|  | /* | 
|  | * Performance events ring-buffer code: | 
|  | * | 
|  | *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 
|  | *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar | 
|  | *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
|  | *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | 
|  | * | 
|  | * For licensing details see kernel-base/COPYING | 
|  | */ | 
|  |  | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/circ_buf.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | static void perf_output_wakeup(struct perf_output_handle *handle) | 
|  | { | 
|  | atomic_set(&handle->rb->poll, POLL_IN); | 
|  |  | 
|  | handle->event->pending_wakeup = 1; | 
|  | irq_work_queue(&handle->event->pending); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to ensure a later event_id doesn't publish a head when a former | 
|  | * event isn't done writing. However since we need to deal with NMIs we | 
|  | * cannot fully serialize things. | 
|  | * | 
|  | * We only publish the head (and generate a wakeup) when the outer-most | 
|  | * event completes. | 
|  | */ | 
|  | static void perf_output_get_handle(struct perf_output_handle *handle) | 
|  | { | 
|  | struct ring_buffer *rb = handle->rb; | 
|  |  | 
|  | preempt_disable(); | 
|  | local_inc(&rb->nest); | 
|  | handle->wakeup = local_read(&rb->wakeup); | 
|  | } | 
|  |  | 
|  | static void perf_output_put_handle(struct perf_output_handle *handle) | 
|  | { | 
|  | struct ring_buffer *rb = handle->rb; | 
|  | unsigned long head; | 
|  |  | 
|  | again: | 
|  | head = local_read(&rb->head); | 
|  |  | 
|  | /* | 
|  | * IRQ/NMI can happen here, which means we can miss a head update. | 
|  | */ | 
|  |  | 
|  | if (!local_dec_and_test(&rb->nest)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Since the mmap() consumer (userspace) can run on a different CPU: | 
|  | * | 
|  | *   kernel				user | 
|  | * | 
|  | *   if (LOAD ->data_tail) {		LOAD ->data_head | 
|  | *			(A)		smp_rmb()	(C) | 
|  | *	STORE $data			LOAD $data | 
|  | *	smp_wmb()	(B)		smp_mb()	(D) | 
|  | *	STORE ->data_head		STORE ->data_tail | 
|  | *   } | 
|  | * | 
|  | * Where A pairs with D, and B pairs with C. | 
|  | * | 
|  | * In our case (A) is a control dependency that separates the load of | 
|  | * the ->data_tail and the stores of $data. In case ->data_tail | 
|  | * indicates there is no room in the buffer to store $data we do not. | 
|  | * | 
|  | * D needs to be a full barrier since it separates the data READ | 
|  | * from the tail WRITE. | 
|  | * | 
|  | * For B a WMB is sufficient since it separates two WRITEs, and for C | 
|  | * an RMB is sufficient since it separates two READs. | 
|  | * | 
|  | * See perf_output_begin(). | 
|  | */ | 
|  | smp_wmb(); /* B, matches C */ | 
|  | rb->user_page->data_head = head; | 
|  |  | 
|  | /* | 
|  | * Now check if we missed an update -- rely on previous implied | 
|  | * compiler barriers to force a re-read. | 
|  | */ | 
|  | if (unlikely(head != local_read(&rb->head))) { | 
|  | local_inc(&rb->nest); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (handle->wakeup != local_read(&rb->wakeup)) | 
|  | perf_output_wakeup(handle); | 
|  |  | 
|  | out: | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | int perf_output_begin(struct perf_output_handle *handle, | 
|  | struct perf_event *event, unsigned int size) | 
|  | { | 
|  | struct ring_buffer *rb; | 
|  | unsigned long tail, offset, head; | 
|  | int have_lost, page_shift; | 
|  | struct { | 
|  | struct perf_event_header header; | 
|  | u64			 id; | 
|  | u64			 lost; | 
|  | } lost_event; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | /* | 
|  | * For inherited events we send all the output towards the parent. | 
|  | */ | 
|  | if (event->parent) | 
|  | event = event->parent; | 
|  |  | 
|  | rb = rcu_dereference(event->rb); | 
|  | if (unlikely(!rb)) | 
|  | goto out; | 
|  |  | 
|  | if (unlikely(!rb->nr_pages)) | 
|  | goto out; | 
|  |  | 
|  | handle->rb    = rb; | 
|  | handle->event = event; | 
|  |  | 
|  | have_lost = local_read(&rb->lost); | 
|  | if (unlikely(have_lost)) { | 
|  | size += sizeof(lost_event); | 
|  | if (event->attr.sample_id_all) | 
|  | size += event->id_header_size; | 
|  | } | 
|  |  | 
|  | perf_output_get_handle(handle); | 
|  |  | 
|  | do { | 
|  | tail = ACCESS_ONCE(rb->user_page->data_tail); | 
|  | offset = head = local_read(&rb->head); | 
|  | if (!rb->overwrite && | 
|  | unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size)) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * The above forms a control dependency barrier separating the | 
|  | * @tail load above from the data stores below. Since the @tail | 
|  | * load is required to compute the branch to fail below. | 
|  | * | 
|  | * A, matches D; the full memory barrier userspace SHOULD issue | 
|  | * after reading the data and before storing the new tail | 
|  | * position. | 
|  | * | 
|  | * See perf_output_put_handle(). | 
|  | */ | 
|  |  | 
|  | head += size; | 
|  | } while (local_cmpxchg(&rb->head, offset, head) != offset); | 
|  |  | 
|  | /* | 
|  | * We rely on the implied barrier() by local_cmpxchg() to ensure | 
|  | * none of the data stores below can be lifted up by the compiler. | 
|  | */ | 
|  |  | 
|  | if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) | 
|  | local_add(rb->watermark, &rb->wakeup); | 
|  |  | 
|  | page_shift = PAGE_SHIFT + page_order(rb); | 
|  |  | 
|  | handle->page = (offset >> page_shift) & (rb->nr_pages - 1); | 
|  | offset &= (1UL << page_shift) - 1; | 
|  | handle->addr = rb->data_pages[handle->page] + offset; | 
|  | handle->size = (1UL << page_shift) - offset; | 
|  |  | 
|  | if (unlikely(have_lost)) { | 
|  | struct perf_sample_data sample_data; | 
|  |  | 
|  | lost_event.header.size = sizeof(lost_event); | 
|  | lost_event.header.type = PERF_RECORD_LOST; | 
|  | lost_event.header.misc = 0; | 
|  | lost_event.id          = event->id; | 
|  | lost_event.lost        = local_xchg(&rb->lost, 0); | 
|  |  | 
|  | perf_event_header__init_id(&lost_event.header, | 
|  | &sample_data, event); | 
|  | perf_output_put(handle, lost_event); | 
|  | perf_event__output_id_sample(event, handle, &sample_data); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | local_inc(&rb->lost); | 
|  | perf_output_put_handle(handle); | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | unsigned int perf_output_copy(struct perf_output_handle *handle, | 
|  | const void *buf, unsigned int len) | 
|  | { | 
|  | return __output_copy(handle, buf, len); | 
|  | } | 
|  |  | 
|  | unsigned int perf_output_skip(struct perf_output_handle *handle, | 
|  | unsigned int len) | 
|  | { | 
|  | return __output_skip(handle, NULL, len); | 
|  | } | 
|  |  | 
|  | void perf_output_end(struct perf_output_handle *handle) | 
|  | { | 
|  | perf_output_put_handle(handle); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void | 
|  | ring_buffer_init(struct ring_buffer *rb, long watermark, int flags) | 
|  | { | 
|  | long max_size = perf_data_size(rb); | 
|  |  | 
|  | if (watermark) | 
|  | rb->watermark = min(max_size, watermark); | 
|  |  | 
|  | if (!rb->watermark) | 
|  | rb->watermark = max_size / 2; | 
|  |  | 
|  | if (flags & RING_BUFFER_WRITABLE) | 
|  | rb->overwrite = 0; | 
|  | else | 
|  | rb->overwrite = 1; | 
|  |  | 
|  | atomic_set(&rb->refcount, 1); | 
|  |  | 
|  | INIT_LIST_HEAD(&rb->event_list); | 
|  | spin_lock_init(&rb->event_lock); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_PERF_USE_VMALLOC | 
|  |  | 
|  | /* | 
|  | * Back perf_mmap() with regular GFP_KERNEL-0 pages. | 
|  | */ | 
|  |  | 
|  | struct page * | 
|  | perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) | 
|  | { | 
|  | if (pgoff > rb->nr_pages) | 
|  | return NULL; | 
|  |  | 
|  | if (pgoff == 0) | 
|  | return virt_to_page(rb->user_page); | 
|  |  | 
|  | return virt_to_page(rb->data_pages[pgoff - 1]); | 
|  | } | 
|  |  | 
|  | static void *perf_mmap_alloc_page(int cpu) | 
|  | { | 
|  | struct page *page; | 
|  | int node; | 
|  |  | 
|  | node = (cpu == -1) ? cpu : cpu_to_node(cpu); | 
|  | page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | return page_address(page); | 
|  | } | 
|  |  | 
|  | struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) | 
|  | { | 
|  | struct ring_buffer *rb; | 
|  | unsigned long size; | 
|  | int i; | 
|  |  | 
|  | size = sizeof(struct ring_buffer); | 
|  | size += nr_pages * sizeof(void *); | 
|  |  | 
|  | rb = kzalloc(size, GFP_KERNEL); | 
|  | if (!rb) | 
|  | goto fail; | 
|  |  | 
|  | rb->user_page = perf_mmap_alloc_page(cpu); | 
|  | if (!rb->user_page) | 
|  | goto fail_user_page; | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | rb->data_pages[i] = perf_mmap_alloc_page(cpu); | 
|  | if (!rb->data_pages[i]) | 
|  | goto fail_data_pages; | 
|  | } | 
|  |  | 
|  | rb->nr_pages = nr_pages; | 
|  |  | 
|  | ring_buffer_init(rb, watermark, flags); | 
|  |  | 
|  | return rb; | 
|  |  | 
|  | fail_data_pages: | 
|  | for (i--; i >= 0; i--) | 
|  | free_page((unsigned long)rb->data_pages[i]); | 
|  |  | 
|  | free_page((unsigned long)rb->user_page); | 
|  |  | 
|  | fail_user_page: | 
|  | kfree(rb); | 
|  |  | 
|  | fail: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void perf_mmap_free_page(unsigned long addr) | 
|  | { | 
|  | struct page *page = virt_to_page((void *)addr); | 
|  |  | 
|  | page->mapping = NULL; | 
|  | __free_page(page); | 
|  | } | 
|  |  | 
|  | void rb_free(struct ring_buffer *rb) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | perf_mmap_free_page((unsigned long)rb->user_page); | 
|  | for (i = 0; i < rb->nr_pages; i++) | 
|  | perf_mmap_free_page((unsigned long)rb->data_pages[i]); | 
|  | kfree(rb); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static int data_page_nr(struct ring_buffer *rb) | 
|  | { | 
|  | return rb->nr_pages << page_order(rb); | 
|  | } | 
|  |  | 
|  | struct page * | 
|  | perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) | 
|  | { | 
|  | /* The '>' counts in the user page. */ | 
|  | if (pgoff > data_page_nr(rb)) | 
|  | return NULL; | 
|  |  | 
|  | return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static void perf_mmap_unmark_page(void *addr) | 
|  | { | 
|  | struct page *page = vmalloc_to_page(addr); | 
|  |  | 
|  | page->mapping = NULL; | 
|  | } | 
|  |  | 
|  | static void rb_free_work(struct work_struct *work) | 
|  | { | 
|  | struct ring_buffer *rb; | 
|  | void *base; | 
|  | int i, nr; | 
|  |  | 
|  | rb = container_of(work, struct ring_buffer, work); | 
|  | nr = data_page_nr(rb); | 
|  |  | 
|  | base = rb->user_page; | 
|  | /* The '<=' counts in the user page. */ | 
|  | for (i = 0; i <= nr; i++) | 
|  | perf_mmap_unmark_page(base + (i * PAGE_SIZE)); | 
|  |  | 
|  | vfree(base); | 
|  | kfree(rb); | 
|  | } | 
|  |  | 
|  | void rb_free(struct ring_buffer *rb) | 
|  | { | 
|  | schedule_work(&rb->work); | 
|  | } | 
|  |  | 
|  | struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) | 
|  | { | 
|  | struct ring_buffer *rb; | 
|  | unsigned long size; | 
|  | void *all_buf; | 
|  |  | 
|  | size = sizeof(struct ring_buffer); | 
|  | size += sizeof(void *); | 
|  |  | 
|  | rb = kzalloc(size, GFP_KERNEL); | 
|  | if (!rb) | 
|  | goto fail; | 
|  |  | 
|  | INIT_WORK(&rb->work, rb_free_work); | 
|  |  | 
|  | all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); | 
|  | if (!all_buf) | 
|  | goto fail_all_buf; | 
|  |  | 
|  | rb->user_page = all_buf; | 
|  | rb->data_pages[0] = all_buf + PAGE_SIZE; | 
|  | rb->page_order = ilog2(nr_pages); | 
|  | rb->nr_pages = !!nr_pages; | 
|  |  | 
|  | ring_buffer_init(rb, watermark, flags); | 
|  |  | 
|  | return rb; | 
|  |  | 
|  | fail_all_buf: | 
|  | kfree(rb); | 
|  |  | 
|  | fail: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #endif |