 | 	 * previously contain an hugepage: check if we need to split | 
 | 	 * an huge pmd. | 
 | 	 */ | 
 | 	if (start & ~HPAGE_PMD_MASK && | 
 | 	    (start & HPAGE_PMD_MASK) >= vma->vm_start && | 
 | 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) | 
 | 		split_huge_page_address(vma->vm_mm, start); | 
 |  | 
 | 	/* | 
 | 	 * If the new end address isn't hpage aligned and it could | 
 | 	 * previously contain an hugepage: check if we need to split | 
 | 	 * an huge pmd. | 
 | 	 */ | 
 | 	if (end & ~HPAGE_PMD_MASK && | 
 | 	    (end & HPAGE_PMD_MASK) >= vma->vm_start && | 
 | 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) | 
 | 		split_huge_page_address(vma->vm_mm, end); | 
 |  | 
 | 	/* | 
 | 	 * If we're also updating the vma->vm_next->vm_start, if the new | 
 | 	 * vm_next->vm_start isn't page aligned and it could previously | 
 | 	 * contain an hugepage: check if we need to split an huge pmd. | 
 | 	 */ | 
 | 	if (adjust_next > 0) { | 
 | 		struct vm_area_struct *next = vma->vm_next; | 
 | 		unsigned long nstart = next->vm_start; | 
 | 		nstart += adjust_next << PAGE_SHIFT; | 
 | 		if (nstart & ~HPAGE_PMD_MASK && | 
 | 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start && | 
 | 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) | 
 | 			split_huge_page_address(next->vm_mm, nstart); | 
 | 	} | 
 | } |