blob: 6bb60fda204397077bf06eb6b476c98167cb28c3 [file] [log] [blame]
/*
* Copyright (C) 2017 Marvell
*
* Antoine Tenart <antoine.tenart@free-electrons.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <crypto/aead.h>
#include <crypto/aes.h>
#include <crypto/authenc.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include "safexcel.h"
enum safexcel_cipher_direction {
SAFEXCEL_ENCRYPT,
SAFEXCEL_DECRYPT,
};
struct safexcel_cipher_ctx {
struct safexcel_context base;
struct safexcel_crypto_priv *priv;
u32 mode;
bool aead;
__le32 key[8];
unsigned int key_len;
/* All the below is AEAD specific */
u32 alg;
u32 state_sz;
u32 ipad[SHA256_DIGEST_SIZE / sizeof(u32)];
u32 opad[SHA256_DIGEST_SIZE / sizeof(u32)];
};
struct safexcel_cipher_req {
enum safexcel_cipher_direction direction;
bool needs_inv;
};
static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
struct safexcel_command_desc *cdesc,
u32 length)
{
struct safexcel_token *token;
unsigned offset = 0;
if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
offset = AES_BLOCK_SIZE / sizeof(u32);
memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
}
token = (struct safexcel_token *)(cdesc->control_data.token + offset);
token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
token[0].packet_length = length;
token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
EIP197_TOKEN_STAT_LAST_HASH;
token[0].instructions = EIP197_TOKEN_INS_LAST |
EIP197_TOKEN_INS_TYPE_CRYTO |
EIP197_TOKEN_INS_TYPE_OUTPUT;
}
static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
struct safexcel_command_desc *cdesc,
enum safexcel_cipher_direction direction,
u32 cryptlen, u32 assoclen, u32 digestsize)
{
struct safexcel_token *token;
unsigned offset = 0;
if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
offset = AES_BLOCK_SIZE / sizeof(u32);
memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
}
token = (struct safexcel_token *)(cdesc->control_data.token + offset);
if (direction == SAFEXCEL_DECRYPT)
cryptlen -= digestsize;
token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
token[0].packet_length = assoclen;
token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH |
EIP197_TOKEN_INS_TYPE_OUTPUT;
token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
token[1].packet_length = cryptlen;
token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
token[1].instructions = EIP197_TOKEN_INS_LAST |
EIP197_TOKEN_INS_TYPE_CRYTO |
EIP197_TOKEN_INS_TYPE_HASH |
EIP197_TOKEN_INS_TYPE_OUTPUT;
if (direction == SAFEXCEL_ENCRYPT) {
token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
token[2].packet_length = digestsize;
token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
EIP197_TOKEN_STAT_LAST_PACKET;
token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
} else {
token[2].opcode = EIP197_TOKEN_OPCODE_RETRIEVE;
token[2].packet_length = digestsize;
token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
EIP197_TOKEN_STAT_LAST_PACKET;
token[2].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
token[3].opcode = EIP197_TOKEN_OPCODE_VERIFY;
token[3].packet_length = digestsize |
EIP197_TOKEN_HASH_RESULT_VERIFY;
token[3].stat = EIP197_TOKEN_STAT_LAST_HASH |
EIP197_TOKEN_STAT_LAST_PACKET;
token[3].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT;
}
}
static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
const u8 *key, unsigned int len)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
struct crypto_aes_ctx aes;
int ret, i;
ret = crypto_aes_expand_key(&aes, key, len);
if (ret) {
crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return ret;
}
if (priv->version == EIP197 && ctx->base.ctxr_dma) {
for (i = 0; i < len / sizeof(u32); i++) {
if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
ctx->base.needs_inv = true;
break;
}
}
}
for (i = 0; i < len / sizeof(u32); i++)
ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
ctx->key_len = len;
memzero_explicit(&aes, sizeof(aes));
return 0;
}
static int safexcel_aead_aes_setkey(struct crypto_aead *ctfm, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_ahash_export_state istate, ostate;
struct safexcel_crypto_priv *priv = ctx->priv;
struct crypto_authenc_keys keys;
if (crypto_authenc_extractkeys(&keys, key, len) != 0)
goto badkey;
if (keys.enckeylen > sizeof(ctx->key))
goto badkey;
/* Encryption key */
if (priv->version == EIP197 && ctx->base.ctxr_dma &&
memcmp(ctx->key, keys.enckey, keys.enckeylen))
ctx->base.needs_inv = true;
/* Auth key */
switch (ctx->alg) {
case CONTEXT_CONTROL_CRYPTO_ALG_SHA1:
if (safexcel_hmac_setkey("safexcel-sha1", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
case CONTEXT_CONTROL_CRYPTO_ALG_SHA224:
if (safexcel_hmac_setkey("safexcel-sha224", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
case CONTEXT_CONTROL_CRYPTO_ALG_SHA256:
if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
default:
dev_err(priv->dev, "aead: unsupported hash algorithm\n");
goto badkey;
}
crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) &
CRYPTO_TFM_RES_MASK);
if (priv->version == EIP197 && ctx->base.ctxr_dma &&
(memcmp(ctx->ipad, istate.state, ctx->state_sz) ||
memcmp(ctx->opad, ostate.state, ctx->state_sz)))
ctx->base.needs_inv = true;
/* Now copy the keys into the context */
memcpy(ctx->key, keys.enckey, keys.enckeylen);
ctx->key_len = keys.enckeylen;
memcpy(ctx->ipad, &istate.state, ctx->state_sz);
memcpy(ctx->opad, &ostate.state, ctx->state_sz);
memzero_explicit(&keys, sizeof(keys));
return 0;
badkey:
crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
}
static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
struct crypto_async_request *async,
struct safexcel_cipher_req *sreq,
struct safexcel_command_desc *cdesc)
{
struct safexcel_crypto_priv *priv = ctx->priv;
int ctrl_size;
if (ctx->aead) {
if (sreq->direction == SAFEXCEL_ENCRYPT)
cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT;
else
cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN;
} else {
cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;
/* The decryption control type is a combination of the
* encryption type and CONTEXT_CONTROL_TYPE_NULL_IN, for all
* types.
*/
if (sreq->direction == SAFEXCEL_DECRYPT)
cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_NULL_IN;
}
cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
cdesc->control_data.control1 |= ctx->mode;
if (ctx->aead)
cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_HMAC |
ctx->alg;
switch (ctx->key_len) {
case AES_KEYSIZE_128:
cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
break;
case AES_KEYSIZE_192:
cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
break;
case AES_KEYSIZE_256:
cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
break;
default:
dev_err(priv->dev, "aes keysize not supported: %u\n",
ctx->key_len);
return -EINVAL;
}
ctrl_size = ctx->key_len / sizeof(u32);
if (ctx->aead)
/* Take in account the ipad+opad digests */
ctrl_size += ctx->state_sz / sizeof(u32) * 2;
cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);
return 0;
}
static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
struct crypto_async_request *async,
struct scatterlist *src,
struct scatterlist *dst,
unsigned int cryptlen,
struct safexcel_cipher_req *sreq,
bool *should_complete, int *ret)
{
struct safexcel_result_desc *rdesc;
int ndesc = 0;
*ret = 0;
spin_lock_bh(&priv->ring[ring].egress_lock);
do {
rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
if (IS_ERR(rdesc)) {
dev_err(priv->dev,
"cipher: result: could not retrieve the result descriptor\n");
*ret = PTR_ERR(rdesc);
break;
}
if (likely(!*ret))
*ret = safexcel_rdesc_check_errors(priv, rdesc);
ndesc++;
} while (!rdesc->last_seg);
safexcel_complete(priv, ring);
spin_unlock_bh(&priv->ring[ring].egress_lock);
if (src == dst) {
dma_unmap_sg(priv->dev, src,
sg_nents_for_len(src, cryptlen),
DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(priv->dev, src,
sg_nents_for_len(src, cryptlen),
DMA_TO_DEVICE);
dma_unmap_sg(priv->dev, dst,
sg_nents_for_len(dst, cryptlen),
DMA_FROM_DEVICE);
}
*should_complete = true;
return ndesc;
}
static int safexcel_aes_send(struct crypto_async_request *base, int ring,
struct safexcel_request *request,
struct safexcel_cipher_req *sreq,
struct scatterlist *src, struct scatterlist *dst,
unsigned int cryptlen, unsigned int assoclen,
unsigned int digestsize, u8 *iv, int *commands,
int *results)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
struct safexcel_command_desc *cdesc;
struct safexcel_result_desc *rdesc;
struct scatterlist *sg;
unsigned int totlen = cryptlen + assoclen;
int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = totlen;
int i, ret = 0;
if (src == dst) {
nr_src = dma_map_sg(priv->dev, src,
sg_nents_for_len(src, totlen),
DMA_BIDIRECTIONAL);
nr_dst = nr_src;
if (!nr_src)
return -EINVAL;
} else {
nr_src = dma_map_sg(priv->dev, src,
sg_nents_for_len(src, totlen),
DMA_TO_DEVICE);
if (!nr_src)
return -EINVAL;
nr_dst = dma_map_sg(priv->dev, dst,
sg_nents_for_len(dst, totlen),
DMA_FROM_DEVICE);
if (!nr_dst) {
dma_unmap_sg(priv->dev, src,
sg_nents_for_len(src, totlen),
DMA_TO_DEVICE);
return -EINVAL;
}
}
memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);
if (ctx->aead) {
memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32),
ctx->ipad, ctx->state_sz);
memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) / sizeof(u32),
ctx->opad, ctx->state_sz);
}
spin_lock_bh(&priv->ring[ring].egress_lock);
/* command descriptors */
for_each_sg(src, sg, nr_src, i) {
int len = sg_dma_len(sg);
/* Do not overflow the request */
if (queued - len < 0)
len = queued;
cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len),
sg_dma_address(sg), len, totlen,
ctx->base.ctxr_dma);
if (IS_ERR(cdesc)) {
/* No space left in the command descriptor ring */
ret = PTR_ERR(cdesc);
goto cdesc_rollback;
}
n_cdesc++;
if (n_cdesc == 1) {
safexcel_context_control(ctx, base, sreq, cdesc);
if (ctx->aead)
safexcel_aead_token(ctx, iv, cdesc,
sreq->direction, cryptlen,
assoclen, digestsize);
else
safexcel_skcipher_token(ctx, iv, cdesc,
cryptlen);
}
queued -= len;
if (!queued)
break;
}
/* result descriptors */
for_each_sg(dst, sg, nr_dst, i) {
bool first = !i, last = (i == nr_dst - 1);
u32 len = sg_dma_len(sg);
rdesc = safexcel_add_rdesc(priv, ring, first, last,
sg_dma_address(sg), len);
if (IS_ERR(rdesc)) {
/* No space left in the result descriptor ring */
ret = PTR_ERR(rdesc);
goto rdesc_rollback;
}
n_rdesc++;
}
spin_unlock_bh(&priv->ring[ring].egress_lock);
request->req = base;
*commands = n_cdesc;
*results = n_rdesc;
return 0;
rdesc_rollback:
for (i = 0; i < n_rdesc; i++)
safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
cdesc_rollback:
for (i = 0; i < n_cdesc; i++)
safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
spin_unlock_bh(&priv->ring[ring].egress_lock);
if (src == dst) {
dma_unmap_sg(priv->dev, src,
sg_nents_for_len(src, totlen),
DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(priv->dev, src,
sg_nents_for_len(src, totlen),
DMA_TO_DEVICE);
dma_unmap_sg(priv->dev, dst,
sg_nents_for_len(dst, totlen),
DMA_FROM_DEVICE);
}
return ret;
}
static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
int ring,
struct crypto_async_request *base,
bool *should_complete, int *ret)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct safexcel_result_desc *rdesc;
int ndesc = 0, enq_ret;
*ret = 0;
spin_lock_bh(&priv->ring[ring].egress_lock);
do {
rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
if (IS_ERR(rdesc)) {
dev_err(priv->dev,
"cipher: invalidate: could not retrieve the result descriptor\n");
*ret = PTR_ERR(rdesc);
break;
}
if (rdesc->result_data.error_code) {
dev_err(priv->dev, "cipher: invalidate: result descriptor error (%d)\n",
rdesc->result_data.error_code);
*ret = -EIO;
}
ndesc++;
} while (!rdesc->last_seg);
safexcel_complete(priv, ring);
spin_unlock_bh(&priv->ring[ring].egress_lock);
if (ctx->base.exit_inv) {
dma_pool_free(priv->context_pool, ctx->base.ctxr,
ctx->base.ctxr_dma);
*should_complete = true;
return ndesc;
}
ring = safexcel_select_ring(priv);
ctx->base.ring = ring;
spin_lock_bh(&priv->ring[ring].queue_lock);
enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
if (enq_ret != -EINPROGRESS)
*ret = enq_ret;
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
*should_complete = false;
return ndesc;
}
static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
int ring,
struct crypto_async_request *async,
bool *should_complete, int *ret)
{
struct skcipher_request *req = skcipher_request_cast(async);
struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
int err;
if (sreq->needs_inv) {
sreq->needs_inv = false;
err = safexcel_handle_inv_result(priv, ring, async,
should_complete, ret);
} else {
err = safexcel_handle_req_result(priv, ring, async, req->src,
req->dst, req->cryptlen, sreq,
should_complete, ret);
}
return err;
}
static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv,
int ring,
struct crypto_async_request *async,
bool *should_complete, int *ret)
{
struct aead_request *req = aead_request_cast(async);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct safexcel_cipher_req *sreq = aead_request_ctx(req);
int err;
if (sreq->needs_inv) {
sreq->needs_inv = false;
err = safexcel_handle_inv_result(priv, ring, async,
should_complete, ret);
} else {
err = safexcel_handle_req_result(priv, ring, async, req->src,
req->dst,
req->cryptlen + crypto_aead_authsize(tfm),
sreq, should_complete, ret);
}
return err;
}
static int safexcel_cipher_send_inv(struct crypto_async_request *base,
int ring, struct safexcel_request *request,
int *commands, int *results)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring,
request);
if (unlikely(ret))
return ret;
*commands = 1;
*results = 1;
return 0;
}
static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
struct safexcel_request *request,
int *commands, int *results)
{
struct skcipher_request *req = skcipher_request_cast(async);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
BUG_ON(priv->version == EIP97 && sreq->needs_inv);
if (sreq->needs_inv)
ret = safexcel_cipher_send_inv(async, ring, request, commands,
results);
else
ret = safexcel_aes_send(async, ring, request, sreq, req->src,
req->dst, req->cryptlen, 0, 0, req->iv,
commands, results);
return ret;
}
static int safexcel_aead_send(struct crypto_async_request *async, int ring,
struct safexcel_request *request, int *commands,
int *results)
{
struct aead_request *req = aead_request_cast(async);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct safexcel_cipher_req *sreq = aead_request_ctx(req);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
BUG_ON(priv->version == EIP97 && sreq->needs_inv);
if (sreq->needs_inv)
ret = safexcel_cipher_send_inv(async, ring, request, commands,
results);
else
ret = safexcel_aes_send(async, ring, request, sreq, req->src,
req->dst, req->cryptlen, req->assoclen,
crypto_aead_authsize(tfm), req->iv,
commands, results);
return ret;
}
static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
struct crypto_async_request *base,
struct safexcel_cipher_req *sreq,
struct safexcel_inv_result *result)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ring = ctx->base.ring;
init_completion(&result->completion);
ctx = crypto_tfm_ctx(base->tfm);
ctx->base.exit_inv = true;
sreq->needs_inv = true;
spin_lock_bh(&priv->ring[ring].queue_lock);
crypto_enqueue_request(&priv->ring[ring].queue, base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
wait_for_completion(&result->completion);
if (result->error) {
dev_warn(priv->dev,
"cipher: sync: invalidate: completion error %d\n",
result->error);
return result->error;
}
return 0;
}
static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
{
EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
struct safexcel_inv_result result = {};
memset(req, 0, sizeof(struct skcipher_request));
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
safexcel_inv_complete, &result);
skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));
return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
}
static int safexcel_aead_exit_inv(struct crypto_tfm *tfm)
{
EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE);
struct safexcel_cipher_req *sreq = aead_request_ctx(req);
struct safexcel_inv_result result = {};
memset(req, 0, sizeof(struct aead_request));
aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
safexcel_inv_complete, &result);
aead_request_set_tfm(req, __crypto_aead_cast(tfm));
return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
}
static int safexcel_aes(struct crypto_async_request *base,
struct safexcel_cipher_req *sreq,
enum safexcel_cipher_direction dir, u32 mode)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret, ring;
sreq->needs_inv = false;
sreq->direction = dir;
ctx->mode = mode;
if (ctx->base.ctxr) {
if (priv->version == EIP197 && ctx->base.needs_inv) {
sreq->needs_inv = true;
ctx->base.needs_inv = false;
}
} else {
ctx->base.ring = safexcel_select_ring(priv);
ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
EIP197_GFP_FLAGS(*base),
&ctx->base.ctxr_dma);
if (!ctx->base.ctxr)
return -ENOMEM;
}
ring = ctx->base.ring;
spin_lock_bh(&priv->ring[ring].queue_lock);
ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
return ret;
}
static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
{
return safexcel_aes(&req->base, skcipher_request_ctx(req),
SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB);
}
static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
{
return safexcel_aes(&req->base, skcipher_request_ctx(req),
SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB);
}
static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_alg_template *tmpl =
container_of(tfm->__crt_alg, struct safexcel_alg_template,
alg.skcipher.base);
crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
sizeof(struct safexcel_cipher_req));
ctx->priv = tmpl->priv;
ctx->base.send = safexcel_skcipher_send;
ctx->base.handle_result = safexcel_skcipher_handle_result;
return 0;
}
static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
memzero_explicit(ctx->key, sizeof(ctx->key));
/* context not allocated, skip invalidation */
if (!ctx->base.ctxr)
return -ENOMEM;
memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data));
return 0;
}
static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
if (safexcel_cipher_cra_exit(tfm))
return;
if (priv->version == EIP197) {
ret = safexcel_skcipher_exit_inv(tfm);
if (ret)
dev_warn(priv->dev, "skcipher: invalidation error %d\n",
ret);
} else {
dma_pool_free(priv->context_pool, ctx->base.ctxr,
ctx->base.ctxr_dma);
}
}
static void safexcel_aead_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
if (safexcel_cipher_cra_exit(tfm))
return;
if (priv->version == EIP197) {
ret = safexcel_aead_exit_inv(tfm);
if (ret)
dev_warn(priv->dev, "aead: invalidation error %d\n",
ret);
} else {
dma_pool_free(priv->context_pool, ctx->base.ctxr,
ctx->base.ctxr_dma);
}
}
struct safexcel_alg_template safexcel_alg_ecb_aes = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.setkey = safexcel_skcipher_aes_setkey,
.encrypt = safexcel_ecb_aes_encrypt,
.decrypt = safexcel_ecb_aes_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.base = {
.cra_name = "ecb(aes)",
.cra_driver_name = "safexcel-ecb-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
{
return safexcel_aes(&req->base, skcipher_request_ctx(req),
SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC);
}
static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
{
return safexcel_aes(&req->base, skcipher_request_ctx(req),
SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC);
}
struct safexcel_alg_template safexcel_alg_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.setkey = safexcel_skcipher_aes_setkey,
.encrypt = safexcel_cbc_aes_encrypt,
.decrypt = safexcel_cbc_aes_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "safexcel-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_encrypt(struct aead_request *req)
{
struct safexcel_cipher_req *creq = aead_request_ctx(req);
return safexcel_aes(&req->base, creq, SAFEXCEL_ENCRYPT,
CONTEXT_CONTROL_CRYPTO_MODE_CBC);
}
static int safexcel_aead_decrypt(struct aead_request *req)
{
struct safexcel_cipher_req *creq = aead_request_ctx(req);
return safexcel_aes(&req->base, creq, SAFEXCEL_DECRYPT,
CONTEXT_CONTROL_CRYPTO_MODE_CBC);
}
static int safexcel_aead_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_alg_template *tmpl =
container_of(tfm->__crt_alg, struct safexcel_alg_template,
alg.aead.base);
crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
sizeof(struct safexcel_cipher_req));
ctx->priv = tmpl->priv;
ctx->aead = true;
ctx->base.send = safexcel_aead_send;
ctx->base.handle_result = safexcel_aead_handle_result;
return 0;
}
static int safexcel_aead_sha1_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
ctx->state_sz = SHA1_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.alg.aead = {
.setkey = safexcel_aead_aes_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha1_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
ctx->state_sz = SHA256_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.alg.aead = {
.setkey = safexcel_aead_aes_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha256_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
ctx->state_sz = SHA256_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.alg.aead = {
.setkey = safexcel_aead_aes_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha224_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};