| #include <linux/spinlock.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/interrupt.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) | 
 | 			____cacheline_aligned = { &init_mm, 0, }; | 
 |  | 
 | /* must come after the send_IPI functions above for inlining */ | 
 | #include <mach_ipi.h> | 
 |  | 
 | /* | 
 |  *	Smarter SMP flushing macros. | 
 |  *		c/o Linus Torvalds. | 
 |  * | 
 |  *	These mean you can really definitely utterly forget about | 
 |  *	writing to user space from interrupts. (Its not allowed anyway). | 
 |  * | 
 |  *	Optimizations Manfred Spraul <manfred@colorfullife.com> | 
 |  */ | 
 |  | 
 | static cpumask_t flush_cpumask; | 
 | static struct mm_struct *flush_mm; | 
 | static unsigned long flush_va; | 
 | static DEFINE_SPINLOCK(tlbstate_lock); | 
 |  | 
 | /* | 
 |  * We cannot call mmdrop() because we are in interrupt context, | 
 |  * instead update mm->cpu_vm_mask. | 
 |  * | 
 |  * We need to reload %cr3 since the page tables may be going | 
 |  * away from under us.. | 
 |  */ | 
 | void leave_mm(int cpu) | 
 | { | 
 | 	if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) | 
 | 		BUG(); | 
 | 	cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask); | 
 | 	load_cr3(swapper_pg_dir); | 
 | } | 
 | EXPORT_SYMBOL_GPL(leave_mm); | 
 |  | 
 | /* | 
 |  * | 
 |  * The flush IPI assumes that a thread switch happens in this order: | 
 |  * [cpu0: the cpu that switches] | 
 |  * 1) switch_mm() either 1a) or 1b) | 
 |  * 1a) thread switch to a different mm | 
 |  * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask); | 
 |  * 	Stop ipi delivery for the old mm. This is not synchronized with | 
 |  * 	the other cpus, but smp_invalidate_interrupt ignore flush ipis | 
 |  * 	for the wrong mm, and in the worst case we perform a superfluous | 
 |  * 	tlb flush. | 
 |  * 1a2) set cpu_tlbstate to TLBSTATE_OK | 
 |  * 	Now the smp_invalidate_interrupt won't call leave_mm if cpu0 | 
 |  *	was in lazy tlb mode. | 
 |  * 1a3) update cpu_tlbstate[].active_mm | 
 |  * 	Now cpu0 accepts tlb flushes for the new mm. | 
 |  * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask); | 
 |  * 	Now the other cpus will send tlb flush ipis. | 
 |  * 1a4) change cr3. | 
 |  * 1b) thread switch without mm change | 
 |  *	cpu_tlbstate[].active_mm is correct, cpu0 already handles | 
 |  *	flush ipis. | 
 |  * 1b1) set cpu_tlbstate to TLBSTATE_OK | 
 |  * 1b2) test_and_set the cpu bit in cpu_vm_mask. | 
 |  * 	Atomically set the bit [other cpus will start sending flush ipis], | 
 |  * 	and test the bit. | 
 |  * 1b3) if the bit was 0: leave_mm was called, flush the tlb. | 
 |  * 2) switch %%esp, ie current | 
 |  * | 
 |  * The interrupt must handle 2 special cases: | 
 |  * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. | 
 |  * - the cpu performs speculative tlb reads, i.e. even if the cpu only | 
 |  *   runs in kernel space, the cpu could load tlb entries for user space | 
 |  *   pages. | 
 |  * | 
 |  * The good news is that cpu_tlbstate is local to each cpu, no | 
 |  * write/read ordering problems. | 
 |  */ | 
 |  | 
 | /* | 
 |  * TLB flush IPI: | 
 |  * | 
 |  * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. | 
 |  * 2) Leave the mm if we are in the lazy tlb mode. | 
 |  */ | 
 |  | 
 | void smp_invalidate_interrupt(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long cpu; | 
 |  | 
 | 	cpu = get_cpu(); | 
 |  | 
 | 	if (!cpu_isset(cpu, flush_cpumask)) | 
 | 		goto out; | 
 | 		/* | 
 | 		 * This was a BUG() but until someone can quote me the | 
 | 		 * line from the intel manual that guarantees an IPI to | 
 | 		 * multiple CPUs is retried _only_ on the erroring CPUs | 
 | 		 * its staying as a return | 
 | 		 * | 
 | 		 * BUG(); | 
 | 		 */ | 
 |  | 
 | 	if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) { | 
 | 		if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) { | 
 | 			if (flush_va == TLB_FLUSH_ALL) | 
 | 				local_flush_tlb(); | 
 | 			else | 
 | 				__flush_tlb_one(flush_va); | 
 | 		} else | 
 | 			leave_mm(cpu); | 
 | 	} | 
 | 	ack_APIC_irq(); | 
 | 	smp_mb__before_clear_bit(); | 
 | 	cpu_clear(cpu, flush_cpumask); | 
 | 	smp_mb__after_clear_bit(); | 
 | out: | 
 | 	put_cpu_no_resched(); | 
 | 	__get_cpu_var(irq_stat).irq_tlb_count++; | 
 | } | 
 |  | 
 | void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm, | 
 | 			     unsigned long va) | 
 | { | 
 | 	cpumask_t cpumask = *cpumaskp; | 
 |  | 
 | 	/* | 
 | 	 * A couple of (to be removed) sanity checks: | 
 | 	 * | 
 | 	 * - current CPU must not be in mask | 
 | 	 * - mask must exist :) | 
 | 	 */ | 
 | 	BUG_ON(cpus_empty(cpumask)); | 
 | 	BUG_ON(cpu_isset(smp_processor_id(), cpumask)); | 
 | 	BUG_ON(!mm); | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	/* If a CPU which we ran on has gone down, OK. */ | 
 | 	cpus_and(cpumask, cpumask, cpu_online_map); | 
 | 	if (unlikely(cpus_empty(cpumask))) | 
 | 		return; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * i'm not happy about this global shared spinlock in the | 
 | 	 * MM hot path, but we'll see how contended it is. | 
 | 	 * AK: x86-64 has a faster method that could be ported. | 
 | 	 */ | 
 | 	spin_lock(&tlbstate_lock); | 
 |  | 
 | 	flush_mm = mm; | 
 | 	flush_va = va; | 
 | 	cpus_or(flush_cpumask, cpumask, flush_cpumask); | 
 |  | 
 | 	/* | 
 | 	 * Make the above memory operations globally visible before | 
 | 	 * sending the IPI. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	/* | 
 | 	 * We have to send the IPI only to | 
 | 	 * CPUs affected. | 
 | 	 */ | 
 | 	send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR); | 
 |  | 
 | 	while (!cpus_empty(flush_cpumask)) | 
 | 		/* nothing. lockup detection does not belong here */ | 
 | 		cpu_relax(); | 
 |  | 
 | 	flush_mm = NULL; | 
 | 	flush_va = 0; | 
 | 	spin_unlock(&tlbstate_lock); | 
 | } | 
 |  | 
 | void flush_tlb_current_task(void) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	cpumask_t cpu_mask; | 
 |  | 
 | 	preempt_disable(); | 
 | 	cpu_mask = mm->cpu_vm_mask; | 
 | 	cpu_clear(smp_processor_id(), cpu_mask); | 
 |  | 
 | 	local_flush_tlb(); | 
 | 	if (!cpus_empty(cpu_mask)) | 
 | 		flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | void flush_tlb_mm(struct mm_struct *mm) | 
 | { | 
 | 	cpumask_t cpu_mask; | 
 |  | 
 | 	preempt_disable(); | 
 | 	cpu_mask = mm->cpu_vm_mask; | 
 | 	cpu_clear(smp_processor_id(), cpu_mask); | 
 |  | 
 | 	if (current->active_mm == mm) { | 
 | 		if (current->mm) | 
 | 			local_flush_tlb(); | 
 | 		else | 
 | 			leave_mm(smp_processor_id()); | 
 | 	} | 
 | 	if (!cpus_empty(cpu_mask)) | 
 | 		flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | void flush_tlb_page(struct vm_area_struct *vma, unsigned long va) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	cpumask_t cpu_mask; | 
 |  | 
 | 	preempt_disable(); | 
 | 	cpu_mask = mm->cpu_vm_mask; | 
 | 	cpu_clear(smp_processor_id(), cpu_mask); | 
 |  | 
 | 	if (current->active_mm == mm) { | 
 | 		if (current->mm) | 
 | 			__flush_tlb_one(va); | 
 | 		 else | 
 | 			leave_mm(smp_processor_id()); | 
 | 	} | 
 |  | 
 | 	if (!cpus_empty(cpu_mask)) | 
 | 		flush_tlb_others(cpu_mask, mm, va); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 | EXPORT_SYMBOL(flush_tlb_page); | 
 |  | 
 | static void do_flush_tlb_all(void *info) | 
 | { | 
 | 	unsigned long cpu = smp_processor_id(); | 
 |  | 
 | 	__flush_tlb_all(); | 
 | 	if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY) | 
 | 		leave_mm(cpu); | 
 | } | 
 |  | 
 | void flush_tlb_all(void) | 
 | { | 
 | 	on_each_cpu(do_flush_tlb_all, NULL, 1); | 
 | } | 
 |  | 
 | void reset_lazy_tlbstate(void) | 
 | { | 
 | 	int cpu = raw_smp_processor_id(); | 
 |  | 
 | 	per_cpu(cpu_tlbstate, cpu).state = 0; | 
 | 	per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm; | 
 | } | 
 |  |