|  | /* | 
|  | * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation, version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, but | 
|  | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | *   more details. | 
|  | * | 
|  | * Support the cycle counter clocksource and tile timer clock event device. | 
|  | */ | 
|  |  | 
|  | #include <linux/time.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/timekeeper_internal.h> | 
|  | #include <asm/irq_regs.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/vdso.h> | 
|  | #include <hv/hypervisor.h> | 
|  | #include <arch/interrupts.h> | 
|  | #include <arch/spr_def.h> | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Define the cycle counter clock source. | 
|  | */ | 
|  |  | 
|  | /* How many cycles per second we are running at. */ | 
|  | static cycles_t cycles_per_sec __write_once; | 
|  |  | 
|  | cycles_t get_clock_rate(void) | 
|  | { | 
|  | return cycles_per_sec; | 
|  | } | 
|  |  | 
|  | #if CHIP_HAS_SPLIT_CYCLE() | 
|  | cycles_t get_cycles(void) | 
|  | { | 
|  | unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH); | 
|  | unsigned int low = __insn_mfspr(SPR_CYCLE_LOW); | 
|  | unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH); | 
|  |  | 
|  | while (unlikely(high != high2)) { | 
|  | low = __insn_mfspr(SPR_CYCLE_LOW); | 
|  | high = high2; | 
|  | high2 = __insn_mfspr(SPR_CYCLE_HIGH); | 
|  | } | 
|  |  | 
|  | return (((cycles_t)high) << 32) | low; | 
|  | } | 
|  | EXPORT_SYMBOL(get_cycles); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We use a relatively small shift value so that sched_clock() | 
|  | * won't wrap around very often. | 
|  | */ | 
|  | #define SCHED_CLOCK_SHIFT 10 | 
|  |  | 
|  | static unsigned long sched_clock_mult __write_once; | 
|  |  | 
|  | static cycles_t clocksource_get_cycles(struct clocksource *cs) | 
|  | { | 
|  | return get_cycles(); | 
|  | } | 
|  |  | 
|  | static struct clocksource cycle_counter_cs = { | 
|  | .name = "cycle counter", | 
|  | .rating = 300, | 
|  | .read = clocksource_get_cycles, | 
|  | .mask = CLOCKSOURCE_MASK(64), | 
|  | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Called very early from setup_arch() to set cycles_per_sec. | 
|  | * We initialize it early so we can use it to set up loops_per_jiffy. | 
|  | */ | 
|  | void __init setup_clock(void) | 
|  | { | 
|  | cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED); | 
|  | sched_clock_mult = | 
|  | clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT); | 
|  | } | 
|  |  | 
|  | void __init calibrate_delay(void) | 
|  | { | 
|  | loops_per_jiffy = get_clock_rate() / HZ; | 
|  | pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n", | 
|  | loops_per_jiffy/(500000/HZ), | 
|  | (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy); | 
|  | } | 
|  |  | 
|  | /* Called fairly late in init/main.c, but before we go smp. */ | 
|  | void __init time_init(void) | 
|  | { | 
|  | /* Initialize and register the clock source. */ | 
|  | clocksource_register_hz(&cycle_counter_cs, cycles_per_sec); | 
|  |  | 
|  | /* Start up the tile-timer interrupt source on the boot cpu. */ | 
|  | setup_tile_timer(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Define the tile timer clock event device.  The timer is driven by | 
|  | * the TILE_TIMER_CONTROL register, which consists of a 31-bit down | 
|  | * counter, plus bit 31, which signifies that the counter has wrapped | 
|  | * from zero to (2**31) - 1.  The INT_TILE_TIMER interrupt will be | 
|  | * raised as long as bit 31 is set. | 
|  | * | 
|  | * The TILE_MINSEC value represents the largest range of real-time | 
|  | * we can possibly cover with the timer, based on MAX_TICK combined | 
|  | * with the slowest reasonable clock rate we might run at. | 
|  | */ | 
|  |  | 
|  | #define MAX_TICK 0x7fffffff   /* we have 31 bits of countdown timer */ | 
|  | #define TILE_MINSEC 5         /* timer covers no more than 5 seconds */ | 
|  |  | 
|  | static int tile_timer_set_next_event(unsigned long ticks, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | BUG_ON(ticks > MAX_TICK); | 
|  | __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks); | 
|  | arch_local_irq_unmask_now(INT_TILE_TIMER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Whenever anyone tries to change modes, we just mask interrupts | 
|  | * and wait for the next event to get set. | 
|  | */ | 
|  | static void tile_timer_set_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | arch_local_irq_mask_now(INT_TILE_TIMER); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set min_delta_ns to 1 microsecond, since it takes about | 
|  | * that long to fire the interrupt. | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = { | 
|  | .name = "tile timer", | 
|  | .features = CLOCK_EVT_FEAT_ONESHOT, | 
|  | .min_delta_ns = 1000, | 
|  | .rating = 100, | 
|  | .irq = -1, | 
|  | .set_next_event = tile_timer_set_next_event, | 
|  | .set_mode = tile_timer_set_mode, | 
|  | }; | 
|  |  | 
|  | void setup_tile_timer(void) | 
|  | { | 
|  | struct clock_event_device *evt = &__get_cpu_var(tile_timer); | 
|  |  | 
|  | /* Fill in fields that are speed-specific. */ | 
|  | clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC); | 
|  | evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt); | 
|  |  | 
|  | /* Mark as being for this cpu only. */ | 
|  | evt->cpumask = cpumask_of(smp_processor_id()); | 
|  |  | 
|  | /* Start out with timer not firing. */ | 
|  | arch_local_irq_mask_now(INT_TILE_TIMER); | 
|  |  | 
|  | /* Register tile timer. */ | 
|  | clockevents_register_device(evt); | 
|  | } | 
|  |  | 
|  | /* Called from the interrupt vector. */ | 
|  | void do_timer_interrupt(struct pt_regs *regs, int fault_num) | 
|  | { | 
|  | struct pt_regs *old_regs = set_irq_regs(regs); | 
|  | struct clock_event_device *evt = &__get_cpu_var(tile_timer); | 
|  |  | 
|  | /* | 
|  | * Mask the timer interrupt here, since we are a oneshot timer | 
|  | * and there are now by definition no events pending. | 
|  | */ | 
|  | arch_local_irq_mask(INT_TILE_TIMER); | 
|  |  | 
|  | /* Track time spent here in an interrupt context */ | 
|  | irq_enter(); | 
|  |  | 
|  | /* Track interrupt count. */ | 
|  | __get_cpu_var(irq_stat).irq_timer_count++; | 
|  |  | 
|  | /* Call the generic timer handler */ | 
|  | evt->event_handler(evt); | 
|  |  | 
|  | /* | 
|  | * Track time spent against the current process again and | 
|  | * process any softirqs if they are waiting. | 
|  | */ | 
|  | irq_exit(); | 
|  |  | 
|  | set_irq_regs(old_regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scheduler clock - returns current time in nanosec units. | 
|  | * Note that with LOCKDEP, this is called during lockdep_init(), and | 
|  | * we will claim that sched_clock() is zero for a little while, until | 
|  | * we run setup_clock(), above. | 
|  | */ | 
|  | unsigned long long sched_clock(void) | 
|  | { | 
|  | return clocksource_cyc2ns(get_cycles(), | 
|  | sched_clock_mult, SCHED_CLOCK_SHIFT); | 
|  | } | 
|  |  | 
|  | int setup_profiling_timer(unsigned int multiplier) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the tile timer to convert nsecs to core clock cycles, relying | 
|  | * on it having the same frequency as SPR_CYCLE. | 
|  | */ | 
|  | cycles_t ns2cycles(unsigned long nsecs) | 
|  | { | 
|  | /* | 
|  | * We do not have to disable preemption here as each core has the same | 
|  | * clock frequency. | 
|  | */ | 
|  | struct clock_event_device *dev = &__raw_get_cpu_var(tile_timer); | 
|  |  | 
|  | /* | 
|  | * as in clocksource.h and x86's timer.h, we split the calculation | 
|  | * into 2 parts to avoid unecessary overflow of the intermediate | 
|  | * value. This will not lead to any loss of precision. | 
|  | */ | 
|  | u64 quot = (u64)nsecs >> dev->shift; | 
|  | u64 rem  = (u64)nsecs & ((1ULL << dev->shift) - 1); | 
|  | return quot * dev->mult + ((rem * dev->mult) >> dev->shift); | 
|  | } | 
|  |  | 
|  | void update_vsyscall_tz(void) | 
|  | { | 
|  | /* Userspace gettimeofday will spin while this value is odd. */ | 
|  | ++vdso_data->tz_update_count; | 
|  | smp_wmb(); | 
|  | vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; | 
|  | vdso_data->tz_dsttime = sys_tz.tz_dsttime; | 
|  | smp_wmb(); | 
|  | ++vdso_data->tz_update_count; | 
|  | } | 
|  |  | 
|  | void update_vsyscall(struct timekeeper *tk) | 
|  | { | 
|  | struct timespec wall_time = tk_xtime(tk); | 
|  | struct timespec *wtm = &tk->wall_to_monotonic; | 
|  | struct clocksource *clock = tk->clock; | 
|  |  | 
|  | if (clock != &cycle_counter_cs) | 
|  | return; | 
|  |  | 
|  | /* Userspace gettimeofday will spin while this value is odd. */ | 
|  | ++vdso_data->tb_update_count; | 
|  | smp_wmb(); | 
|  | vdso_data->xtime_tod_stamp = clock->cycle_last; | 
|  | vdso_data->xtime_clock_sec = wall_time.tv_sec; | 
|  | vdso_data->xtime_clock_nsec = wall_time.tv_nsec; | 
|  | vdso_data->wtom_clock_sec = wtm->tv_sec; | 
|  | vdso_data->wtom_clock_nsec = wtm->tv_nsec; | 
|  | vdso_data->mult = clock->mult; | 
|  | vdso_data->shift = clock->shift; | 
|  | smp_wmb(); | 
|  | ++vdso_data->tb_update_count; | 
|  | } |