|  | /* | 
|  | * TCP CUBIC: Binary Increase Congestion control for TCP v2.0 | 
|  | * | 
|  | * This is from the implementation of CUBIC TCP in | 
|  | * Injong Rhee, Lisong Xu. | 
|  | *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant | 
|  | *  in PFLDnet 2005 | 
|  | * Available from: | 
|  | *  http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf | 
|  | * | 
|  | * Unless CUBIC is enabled and congestion window is large | 
|  | * this behaves the same as the original Reno. | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <net/tcp.h> | 
|  | #include <asm/div64.h> | 
|  |  | 
|  | #define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation | 
|  | * max_cwnd = snd_cwnd * beta | 
|  | */ | 
|  | #define BICTCP_B		4	 /* | 
|  | * In binary search, | 
|  | * go to point (max+min)/N | 
|  | */ | 
|  | #define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */ | 
|  |  | 
|  | static int fast_convergence = 1; | 
|  | static int max_increment = 16; | 
|  | static int beta = 819;		/* = 819/1024 (BICTCP_BETA_SCALE) */ | 
|  | static int initial_ssthresh = 100; | 
|  | static int bic_scale = 41; | 
|  | static int tcp_friendliness = 1; | 
|  |  | 
|  | static u32 cube_rtt_scale; | 
|  | static u32 beta_scale; | 
|  | static u64 cube_factor; | 
|  |  | 
|  | /* Note parameters that are used for precomputing scale factors are read-only */ | 
|  | module_param(fast_convergence, int, 0644); | 
|  | MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence"); | 
|  | module_param(max_increment, int, 0644); | 
|  | MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search"); | 
|  | module_param(beta, int, 0444); | 
|  | MODULE_PARM_DESC(beta, "beta for multiplicative increase"); | 
|  | module_param(initial_ssthresh, int, 0644); | 
|  | MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold"); | 
|  | module_param(bic_scale, int, 0444); | 
|  | MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)"); | 
|  | module_param(tcp_friendliness, int, 0644); | 
|  | MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness"); | 
|  |  | 
|  | #include <asm/div64.h> | 
|  |  | 
|  | /* BIC TCP Parameters */ | 
|  | struct bictcp { | 
|  | u32	cnt;		/* increase cwnd by 1 after ACKs */ | 
|  | u32 	last_max_cwnd;	/* last maximum snd_cwnd */ | 
|  | u32	loss_cwnd;	/* congestion window at last loss */ | 
|  | u32	last_cwnd;	/* the last snd_cwnd */ | 
|  | u32	last_time;	/* time when updated last_cwnd */ | 
|  | u32	bic_origin_point;/* origin point of bic function */ | 
|  | u32	bic_K;		/* time to origin point from the beginning of the current epoch */ | 
|  | u32	delay_min;	/* min delay */ | 
|  | u32	epoch_start;	/* beginning of an epoch */ | 
|  | u32	ack_cnt;	/* number of acks */ | 
|  | u32	tcp_cwnd;	/* estimated tcp cwnd */ | 
|  | #define ACK_RATIO_SHIFT	4 | 
|  | u32	delayed_ack;	/* estimate the ratio of Packets/ACKs << 4 */ | 
|  | }; | 
|  |  | 
|  | static inline void bictcp_reset(struct bictcp *ca) | 
|  | { | 
|  | ca->cnt = 0; | 
|  | ca->last_max_cwnd = 0; | 
|  | ca->loss_cwnd = 0; | 
|  | ca->last_cwnd = 0; | 
|  | ca->last_time = 0; | 
|  | ca->bic_origin_point = 0; | 
|  | ca->bic_K = 0; | 
|  | ca->delay_min = 0; | 
|  | ca->epoch_start = 0; | 
|  | ca->delayed_ack = 2 << ACK_RATIO_SHIFT; | 
|  | ca->ack_cnt = 0; | 
|  | ca->tcp_cwnd = 0; | 
|  | } | 
|  |  | 
|  | static void bictcp_init(struct sock *sk) | 
|  | { | 
|  | bictcp_reset(inet_csk_ca(sk)); | 
|  | if (initial_ssthresh) | 
|  | tcp_sk(sk)->snd_ssthresh = initial_ssthresh; | 
|  | } | 
|  |  | 
|  | /* 64bit divisor, dividend and result. dynamic precision */ | 
|  | static inline u_int64_t div64_64(u_int64_t dividend, u_int64_t divisor) | 
|  | { | 
|  | u_int32_t d = divisor; | 
|  |  | 
|  | if (divisor > 0xffffffffULL) { | 
|  | unsigned int shift = fls(divisor >> 32); | 
|  |  | 
|  | d = divisor >> shift; | 
|  | dividend >>= shift; | 
|  | } | 
|  |  | 
|  | /* avoid 64 bit division if possible */ | 
|  | if (dividend >> 32) | 
|  | do_div(dividend, d); | 
|  | else | 
|  | dividend = (uint32_t) dividend / d; | 
|  |  | 
|  | return dividend; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate the cubic root of x using Newton-Raphson | 
|  | */ | 
|  | static u32 cubic_root(u64 a) | 
|  | { | 
|  | u32 x, x1; | 
|  |  | 
|  | /* Initial estimate is based on: | 
|  | * cbrt(x) = exp(log(x) / 3) | 
|  | */ | 
|  | x = 1u << (fls64(a)/3); | 
|  |  | 
|  | /* | 
|  | * Iteration based on: | 
|  | *                         2 | 
|  | * x    = ( 2 * x  +  a / x  ) / 3 | 
|  | *  k+1          k         k | 
|  | */ | 
|  | do { | 
|  | x1 = x; | 
|  | x = (2 * x + (uint32_t) div64_64(a, x*x)) / 3; | 
|  | } while (abs(x1 - x) > 1); | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute congestion window to use. | 
|  | */ | 
|  | static inline void bictcp_update(struct bictcp *ca, u32 cwnd) | 
|  | { | 
|  | u64 offs; | 
|  | u32 delta, t, bic_target, min_cnt, max_cnt; | 
|  |  | 
|  | ca->ack_cnt++;	/* count the number of ACKs */ | 
|  |  | 
|  | if (ca->last_cwnd == cwnd && | 
|  | (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32) | 
|  | return; | 
|  |  | 
|  | ca->last_cwnd = cwnd; | 
|  | ca->last_time = tcp_time_stamp; | 
|  |  | 
|  | if (ca->epoch_start == 0) { | 
|  | ca->epoch_start = tcp_time_stamp;	/* record the beginning of an epoch */ | 
|  | ca->ack_cnt = 1;			/* start counting */ | 
|  | ca->tcp_cwnd = cwnd;			/* syn with cubic */ | 
|  |  | 
|  | if (ca->last_max_cwnd <= cwnd) { | 
|  | ca->bic_K = 0; | 
|  | ca->bic_origin_point = cwnd; | 
|  | } else { | 
|  | /* Compute new K based on | 
|  | * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) | 
|  | */ | 
|  | ca->bic_K = cubic_root(cube_factor | 
|  | * (ca->last_max_cwnd - cwnd)); | 
|  | ca->bic_origin_point = ca->last_max_cwnd; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* cubic function - calc*/ | 
|  | /* calculate c * time^3 / rtt, | 
|  | *  while considering overflow in calculation of time^3 | 
|  | * (so time^3 is done by using 64 bit) | 
|  | * and without the support of division of 64bit numbers | 
|  | * (so all divisions are done by using 32 bit) | 
|  | *  also NOTE the unit of those veriables | 
|  | *	  time  = (t - K) / 2^bictcp_HZ | 
|  | *	  c = bic_scale >> 10 | 
|  | * rtt  = (srtt >> 3) / HZ | 
|  | * !!! The following code does not have overflow problems, | 
|  | * if the cwnd < 1 million packets !!! | 
|  | */ | 
|  |  | 
|  | /* change the unit from HZ to bictcp_HZ */ | 
|  | t = ((tcp_time_stamp + ca->delay_min - ca->epoch_start) | 
|  | << BICTCP_HZ) / HZ; | 
|  |  | 
|  | if (t < ca->bic_K)		/* t - K */ | 
|  | offs = ca->bic_K - t; | 
|  | else | 
|  | offs = t - ca->bic_K; | 
|  |  | 
|  | /* c/rtt * (t-K)^3 */ | 
|  | delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ); | 
|  | if (t < ca->bic_K)                                	/* below origin*/ | 
|  | bic_target = ca->bic_origin_point - delta; | 
|  | else                                                	/* above origin*/ | 
|  | bic_target = ca->bic_origin_point + delta; | 
|  |  | 
|  | /* cubic function - calc bictcp_cnt*/ | 
|  | if (bic_target > cwnd) { | 
|  | ca->cnt = cwnd / (bic_target - cwnd); | 
|  | } else { | 
|  | ca->cnt = 100 * cwnd;              /* very small increment*/ | 
|  | } | 
|  |  | 
|  | if (ca->delay_min > 0) { | 
|  | /* max increment = Smax * rtt / 0.1  */ | 
|  | min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min); | 
|  | if (ca->cnt < min_cnt) | 
|  | ca->cnt = min_cnt; | 
|  | } | 
|  |  | 
|  | /* slow start and low utilization  */ | 
|  | if (ca->loss_cwnd == 0)		/* could be aggressive in slow start */ | 
|  | ca->cnt = 50; | 
|  |  | 
|  | /* TCP Friendly */ | 
|  | if (tcp_friendliness) { | 
|  | u32 scale = beta_scale; | 
|  | delta = (cwnd * scale) >> 3; | 
|  | while (ca->ack_cnt > delta) {		/* update tcp cwnd */ | 
|  | ca->ack_cnt -= delta; | 
|  | ca->tcp_cwnd++; | 
|  | } | 
|  |  | 
|  | if (ca->tcp_cwnd > cwnd){	/* if bic is slower than tcp */ | 
|  | delta = ca->tcp_cwnd - cwnd; | 
|  | max_cnt = cwnd / delta; | 
|  | if (ca->cnt > max_cnt) | 
|  | ca->cnt = max_cnt; | 
|  | } | 
|  | } | 
|  |  | 
|  | ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack; | 
|  | if (ca->cnt == 0)			/* cannot be zero */ | 
|  | ca->cnt = 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Keep track of minimum rtt */ | 
|  | static inline void measure_delay(struct sock *sk) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct bictcp *ca = inet_csk_ca(sk); | 
|  | u32 delay; | 
|  |  | 
|  | /* No time stamp */ | 
|  | if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) || | 
|  | /* Discard delay samples right after fast recovery */ | 
|  | (s32)(tcp_time_stamp - ca->epoch_start) < HZ) | 
|  | return; | 
|  |  | 
|  | delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr; | 
|  | if (delay == 0) | 
|  | delay = 1; | 
|  |  | 
|  | /* first time call or link delay decreases */ | 
|  | if (ca->delay_min == 0 || ca->delay_min > delay) | 
|  | ca->delay_min = delay; | 
|  | } | 
|  |  | 
|  | static void bictcp_cong_avoid(struct sock *sk, u32 ack, | 
|  | u32 seq_rtt, u32 in_flight, int data_acked) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct bictcp *ca = inet_csk_ca(sk); | 
|  |  | 
|  | if (data_acked) | 
|  | measure_delay(sk); | 
|  |  | 
|  | if (!tcp_is_cwnd_limited(sk, in_flight)) | 
|  | return; | 
|  |  | 
|  | if (tp->snd_cwnd <= tp->snd_ssthresh) | 
|  | tcp_slow_start(tp); | 
|  | else { | 
|  | bictcp_update(ca, tp->snd_cwnd); | 
|  |  | 
|  | /* In dangerous area, increase slowly. | 
|  | * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd | 
|  | */ | 
|  | if (tp->snd_cwnd_cnt >= ca->cnt) { | 
|  | if (tp->snd_cwnd < tp->snd_cwnd_clamp) | 
|  | tp->snd_cwnd++; | 
|  | tp->snd_cwnd_cnt = 0; | 
|  | } else | 
|  | tp->snd_cwnd_cnt++; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static u32 bictcp_recalc_ssthresh(struct sock *sk) | 
|  | { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct bictcp *ca = inet_csk_ca(sk); | 
|  |  | 
|  | ca->epoch_start = 0;	/* end of epoch */ | 
|  |  | 
|  | /* Wmax and fast convergence */ | 
|  | if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence) | 
|  | ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta)) | 
|  | / (2 * BICTCP_BETA_SCALE); | 
|  | else | 
|  | ca->last_max_cwnd = tp->snd_cwnd; | 
|  |  | 
|  | ca->loss_cwnd = tp->snd_cwnd; | 
|  |  | 
|  | return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U); | 
|  | } | 
|  |  | 
|  | static u32 bictcp_undo_cwnd(struct sock *sk) | 
|  | { | 
|  | struct bictcp *ca = inet_csk_ca(sk); | 
|  |  | 
|  | return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd); | 
|  | } | 
|  |  | 
|  | static void bictcp_state(struct sock *sk, u8 new_state) | 
|  | { | 
|  | if (new_state == TCP_CA_Loss) | 
|  | bictcp_reset(inet_csk_ca(sk)); | 
|  | } | 
|  |  | 
|  | /* Track delayed acknowledgment ratio using sliding window | 
|  | * ratio = (15*ratio + sample) / 16 | 
|  | */ | 
|  | static void bictcp_acked(struct sock *sk, u32 cnt) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  |  | 
|  | if (cnt > 0 && icsk->icsk_ca_state == TCP_CA_Open) { | 
|  | struct bictcp *ca = inet_csk_ca(sk); | 
|  | cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT; | 
|  | ca->delayed_ack += cnt; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct tcp_congestion_ops cubictcp = { | 
|  | .init		= bictcp_init, | 
|  | .ssthresh	= bictcp_recalc_ssthresh, | 
|  | .cong_avoid	= bictcp_cong_avoid, | 
|  | .set_state	= bictcp_state, | 
|  | .undo_cwnd	= bictcp_undo_cwnd, | 
|  | .pkts_acked     = bictcp_acked, | 
|  | .owner		= THIS_MODULE, | 
|  | .name		= "cubic", | 
|  | }; | 
|  |  | 
|  | static int __init cubictcp_register(void) | 
|  | { | 
|  | BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE); | 
|  |  | 
|  | /* Precompute a bunch of the scaling factors that are used per-packet | 
|  | * based on SRTT of 100ms | 
|  | */ | 
|  |  | 
|  | beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta); | 
|  |  | 
|  | cube_rtt_scale = (bic_scale << 3) / 10;	/* 1024*c/rtt */ | 
|  |  | 
|  | /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3 | 
|  | *  so K = cubic_root( (wmax-cwnd)*rtt/c ) | 
|  | * the unit of K is bictcp_HZ=2^10, not HZ | 
|  | * | 
|  | *  c = bic_scale >> 10 | 
|  | *  rtt = 100ms | 
|  | * | 
|  | * the following code has been designed and tested for | 
|  | * cwnd < 1 million packets | 
|  | * RTT < 100 seconds | 
|  | * HZ < 1,000,00  (corresponding to 10 nano-second) | 
|  | */ | 
|  |  | 
|  | /* 1/c * 2^2*bictcp_HZ * srtt */ | 
|  | cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */ | 
|  |  | 
|  | /* divide by bic_scale and by constant Srtt (100ms) */ | 
|  | do_div(cube_factor, bic_scale * 10); | 
|  |  | 
|  | return tcp_register_congestion_control(&cubictcp); | 
|  | } | 
|  |  | 
|  | static void __exit cubictcp_unregister(void) | 
|  | { | 
|  | tcp_unregister_congestion_control(&cubictcp); | 
|  | } | 
|  |  | 
|  | module_init(cubictcp_register); | 
|  | module_exit(cubictcp_unregister); | 
|  |  | 
|  | MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("CUBIC TCP"); | 
|  | MODULE_VERSION("2.0"); |