|  | /* | 
|  | * kexec.c - kexec system call | 
|  | * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com> | 
|  | * | 
|  | * This source code is licensed under the GNU General Public License, | 
|  | * Version 2.  See the file COPYING for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/capability.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/elfcore.h> | 
|  | #include <linux/utsrelease.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/numa.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/pm.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/vmalloc.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/sections.h> | 
|  |  | 
|  | /* Per cpu memory for storing cpu states in case of system crash. */ | 
|  | note_buf_t* crash_notes; | 
|  |  | 
|  | /* vmcoreinfo stuff */ | 
|  | static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; | 
|  | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; | 
|  | size_t vmcoreinfo_size; | 
|  | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); | 
|  |  | 
|  | /* Location of the reserved area for the crash kernel */ | 
|  | struct resource crashk_res = { | 
|  | .name  = "Crash kernel", | 
|  | .start = 0, | 
|  | .end   = 0, | 
|  | .flags = IORESOURCE_BUSY | IORESOURCE_MEM | 
|  | }; | 
|  |  | 
|  | int kexec_should_crash(struct task_struct *p) | 
|  | { | 
|  | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When kexec transitions to the new kernel there is a one-to-one | 
|  | * mapping between physical and virtual addresses.  On processors | 
|  | * where you can disable the MMU this is trivial, and easy.  For | 
|  | * others it is still a simple predictable page table to setup. | 
|  | * | 
|  | * In that environment kexec copies the new kernel to its final | 
|  | * resting place.  This means I can only support memory whose | 
|  | * physical address can fit in an unsigned long.  In particular | 
|  | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | 
|  | * If the assembly stub has more restrictive requirements | 
|  | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | 
|  | * defined more restrictively in <asm/kexec.h>. | 
|  | * | 
|  | * The code for the transition from the current kernel to the | 
|  | * the new kernel is placed in the control_code_buffer, whose size | 
|  | * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single | 
|  | * page of memory is necessary, but some architectures require more. | 
|  | * Because this memory must be identity mapped in the transition from | 
|  | * virtual to physical addresses it must live in the range | 
|  | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | 
|  | * modifiable. | 
|  | * | 
|  | * The assembly stub in the control code buffer is passed a linked list | 
|  | * of descriptor pages detailing the source pages of the new kernel, | 
|  | * and the destination addresses of those source pages.  As this data | 
|  | * structure is not used in the context of the current OS, it must | 
|  | * be self-contained. | 
|  | * | 
|  | * The code has been made to work with highmem pages and will use a | 
|  | * destination page in its final resting place (if it happens | 
|  | * to allocate it).  The end product of this is that most of the | 
|  | * physical address space, and most of RAM can be used. | 
|  | * | 
|  | * Future directions include: | 
|  | *  - allocating a page table with the control code buffer identity | 
|  | *    mapped, to simplify machine_kexec and make kexec_on_panic more | 
|  | *    reliable. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * KIMAGE_NO_DEST is an impossible destination address..., for | 
|  | * allocating pages whose destination address we do not care about. | 
|  | */ | 
|  | #define KIMAGE_NO_DEST (-1UL) | 
|  |  | 
|  | static int kimage_is_destination_range(struct kimage *image, | 
|  | unsigned long start, unsigned long end); | 
|  | static struct page *kimage_alloc_page(struct kimage *image, | 
|  | gfp_t gfp_mask, | 
|  | unsigned long dest); | 
|  |  | 
|  | static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, | 
|  | unsigned long nr_segments, | 
|  | struct kexec_segment __user *segments) | 
|  | { | 
|  | size_t segment_bytes; | 
|  | struct kimage *image; | 
|  | unsigned long i; | 
|  | int result; | 
|  |  | 
|  | /* Allocate a controlling structure */ | 
|  | result = -ENOMEM; | 
|  | image = kzalloc(sizeof(*image), GFP_KERNEL); | 
|  | if (!image) | 
|  | goto out; | 
|  |  | 
|  | image->head = 0; | 
|  | image->entry = &image->head; | 
|  | image->last_entry = &image->head; | 
|  | image->control_page = ~0; /* By default this does not apply */ | 
|  | image->start = entry; | 
|  | image->type = KEXEC_TYPE_DEFAULT; | 
|  |  | 
|  | /* Initialize the list of control pages */ | 
|  | INIT_LIST_HEAD(&image->control_pages); | 
|  |  | 
|  | /* Initialize the list of destination pages */ | 
|  | INIT_LIST_HEAD(&image->dest_pages); | 
|  |  | 
|  | /* Initialize the list of unuseable pages */ | 
|  | INIT_LIST_HEAD(&image->unuseable_pages); | 
|  |  | 
|  | /* Read in the segments */ | 
|  | image->nr_segments = nr_segments; | 
|  | segment_bytes = nr_segments * sizeof(*segments); | 
|  | result = copy_from_user(image->segment, segments, segment_bytes); | 
|  | if (result) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Verify we have good destination addresses.  The caller is | 
|  | * responsible for making certain we don't attempt to load | 
|  | * the new image into invalid or reserved areas of RAM.  This | 
|  | * just verifies it is an address we can use. | 
|  | * | 
|  | * Since the kernel does everything in page size chunks ensure | 
|  | * the destination addreses are page aligned.  Too many | 
|  | * special cases crop of when we don't do this.  The most | 
|  | * insidious is getting overlapping destination addresses | 
|  | * simply because addresses are changed to page size | 
|  | * granularity. | 
|  | */ | 
|  | result = -EADDRNOTAVAIL; | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend   = mstart + image->segment[i].memsz; | 
|  | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | 
|  | goto out; | 
|  | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Verify our destination addresses do not overlap. | 
|  | * If we alloed overlapping destination addresses | 
|  | * through very weird things can happen with no | 
|  | * easy explanation as one segment stops on another. | 
|  | */ | 
|  | result = -EINVAL; | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  | unsigned long j; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend   = mstart + image->segment[i].memsz; | 
|  | for (j = 0; j < i; j++) { | 
|  | unsigned long pstart, pend; | 
|  | pstart = image->segment[j].mem; | 
|  | pend   = pstart + image->segment[j].memsz; | 
|  | /* Do the segments overlap ? */ | 
|  | if ((mend > pstart) && (mstart < pend)) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure our buffer sizes are strictly less than | 
|  | * our memory sizes.  This should always be the case, | 
|  | * and it is easier to check up front than to be surprised | 
|  | * later on. | 
|  | */ | 
|  | result = -EINVAL; | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | if (image->segment[i].bufsz > image->segment[i].memsz) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | result = 0; | 
|  | out: | 
|  | if (result == 0) | 
|  | *rimage = image; | 
|  | else | 
|  | kfree(image); | 
|  |  | 
|  | return result; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, | 
|  | unsigned long nr_segments, | 
|  | struct kexec_segment __user *segments) | 
|  | { | 
|  | int result; | 
|  | struct kimage *image; | 
|  |  | 
|  | /* Allocate and initialize a controlling structure */ | 
|  | image = NULL; | 
|  | result = do_kimage_alloc(&image, entry, nr_segments, segments); | 
|  | if (result) | 
|  | goto out; | 
|  |  | 
|  | *rimage = image; | 
|  |  | 
|  | /* | 
|  | * Find a location for the control code buffer, and add it | 
|  | * the vector of segments so that it's pages will also be | 
|  | * counted as destination pages. | 
|  | */ | 
|  | result = -ENOMEM; | 
|  | image->control_code_page = kimage_alloc_control_pages(image, | 
|  | get_order(KEXEC_CONTROL_PAGE_SIZE)); | 
|  | if (!image->control_code_page) { | 
|  | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | image->swap_page = kimage_alloc_control_pages(image, 0); | 
|  | if (!image->swap_page) { | 
|  | printk(KERN_ERR "Could not allocate swap buffer\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | result = 0; | 
|  | out: | 
|  | if (result == 0) | 
|  | *rimage = image; | 
|  | else | 
|  | kfree(image); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, | 
|  | unsigned long nr_segments, | 
|  | struct kexec_segment __user *segments) | 
|  | { | 
|  | int result; | 
|  | struct kimage *image; | 
|  | unsigned long i; | 
|  |  | 
|  | image = NULL; | 
|  | /* Verify we have a valid entry point */ | 
|  | if ((entry < crashk_res.start) || (entry > crashk_res.end)) { | 
|  | result = -EADDRNOTAVAIL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize a controlling structure */ | 
|  | result = do_kimage_alloc(&image, entry, nr_segments, segments); | 
|  | if (result) | 
|  | goto out; | 
|  |  | 
|  | /* Enable the special crash kernel control page | 
|  | * allocation policy. | 
|  | */ | 
|  | image->control_page = crashk_res.start; | 
|  | image->type = KEXEC_TYPE_CRASH; | 
|  |  | 
|  | /* | 
|  | * Verify we have good destination addresses.  Normally | 
|  | * the caller is responsible for making certain we don't | 
|  | * attempt to load the new image into invalid or reserved | 
|  | * areas of RAM.  But crash kernels are preloaded into a | 
|  | * reserved area of ram.  We must ensure the addresses | 
|  | * are in the reserved area otherwise preloading the | 
|  | * kernel could corrupt things. | 
|  | */ | 
|  | result = -EADDRNOTAVAIL; | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend = mstart + image->segment[i].memsz - 1; | 
|  | /* Ensure we are within the crash kernel limits */ | 
|  | if ((mstart < crashk_res.start) || (mend > crashk_res.end)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a location for the control code buffer, and add | 
|  | * the vector of segments so that it's pages will also be | 
|  | * counted as destination pages. | 
|  | */ | 
|  | result = -ENOMEM; | 
|  | image->control_code_page = kimage_alloc_control_pages(image, | 
|  | get_order(KEXEC_CONTROL_PAGE_SIZE)); | 
|  | if (!image->control_code_page) { | 
|  | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | result = 0; | 
|  | out: | 
|  | if (result == 0) | 
|  | *rimage = image; | 
|  | else | 
|  | kfree(image); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int kimage_is_destination_range(struct kimage *image, | 
|  | unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < image->nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend = mstart + image->segment[i].memsz; | 
|  | if ((end > mstart) && (start < mend)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) | 
|  | { | 
|  | struct page *pages; | 
|  |  | 
|  | pages = alloc_pages(gfp_mask, order); | 
|  | if (pages) { | 
|  | unsigned int count, i; | 
|  | pages->mapping = NULL; | 
|  | set_page_private(pages, order); | 
|  | count = 1 << order; | 
|  | for (i = 0; i < count; i++) | 
|  | SetPageReserved(pages + i); | 
|  | } | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static void kimage_free_pages(struct page *page) | 
|  | { | 
|  | unsigned int order, count, i; | 
|  |  | 
|  | order = page_private(page); | 
|  | count = 1 << order; | 
|  | for (i = 0; i < count; i++) | 
|  | ClearPageReserved(page + i); | 
|  | __free_pages(page, order); | 
|  | } | 
|  |  | 
|  | static void kimage_free_page_list(struct list_head *list) | 
|  | { | 
|  | struct list_head *pos, *next; | 
|  |  | 
|  | list_for_each_safe(pos, next, list) { | 
|  | struct page *page; | 
|  |  | 
|  | page = list_entry(pos, struct page, lru); | 
|  | list_del(&page->lru); | 
|  | kimage_free_pages(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, | 
|  | unsigned int order) | 
|  | { | 
|  | /* Control pages are special, they are the intermediaries | 
|  | * that are needed while we copy the rest of the pages | 
|  | * to their final resting place.  As such they must | 
|  | * not conflict with either the destination addresses | 
|  | * or memory the kernel is already using. | 
|  | * | 
|  | * The only case where we really need more than one of | 
|  | * these are for architectures where we cannot disable | 
|  | * the MMU and must instead generate an identity mapped | 
|  | * page table for all of the memory. | 
|  | * | 
|  | * At worst this runs in O(N) of the image size. | 
|  | */ | 
|  | struct list_head extra_pages; | 
|  | struct page *pages; | 
|  | unsigned int count; | 
|  |  | 
|  | count = 1 << order; | 
|  | INIT_LIST_HEAD(&extra_pages); | 
|  |  | 
|  | /* Loop while I can allocate a page and the page allocated | 
|  | * is a destination page. | 
|  | */ | 
|  | do { | 
|  | unsigned long pfn, epfn, addr, eaddr; | 
|  |  | 
|  | pages = kimage_alloc_pages(GFP_KERNEL, order); | 
|  | if (!pages) | 
|  | break; | 
|  | pfn   = page_to_pfn(pages); | 
|  | epfn  = pfn + count; | 
|  | addr  = pfn << PAGE_SHIFT; | 
|  | eaddr = epfn << PAGE_SHIFT; | 
|  | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | 
|  | kimage_is_destination_range(image, addr, eaddr)) { | 
|  | list_add(&pages->lru, &extra_pages); | 
|  | pages = NULL; | 
|  | } | 
|  | } while (!pages); | 
|  |  | 
|  | if (pages) { | 
|  | /* Remember the allocated page... */ | 
|  | list_add(&pages->lru, &image->control_pages); | 
|  |  | 
|  | /* Because the page is already in it's destination | 
|  | * location we will never allocate another page at | 
|  | * that address.  Therefore kimage_alloc_pages | 
|  | * will not return it (again) and we don't need | 
|  | * to give it an entry in image->segment[]. | 
|  | */ | 
|  | } | 
|  | /* Deal with the destination pages I have inadvertently allocated. | 
|  | * | 
|  | * Ideally I would convert multi-page allocations into single | 
|  | * page allocations, and add everyting to image->dest_pages. | 
|  | * | 
|  | * For now it is simpler to just free the pages. | 
|  | */ | 
|  | kimage_free_page_list(&extra_pages); | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, | 
|  | unsigned int order) | 
|  | { | 
|  | /* Control pages are special, they are the intermediaries | 
|  | * that are needed while we copy the rest of the pages | 
|  | * to their final resting place.  As such they must | 
|  | * not conflict with either the destination addresses | 
|  | * or memory the kernel is already using. | 
|  | * | 
|  | * Control pages are also the only pags we must allocate | 
|  | * when loading a crash kernel.  All of the other pages | 
|  | * are specified by the segments and we just memcpy | 
|  | * into them directly. | 
|  | * | 
|  | * The only case where we really need more than one of | 
|  | * these are for architectures where we cannot disable | 
|  | * the MMU and must instead generate an identity mapped | 
|  | * page table for all of the memory. | 
|  | * | 
|  | * Given the low demand this implements a very simple | 
|  | * allocator that finds the first hole of the appropriate | 
|  | * size in the reserved memory region, and allocates all | 
|  | * of the memory up to and including the hole. | 
|  | */ | 
|  | unsigned long hole_start, hole_end, size; | 
|  | struct page *pages; | 
|  |  | 
|  | pages = NULL; | 
|  | size = (1 << order) << PAGE_SHIFT; | 
|  | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | 
|  | hole_end   = hole_start + size - 1; | 
|  | while (hole_end <= crashk_res.end) { | 
|  | unsigned long i; | 
|  |  | 
|  | if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) | 
|  | break; | 
|  | if (hole_end > crashk_res.end) | 
|  | break; | 
|  | /* See if I overlap any of the segments */ | 
|  | for (i = 0; i < image->nr_segments; i++) { | 
|  | unsigned long mstart, mend; | 
|  |  | 
|  | mstart = image->segment[i].mem; | 
|  | mend   = mstart + image->segment[i].memsz - 1; | 
|  | if ((hole_end >= mstart) && (hole_start <= mend)) { | 
|  | /* Advance the hole to the end of the segment */ | 
|  | hole_start = (mend + (size - 1)) & ~(size - 1); | 
|  | hole_end   = hole_start + size - 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* If I don't overlap any segments I have found my hole! */ | 
|  | if (i == image->nr_segments) { | 
|  | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (pages) | 
|  | image->control_page = hole_end; | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  |  | 
|  | struct page *kimage_alloc_control_pages(struct kimage *image, | 
|  | unsigned int order) | 
|  | { | 
|  | struct page *pages = NULL; | 
|  |  | 
|  | switch (image->type) { | 
|  | case KEXEC_TYPE_DEFAULT: | 
|  | pages = kimage_alloc_normal_control_pages(image, order); | 
|  | break; | 
|  | case KEXEC_TYPE_CRASH: | 
|  | pages = kimage_alloc_crash_control_pages(image, order); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | 
|  | { | 
|  | if (*image->entry != 0) | 
|  | image->entry++; | 
|  |  | 
|  | if (image->entry == image->last_entry) { | 
|  | kimage_entry_t *ind_page; | 
|  | struct page *page; | 
|  |  | 
|  | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ind_page = page_address(page); | 
|  | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; | 
|  | image->entry = ind_page; | 
|  | image->last_entry = ind_page + | 
|  | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | 
|  | } | 
|  | *image->entry = entry; | 
|  | image->entry++; | 
|  | *image->entry = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kimage_set_destination(struct kimage *image, | 
|  | unsigned long destination) | 
|  | { | 
|  | int result; | 
|  |  | 
|  | destination &= PAGE_MASK; | 
|  | result = kimage_add_entry(image, destination | IND_DESTINATION); | 
|  | if (result == 0) | 
|  | image->destination = destination; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int kimage_add_page(struct kimage *image, unsigned long page) | 
|  | { | 
|  | int result; | 
|  |  | 
|  | page &= PAGE_MASK; | 
|  | result = kimage_add_entry(image, page | IND_SOURCE); | 
|  | if (result == 0) | 
|  | image->destination += PAGE_SIZE; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void kimage_free_extra_pages(struct kimage *image) | 
|  | { | 
|  | /* Walk through and free any extra destination pages I may have */ | 
|  | kimage_free_page_list(&image->dest_pages); | 
|  |  | 
|  | /* Walk through and free any unuseable pages I have cached */ | 
|  | kimage_free_page_list(&image->unuseable_pages); | 
|  |  | 
|  | } | 
|  | static void kimage_terminate(struct kimage *image) | 
|  | { | 
|  | if (*image->entry != 0) | 
|  | image->entry++; | 
|  |  | 
|  | *image->entry = IND_DONE; | 
|  | } | 
|  |  | 
|  | #define for_each_kimage_entry(image, ptr, entry) \ | 
|  | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | 
|  | ptr = (entry & IND_INDIRECTION)? \ | 
|  | phys_to_virt((entry & PAGE_MASK)): ptr +1) | 
|  |  | 
|  | static void kimage_free_entry(kimage_entry_t entry) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = pfn_to_page(entry >> PAGE_SHIFT); | 
|  | kimage_free_pages(page); | 
|  | } | 
|  |  | 
|  | static void kimage_free(struct kimage *image) | 
|  | { | 
|  | kimage_entry_t *ptr, entry; | 
|  | kimage_entry_t ind = 0; | 
|  |  | 
|  | if (!image) | 
|  | return; | 
|  |  | 
|  | kimage_free_extra_pages(image); | 
|  | for_each_kimage_entry(image, ptr, entry) { | 
|  | if (entry & IND_INDIRECTION) { | 
|  | /* Free the previous indirection page */ | 
|  | if (ind & IND_INDIRECTION) | 
|  | kimage_free_entry(ind); | 
|  | /* Save this indirection page until we are | 
|  | * done with it. | 
|  | */ | 
|  | ind = entry; | 
|  | } | 
|  | else if (entry & IND_SOURCE) | 
|  | kimage_free_entry(entry); | 
|  | } | 
|  | /* Free the final indirection page */ | 
|  | if (ind & IND_INDIRECTION) | 
|  | kimage_free_entry(ind); | 
|  |  | 
|  | /* Handle any machine specific cleanup */ | 
|  | machine_kexec_cleanup(image); | 
|  |  | 
|  | /* Free the kexec control pages... */ | 
|  | kimage_free_page_list(&image->control_pages); | 
|  | kfree(image); | 
|  | } | 
|  |  | 
|  | static kimage_entry_t *kimage_dst_used(struct kimage *image, | 
|  | unsigned long page) | 
|  | { | 
|  | kimage_entry_t *ptr, entry; | 
|  | unsigned long destination = 0; | 
|  |  | 
|  | for_each_kimage_entry(image, ptr, entry) { | 
|  | if (entry & IND_DESTINATION) | 
|  | destination = entry & PAGE_MASK; | 
|  | else if (entry & IND_SOURCE) { | 
|  | if (page == destination) | 
|  | return ptr; | 
|  | destination += PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct page *kimage_alloc_page(struct kimage *image, | 
|  | gfp_t gfp_mask, | 
|  | unsigned long destination) | 
|  | { | 
|  | /* | 
|  | * Here we implement safeguards to ensure that a source page | 
|  | * is not copied to its destination page before the data on | 
|  | * the destination page is no longer useful. | 
|  | * | 
|  | * To do this we maintain the invariant that a source page is | 
|  | * either its own destination page, or it is not a | 
|  | * destination page at all. | 
|  | * | 
|  | * That is slightly stronger than required, but the proof | 
|  | * that no problems will not occur is trivial, and the | 
|  | * implementation is simply to verify. | 
|  | * | 
|  | * When allocating all pages normally this algorithm will run | 
|  | * in O(N) time, but in the worst case it will run in O(N^2) | 
|  | * time.   If the runtime is a problem the data structures can | 
|  | * be fixed. | 
|  | */ | 
|  | struct page *page; | 
|  | unsigned long addr; | 
|  |  | 
|  | /* | 
|  | * Walk through the list of destination pages, and see if I | 
|  | * have a match. | 
|  | */ | 
|  | list_for_each_entry(page, &image->dest_pages, lru) { | 
|  | addr = page_to_pfn(page) << PAGE_SHIFT; | 
|  | if (addr == destination) { | 
|  | list_del(&page->lru); | 
|  | return page; | 
|  | } | 
|  | } | 
|  | page = NULL; | 
|  | while (1) { | 
|  | kimage_entry_t *old; | 
|  |  | 
|  | /* Allocate a page, if we run out of memory give up */ | 
|  | page = kimage_alloc_pages(gfp_mask, 0); | 
|  | if (!page) | 
|  | return NULL; | 
|  | /* If the page cannot be used file it away */ | 
|  | if (page_to_pfn(page) > | 
|  | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | 
|  | list_add(&page->lru, &image->unuseable_pages); | 
|  | continue; | 
|  | } | 
|  | addr = page_to_pfn(page) << PAGE_SHIFT; | 
|  |  | 
|  | /* If it is the destination page we want use it */ | 
|  | if (addr == destination) | 
|  | break; | 
|  |  | 
|  | /* If the page is not a destination page use it */ | 
|  | if (!kimage_is_destination_range(image, addr, | 
|  | addr + PAGE_SIZE)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * I know that the page is someones destination page. | 
|  | * See if there is already a source page for this | 
|  | * destination page.  And if so swap the source pages. | 
|  | */ | 
|  | old = kimage_dst_used(image, addr); | 
|  | if (old) { | 
|  | /* If so move it */ | 
|  | unsigned long old_addr; | 
|  | struct page *old_page; | 
|  |  | 
|  | old_addr = *old & PAGE_MASK; | 
|  | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); | 
|  | copy_highpage(page, old_page); | 
|  | *old = addr | (*old & ~PAGE_MASK); | 
|  |  | 
|  | /* The old page I have found cannot be a | 
|  | * destination page, so return it if it's | 
|  | * gfp_flags honor the ones passed in. | 
|  | */ | 
|  | if (!(gfp_mask & __GFP_HIGHMEM) && | 
|  | PageHighMem(old_page)) { | 
|  | kimage_free_pages(old_page); | 
|  | continue; | 
|  | } | 
|  | addr = old_addr; | 
|  | page = old_page; | 
|  | break; | 
|  | } | 
|  | else { | 
|  | /* Place the page on the destination list I | 
|  | * will use it later. | 
|  | */ | 
|  | list_add(&page->lru, &image->dest_pages); | 
|  | } | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static int kimage_load_normal_segment(struct kimage *image, | 
|  | struct kexec_segment *segment) | 
|  | { | 
|  | unsigned long maddr; | 
|  | unsigned long ubytes, mbytes; | 
|  | int result; | 
|  | unsigned char __user *buf; | 
|  |  | 
|  | result = 0; | 
|  | buf = segment->buf; | 
|  | ubytes = segment->bufsz; | 
|  | mbytes = segment->memsz; | 
|  | maddr = segment->mem; | 
|  |  | 
|  | result = kimage_set_destination(image, maddr); | 
|  | if (result < 0) | 
|  | goto out; | 
|  |  | 
|  | while (mbytes) { | 
|  | struct page *page; | 
|  | char *ptr; | 
|  | size_t uchunk, mchunk; | 
|  |  | 
|  | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); | 
|  | if (!page) { | 
|  | result  = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | result = kimage_add_page(image, page_to_pfn(page) | 
|  | << PAGE_SHIFT); | 
|  | if (result < 0) | 
|  | goto out; | 
|  |  | 
|  | ptr = kmap(page); | 
|  | /* Start with a clear page */ | 
|  | memset(ptr, 0, PAGE_SIZE); | 
|  | ptr += maddr & ~PAGE_MASK; | 
|  | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | 
|  | if (mchunk > mbytes) | 
|  | mchunk = mbytes; | 
|  |  | 
|  | uchunk = mchunk; | 
|  | if (uchunk > ubytes) | 
|  | uchunk = ubytes; | 
|  |  | 
|  | result = copy_from_user(ptr, buf, uchunk); | 
|  | kunmap(page); | 
|  | if (result) { | 
|  | result = (result < 0) ? result : -EIO; | 
|  | goto out; | 
|  | } | 
|  | ubytes -= uchunk; | 
|  | maddr  += mchunk; | 
|  | buf    += mchunk; | 
|  | mbytes -= mchunk; | 
|  | } | 
|  | out: | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int kimage_load_crash_segment(struct kimage *image, | 
|  | struct kexec_segment *segment) | 
|  | { | 
|  | /* For crash dumps kernels we simply copy the data from | 
|  | * user space to it's destination. | 
|  | * We do things a page at a time for the sake of kmap. | 
|  | */ | 
|  | unsigned long maddr; | 
|  | unsigned long ubytes, mbytes; | 
|  | int result; | 
|  | unsigned char __user *buf; | 
|  |  | 
|  | result = 0; | 
|  | buf = segment->buf; | 
|  | ubytes = segment->bufsz; | 
|  | mbytes = segment->memsz; | 
|  | maddr = segment->mem; | 
|  | while (mbytes) { | 
|  | struct page *page; | 
|  | char *ptr; | 
|  | size_t uchunk, mchunk; | 
|  |  | 
|  | page = pfn_to_page(maddr >> PAGE_SHIFT); | 
|  | if (!page) { | 
|  | result  = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | ptr = kmap(page); | 
|  | ptr += maddr & ~PAGE_MASK; | 
|  | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | 
|  | if (mchunk > mbytes) | 
|  | mchunk = mbytes; | 
|  |  | 
|  | uchunk = mchunk; | 
|  | if (uchunk > ubytes) { | 
|  | uchunk = ubytes; | 
|  | /* Zero the trailing part of the page */ | 
|  | memset(ptr + uchunk, 0, mchunk - uchunk); | 
|  | } | 
|  | result = copy_from_user(ptr, buf, uchunk); | 
|  | kexec_flush_icache_page(page); | 
|  | kunmap(page); | 
|  | if (result) { | 
|  | result = (result < 0) ? result : -EIO; | 
|  | goto out; | 
|  | } | 
|  | ubytes -= uchunk; | 
|  | maddr  += mchunk; | 
|  | buf    += mchunk; | 
|  | mbytes -= mchunk; | 
|  | } | 
|  | out: | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int kimage_load_segment(struct kimage *image, | 
|  | struct kexec_segment *segment) | 
|  | { | 
|  | int result = -ENOMEM; | 
|  |  | 
|  | switch (image->type) { | 
|  | case KEXEC_TYPE_DEFAULT: | 
|  | result = kimage_load_normal_segment(image, segment); | 
|  | break; | 
|  | case KEXEC_TYPE_CRASH: | 
|  | result = kimage_load_crash_segment(image, segment); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Exec Kernel system call: for obvious reasons only root may call it. | 
|  | * | 
|  | * This call breaks up into three pieces. | 
|  | * - A generic part which loads the new kernel from the current | 
|  | *   address space, and very carefully places the data in the | 
|  | *   allocated pages. | 
|  | * | 
|  | * - A generic part that interacts with the kernel and tells all of | 
|  | *   the devices to shut down.  Preventing on-going dmas, and placing | 
|  | *   the devices in a consistent state so a later kernel can | 
|  | *   reinitialize them. | 
|  | * | 
|  | * - A machine specific part that includes the syscall number | 
|  | *   and the copies the image to it's final destination.  And | 
|  | *   jumps into the image at entry. | 
|  | * | 
|  | * kexec does not sync, or unmount filesystems so if you need | 
|  | * that to happen you need to do that yourself. | 
|  | */ | 
|  | struct kimage *kexec_image; | 
|  | struct kimage *kexec_crash_image; | 
|  |  | 
|  | static DEFINE_MUTEX(kexec_mutex); | 
|  |  | 
|  | SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, | 
|  | struct kexec_segment __user *, segments, unsigned long, flags) | 
|  | { | 
|  | struct kimage **dest_image, *image; | 
|  | int result; | 
|  |  | 
|  | /* We only trust the superuser with rebooting the system. */ | 
|  | if (!capable(CAP_SYS_BOOT)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * Verify we have a legal set of flags | 
|  | * This leaves us room for future extensions. | 
|  | */ | 
|  | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Verify we are on the appropriate architecture */ | 
|  | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && | 
|  | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Put an artificial cap on the number | 
|  | * of segments passed to kexec_load. | 
|  | */ | 
|  | if (nr_segments > KEXEC_SEGMENT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | image = NULL; | 
|  | result = 0; | 
|  |  | 
|  | /* Because we write directly to the reserved memory | 
|  | * region when loading crash kernels we need a mutex here to | 
|  | * prevent multiple crash  kernels from attempting to load | 
|  | * simultaneously, and to prevent a crash kernel from loading | 
|  | * over the top of a in use crash kernel. | 
|  | * | 
|  | * KISS: always take the mutex. | 
|  | */ | 
|  | if (!mutex_trylock(&kexec_mutex)) | 
|  | return -EBUSY; | 
|  |  | 
|  | dest_image = &kexec_image; | 
|  | if (flags & KEXEC_ON_CRASH) | 
|  | dest_image = &kexec_crash_image; | 
|  | if (nr_segments > 0) { | 
|  | unsigned long i; | 
|  |  | 
|  | /* Loading another kernel to reboot into */ | 
|  | if ((flags & KEXEC_ON_CRASH) == 0) | 
|  | result = kimage_normal_alloc(&image, entry, | 
|  | nr_segments, segments); | 
|  | /* Loading another kernel to switch to if this one crashes */ | 
|  | else if (flags & KEXEC_ON_CRASH) { | 
|  | /* Free any current crash dump kernel before | 
|  | * we corrupt it. | 
|  | */ | 
|  | kimage_free(xchg(&kexec_crash_image, NULL)); | 
|  | result = kimage_crash_alloc(&image, entry, | 
|  | nr_segments, segments); | 
|  | } | 
|  | if (result) | 
|  | goto out; | 
|  |  | 
|  | if (flags & KEXEC_PRESERVE_CONTEXT) | 
|  | image->preserve_context = 1; | 
|  | result = machine_kexec_prepare(image); | 
|  | if (result) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < nr_segments; i++) { | 
|  | result = kimage_load_segment(image, &image->segment[i]); | 
|  | if (result) | 
|  | goto out; | 
|  | } | 
|  | kimage_terminate(image); | 
|  | } | 
|  | /* Install the new kernel, and  Uninstall the old */ | 
|  | image = xchg(dest_image, image); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&kexec_mutex); | 
|  | kimage_free(image); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | asmlinkage long compat_sys_kexec_load(unsigned long entry, | 
|  | unsigned long nr_segments, | 
|  | struct compat_kexec_segment __user *segments, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct compat_kexec_segment in; | 
|  | struct kexec_segment out, __user *ksegments; | 
|  | unsigned long i, result; | 
|  |  | 
|  | /* Don't allow clients that don't understand the native | 
|  | * architecture to do anything. | 
|  | */ | 
|  | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (nr_segments > KEXEC_SEGMENT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); | 
|  | for (i=0; i < nr_segments; i++) { | 
|  | result = copy_from_user(&in, &segments[i], sizeof(in)); | 
|  | if (result) | 
|  | return -EFAULT; | 
|  |  | 
|  | out.buf   = compat_ptr(in.buf); | 
|  | out.bufsz = in.bufsz; | 
|  | out.mem   = in.mem; | 
|  | out.memsz = in.memsz; | 
|  |  | 
|  | result = copy_to_user(&ksegments[i], &out, sizeof(out)); | 
|  | if (result) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return sys_kexec_load(entry, nr_segments, ksegments, flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void crash_kexec(struct pt_regs *regs) | 
|  | { | 
|  | /* Take the kexec_mutex here to prevent sys_kexec_load | 
|  | * running on one cpu from replacing the crash kernel | 
|  | * we are using after a panic on a different cpu. | 
|  | * | 
|  | * If the crash kernel was not located in a fixed area | 
|  | * of memory the xchg(&kexec_crash_image) would be | 
|  | * sufficient.  But since I reuse the memory... | 
|  | */ | 
|  | if (mutex_trylock(&kexec_mutex)) { | 
|  | if (kexec_crash_image) { | 
|  | struct pt_regs fixed_regs; | 
|  | crash_setup_regs(&fixed_regs, regs); | 
|  | crash_save_vmcoreinfo(); | 
|  | machine_crash_shutdown(&fixed_regs); | 
|  | machine_kexec(kexec_crash_image); | 
|  | } | 
|  | mutex_unlock(&kexec_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, | 
|  | size_t data_len) | 
|  | { | 
|  | struct elf_note note; | 
|  |  | 
|  | note.n_namesz = strlen(name) + 1; | 
|  | note.n_descsz = data_len; | 
|  | note.n_type   = type; | 
|  | memcpy(buf, ¬e, sizeof(note)); | 
|  | buf += (sizeof(note) + 3)/4; | 
|  | memcpy(buf, name, note.n_namesz); | 
|  | buf += (note.n_namesz + 3)/4; | 
|  | memcpy(buf, data, note.n_descsz); | 
|  | buf += (note.n_descsz + 3)/4; | 
|  |  | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static void final_note(u32 *buf) | 
|  | { | 
|  | struct elf_note note; | 
|  |  | 
|  | note.n_namesz = 0; | 
|  | note.n_descsz = 0; | 
|  | note.n_type   = 0; | 
|  | memcpy(buf, ¬e, sizeof(note)); | 
|  | } | 
|  |  | 
|  | void crash_save_cpu(struct pt_regs *regs, int cpu) | 
|  | { | 
|  | struct elf_prstatus prstatus; | 
|  | u32 *buf; | 
|  |  | 
|  | if ((cpu < 0) || (cpu >= nr_cpu_ids)) | 
|  | return; | 
|  |  | 
|  | /* Using ELF notes here is opportunistic. | 
|  | * I need a well defined structure format | 
|  | * for the data I pass, and I need tags | 
|  | * on the data to indicate what information I have | 
|  | * squirrelled away.  ELF notes happen to provide | 
|  | * all of that, so there is no need to invent something new. | 
|  | */ | 
|  | buf = (u32*)per_cpu_ptr(crash_notes, cpu); | 
|  | if (!buf) | 
|  | return; | 
|  | memset(&prstatus, 0, sizeof(prstatus)); | 
|  | prstatus.pr_pid = current->pid; | 
|  | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); | 
|  | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, | 
|  | &prstatus, sizeof(prstatus)); | 
|  | final_note(buf); | 
|  | } | 
|  |  | 
|  | static int __init crash_notes_memory_init(void) | 
|  | { | 
|  | /* Allocate memory for saving cpu registers. */ | 
|  | crash_notes = alloc_percpu(note_buf_t); | 
|  | if (!crash_notes) { | 
|  | printk("Kexec: Memory allocation for saving cpu register" | 
|  | " states failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | module_init(crash_notes_memory_init) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * parsing the "crashkernel" commandline | 
|  | * | 
|  | * this code is intended to be called from architecture specific code | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This function parses command lines in the format | 
|  | * | 
|  | *   crashkernel=ramsize-range:size[,...][@offset] | 
|  | * | 
|  | * The function returns 0 on success and -EINVAL on failure. | 
|  | */ | 
|  | static int __init parse_crashkernel_mem(char 			*cmdline, | 
|  | unsigned long long	system_ram, | 
|  | unsigned long long	*crash_size, | 
|  | unsigned long long	*crash_base) | 
|  | { | 
|  | char *cur = cmdline, *tmp; | 
|  |  | 
|  | /* for each entry of the comma-separated list */ | 
|  | do { | 
|  | unsigned long long start, end = ULLONG_MAX, size; | 
|  |  | 
|  | /* get the start of the range */ | 
|  | start = memparse(cur, &tmp); | 
|  | if (cur == tmp) { | 
|  | pr_warning("crashkernel: Memory value expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cur = tmp; | 
|  | if (*cur != '-') { | 
|  | pr_warning("crashkernel: '-' expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cur++; | 
|  |  | 
|  | /* if no ':' is here, than we read the end */ | 
|  | if (*cur != ':') { | 
|  | end = memparse(cur, &tmp); | 
|  | if (cur == tmp) { | 
|  | pr_warning("crashkernel: Memory " | 
|  | "value expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cur = tmp; | 
|  | if (end <= start) { | 
|  | pr_warning("crashkernel: end <= start\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (*cur != ':') { | 
|  | pr_warning("crashkernel: ':' expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cur++; | 
|  |  | 
|  | size = memparse(cur, &tmp); | 
|  | if (cur == tmp) { | 
|  | pr_warning("Memory value expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cur = tmp; | 
|  | if (size >= system_ram) { | 
|  | pr_warning("crashkernel: invalid size\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* match ? */ | 
|  | if (system_ram >= start && system_ram < end) { | 
|  | *crash_size = size; | 
|  | break; | 
|  | } | 
|  | } while (*cur++ == ','); | 
|  |  | 
|  | if (*crash_size > 0) { | 
|  | while (*cur && *cur != ' ' && *cur != '@') | 
|  | cur++; | 
|  | if (*cur == '@') { | 
|  | cur++; | 
|  | *crash_base = memparse(cur, &tmp); | 
|  | if (cur == tmp) { | 
|  | pr_warning("Memory value expected " | 
|  | "after '@'\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * That function parses "simple" (old) crashkernel command lines like | 
|  | * | 
|  | * 	crashkernel=size[@offset] | 
|  | * | 
|  | * It returns 0 on success and -EINVAL on failure. | 
|  | */ | 
|  | static int __init parse_crashkernel_simple(char 		*cmdline, | 
|  | unsigned long long 	*crash_size, | 
|  | unsigned long long 	*crash_base) | 
|  | { | 
|  | char *cur = cmdline; | 
|  |  | 
|  | *crash_size = memparse(cmdline, &cur); | 
|  | if (cmdline == cur) { | 
|  | pr_warning("crashkernel: memory value expected\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (*cur == '@') | 
|  | *crash_base = memparse(cur+1, &cur); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * That function is the entry point for command line parsing and should be | 
|  | * called from the arch-specific code. | 
|  | */ | 
|  | int __init parse_crashkernel(char 		 *cmdline, | 
|  | unsigned long long system_ram, | 
|  | unsigned long long *crash_size, | 
|  | unsigned long long *crash_base) | 
|  | { | 
|  | char 	*p = cmdline, *ck_cmdline = NULL; | 
|  | char	*first_colon, *first_space; | 
|  |  | 
|  | BUG_ON(!crash_size || !crash_base); | 
|  | *crash_size = 0; | 
|  | *crash_base = 0; | 
|  |  | 
|  | /* find crashkernel and use the last one if there are more */ | 
|  | p = strstr(p, "crashkernel="); | 
|  | while (p) { | 
|  | ck_cmdline = p; | 
|  | p = strstr(p+1, "crashkernel="); | 
|  | } | 
|  |  | 
|  | if (!ck_cmdline) | 
|  | return -EINVAL; | 
|  |  | 
|  | ck_cmdline += 12; /* strlen("crashkernel=") */ | 
|  |  | 
|  | /* | 
|  | * if the commandline contains a ':', then that's the extended | 
|  | * syntax -- if not, it must be the classic syntax | 
|  | */ | 
|  | first_colon = strchr(ck_cmdline, ':'); | 
|  | first_space = strchr(ck_cmdline, ' '); | 
|  | if (first_colon && (!first_space || first_colon < first_space)) | 
|  | return parse_crashkernel_mem(ck_cmdline, system_ram, | 
|  | crash_size, crash_base); | 
|  | else | 
|  | return parse_crashkernel_simple(ck_cmdline, crash_size, | 
|  | crash_base); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | void crash_save_vmcoreinfo(void) | 
|  | { | 
|  | u32 *buf; | 
|  |  | 
|  | if (!vmcoreinfo_size) | 
|  | return; | 
|  |  | 
|  | vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds()); | 
|  |  | 
|  | buf = (u32 *)vmcoreinfo_note; | 
|  |  | 
|  | buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, | 
|  | vmcoreinfo_size); | 
|  |  | 
|  | final_note(buf); | 
|  | } | 
|  |  | 
|  | void vmcoreinfo_append_str(const char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char buf[0x50]; | 
|  | int r; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | r = vsnprintf(buf, sizeof(buf), fmt, args); | 
|  | va_end(args); | 
|  |  | 
|  | if (r + vmcoreinfo_size > vmcoreinfo_max_size) | 
|  | r = vmcoreinfo_max_size - vmcoreinfo_size; | 
|  |  | 
|  | memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); | 
|  |  | 
|  | vmcoreinfo_size += r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * provide an empty default implementation here -- architecture | 
|  | * code may override this | 
|  | */ | 
|  | void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) | 
|  | {} | 
|  |  | 
|  | unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) | 
|  | { | 
|  | return __pa((unsigned long)(char *)&vmcoreinfo_note); | 
|  | } | 
|  |  | 
|  | static int __init crash_save_vmcoreinfo_init(void) | 
|  | { | 
|  | VMCOREINFO_OSRELEASE(init_uts_ns.name.release); | 
|  | VMCOREINFO_PAGESIZE(PAGE_SIZE); | 
|  |  | 
|  | VMCOREINFO_SYMBOL(init_uts_ns); | 
|  | VMCOREINFO_SYMBOL(node_online_map); | 
|  | VMCOREINFO_SYMBOL(swapper_pg_dir); | 
|  | VMCOREINFO_SYMBOL(_stext); | 
|  | VMCOREINFO_SYMBOL(vmlist); | 
|  |  | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  | VMCOREINFO_SYMBOL(mem_map); | 
|  | VMCOREINFO_SYMBOL(contig_page_data); | 
|  | #endif | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  | VMCOREINFO_SYMBOL(mem_section); | 
|  | VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); | 
|  | VMCOREINFO_STRUCT_SIZE(mem_section); | 
|  | VMCOREINFO_OFFSET(mem_section, section_mem_map); | 
|  | #endif | 
|  | VMCOREINFO_STRUCT_SIZE(page); | 
|  | VMCOREINFO_STRUCT_SIZE(pglist_data); | 
|  | VMCOREINFO_STRUCT_SIZE(zone); | 
|  | VMCOREINFO_STRUCT_SIZE(free_area); | 
|  | VMCOREINFO_STRUCT_SIZE(list_head); | 
|  | VMCOREINFO_SIZE(nodemask_t); | 
|  | VMCOREINFO_OFFSET(page, flags); | 
|  | VMCOREINFO_OFFSET(page, _count); | 
|  | VMCOREINFO_OFFSET(page, mapping); | 
|  | VMCOREINFO_OFFSET(page, lru); | 
|  | VMCOREINFO_OFFSET(pglist_data, node_zones); | 
|  | VMCOREINFO_OFFSET(pglist_data, nr_zones); | 
|  | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
|  | VMCOREINFO_OFFSET(pglist_data, node_mem_map); | 
|  | #endif | 
|  | VMCOREINFO_OFFSET(pglist_data, node_start_pfn); | 
|  | VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); | 
|  | VMCOREINFO_OFFSET(pglist_data, node_id); | 
|  | VMCOREINFO_OFFSET(zone, free_area); | 
|  | VMCOREINFO_OFFSET(zone, vm_stat); | 
|  | VMCOREINFO_OFFSET(zone, spanned_pages); | 
|  | VMCOREINFO_OFFSET(free_area, free_list); | 
|  | VMCOREINFO_OFFSET(list_head, next); | 
|  | VMCOREINFO_OFFSET(list_head, prev); | 
|  | VMCOREINFO_OFFSET(vm_struct, addr); | 
|  | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); | 
|  | log_buf_kexec_setup(); | 
|  | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); | 
|  | VMCOREINFO_NUMBER(NR_FREE_PAGES); | 
|  | VMCOREINFO_NUMBER(PG_lru); | 
|  | VMCOREINFO_NUMBER(PG_private); | 
|  | VMCOREINFO_NUMBER(PG_swapcache); | 
|  |  | 
|  | arch_crash_save_vmcoreinfo(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | module_init(crash_save_vmcoreinfo_init) | 
|  |  | 
|  | /* | 
|  | * Move into place and start executing a preloaded standalone | 
|  | * executable.  If nothing was preloaded return an error. | 
|  | */ | 
|  | int kernel_kexec(void) | 
|  | { | 
|  | int error = 0; | 
|  |  | 
|  | if (!mutex_trylock(&kexec_mutex)) | 
|  | return -EBUSY; | 
|  | if (!kexec_image) { | 
|  | error = -EINVAL; | 
|  | goto Unlock; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_JUMP | 
|  | if (kexec_image->preserve_context) { | 
|  | mutex_lock(&pm_mutex); | 
|  | pm_prepare_console(); | 
|  | error = freeze_processes(); | 
|  | if (error) { | 
|  | error = -EBUSY; | 
|  | goto Restore_console; | 
|  | } | 
|  | suspend_console(); | 
|  | error = dpm_suspend_start(PMSG_FREEZE); | 
|  | if (error) | 
|  | goto Resume_console; | 
|  | /* At this point, dpm_suspend_start() has been called, | 
|  | * but *not* dpm_suspend_noirq(). We *must* call | 
|  | * dpm_suspend_noirq() now.  Otherwise, drivers for | 
|  | * some devices (e.g. interrupt controllers) become | 
|  | * desynchronized with the actual state of the | 
|  | * hardware at resume time, and evil weirdness ensues. | 
|  | */ | 
|  | error = dpm_suspend_noirq(PMSG_FREEZE); | 
|  | if (error) | 
|  | goto Resume_devices; | 
|  | error = disable_nonboot_cpus(); | 
|  | if (error) | 
|  | goto Enable_cpus; | 
|  | local_irq_disable(); | 
|  | /* Suspend system devices */ | 
|  | error = sysdev_suspend(PMSG_FREEZE); | 
|  | if (error) | 
|  | goto Enable_irqs; | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | kernel_restart_prepare(NULL); | 
|  | printk(KERN_EMERG "Starting new kernel\n"); | 
|  | machine_shutdown(); | 
|  | } | 
|  |  | 
|  | machine_kexec(kexec_image); | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_JUMP | 
|  | if (kexec_image->preserve_context) { | 
|  | sysdev_resume(); | 
|  | Enable_irqs: | 
|  | local_irq_enable(); | 
|  | Enable_cpus: | 
|  | enable_nonboot_cpus(); | 
|  | dpm_resume_noirq(PMSG_RESTORE); | 
|  | Resume_devices: | 
|  | dpm_resume_end(PMSG_RESTORE); | 
|  | Resume_console: | 
|  | resume_console(); | 
|  | thaw_processes(); | 
|  | Restore_console: | 
|  | pm_restore_console(); | 
|  | mutex_unlock(&pm_mutex); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | Unlock: | 
|  | mutex_unlock(&kexec_mutex); | 
|  | return error; | 
|  | } |