|  | #undef DEBUG | 
|  |  | 
|  | /* | 
|  | * ARM performance counter support. | 
|  | * | 
|  | * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles | 
|  | * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> | 
|  | * | 
|  | * This code is based on the sparc64 perf event code, which is in turn based | 
|  | * on the x86 code. | 
|  | */ | 
|  | #define pr_fmt(fmt) "hw perfevents: " fmt | 
|  |  | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/cpu_pm.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/of_device.h> | 
|  | #include <linux/perf/arm_pmu.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/irqdesc.h> | 
|  |  | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/irq_regs.h> | 
|  |  | 
|  | static int | 
|  | armpmu_map_cache_event(const unsigned (*cache_map) | 
|  | [PERF_COUNT_HW_CACHE_MAX] | 
|  | [PERF_COUNT_HW_CACHE_OP_MAX] | 
|  | [PERF_COUNT_HW_CACHE_RESULT_MAX], | 
|  | u64 config) | 
|  | { | 
|  | unsigned int cache_type, cache_op, cache_result, ret; | 
|  |  | 
|  | cache_type = (config >>  0) & 0xff; | 
|  | if (cache_type >= PERF_COUNT_HW_CACHE_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache_op = (config >>  8) & 0xff; | 
|  | if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache_result = (config >> 16) & 0xff; | 
|  | if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; | 
|  |  | 
|  | if (ret == CACHE_OP_UNSUPPORTED) | 
|  | return -ENOENT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) | 
|  | { | 
|  | int mapping; | 
|  |  | 
|  | if (config >= PERF_COUNT_HW_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | mapping = (*event_map)[config]; | 
|  | return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_map_raw_event(u32 raw_event_mask, u64 config) | 
|  | { | 
|  | return (int)(config & raw_event_mask); | 
|  | } | 
|  |  | 
|  | int | 
|  | armpmu_map_event(struct perf_event *event, | 
|  | const unsigned (*event_map)[PERF_COUNT_HW_MAX], | 
|  | const unsigned (*cache_map) | 
|  | [PERF_COUNT_HW_CACHE_MAX] | 
|  | [PERF_COUNT_HW_CACHE_OP_MAX] | 
|  | [PERF_COUNT_HW_CACHE_RESULT_MAX], | 
|  | u32 raw_event_mask) | 
|  | { | 
|  | u64 config = event->attr.config; | 
|  | int type = event->attr.type; | 
|  |  | 
|  | if (type == event->pmu->type) | 
|  | return armpmu_map_raw_event(raw_event_mask, config); | 
|  |  | 
|  | switch (type) { | 
|  | case PERF_TYPE_HARDWARE: | 
|  | return armpmu_map_hw_event(event_map, config); | 
|  | case PERF_TYPE_HW_CACHE: | 
|  | return armpmu_map_cache_event(cache_map, config); | 
|  | case PERF_TYPE_RAW: | 
|  | return armpmu_map_raw_event(raw_event_mask, config); | 
|  | } | 
|  |  | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | int armpmu_event_set_period(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | s64 left = local64_read(&hwc->period_left); | 
|  | s64 period = hwc->sample_period; | 
|  | int ret = 0; | 
|  |  | 
|  | if (unlikely(left <= -period)) { | 
|  | left = period; | 
|  | local64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (unlikely(left <= 0)) { | 
|  | left += period; | 
|  | local64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Limit the maximum period to prevent the counter value | 
|  | * from overtaking the one we are about to program. In | 
|  | * effect we are reducing max_period to account for | 
|  | * interrupt latency (and we are being very conservative). | 
|  | */ | 
|  | if (left > (armpmu->max_period >> 1)) | 
|  | left = armpmu->max_period >> 1; | 
|  |  | 
|  | local64_set(&hwc->prev_count, (u64)-left); | 
|  |  | 
|  | armpmu->write_counter(event, (u64)(-left) & 0xffffffff); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | u64 armpmu_event_update(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | u64 delta, prev_raw_count, new_raw_count; | 
|  |  | 
|  | again: | 
|  | prev_raw_count = local64_read(&hwc->prev_count); | 
|  | new_raw_count = armpmu->read_counter(event); | 
|  |  | 
|  | if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, | 
|  | new_raw_count) != prev_raw_count) | 
|  | goto again; | 
|  |  | 
|  | delta = (new_raw_count - prev_raw_count) & armpmu->max_period; | 
|  |  | 
|  | local64_add(delta, &event->count); | 
|  | local64_sub(delta, &hwc->period_left); | 
|  |  | 
|  | return new_raw_count; | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_read(struct perf_event *event) | 
|  | { | 
|  | armpmu_event_update(event); | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_stop(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | /* | 
|  | * ARM pmu always has to update the counter, so ignore | 
|  | * PERF_EF_UPDATE, see comments in armpmu_start(). | 
|  | */ | 
|  | if (!(hwc->state & PERF_HES_STOPPED)) { | 
|  | armpmu->disable(event); | 
|  | armpmu_event_update(event); | 
|  | hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void armpmu_start(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | /* | 
|  | * ARM pmu always has to reprogram the period, so ignore | 
|  | * PERF_EF_RELOAD, see the comment below. | 
|  | */ | 
|  | if (flags & PERF_EF_RELOAD) | 
|  | WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); | 
|  |  | 
|  | hwc->state = 0; | 
|  | /* | 
|  | * Set the period again. Some counters can't be stopped, so when we | 
|  | * were stopped we simply disabled the IRQ source and the counter | 
|  | * may have been left counting. If we don't do this step then we may | 
|  | * get an interrupt too soon or *way* too late if the overflow has | 
|  | * happened since disabling. | 
|  | */ | 
|  | armpmu_event_set_period(event); | 
|  | armpmu->enable(event); | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_del(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int idx = hwc->idx; | 
|  |  | 
|  | armpmu_stop(event, PERF_EF_UPDATE); | 
|  | hw_events->events[idx] = NULL; | 
|  | clear_bit(idx, hw_events->used_mask); | 
|  | if (armpmu->clear_event_idx) | 
|  | armpmu->clear_event_idx(hw_events, event); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_add(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int idx; | 
|  | int err = 0; | 
|  |  | 
|  | /* An event following a process won't be stopped earlier */ | 
|  | if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) | 
|  | return -ENOENT; | 
|  |  | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | /* If we don't have a space for the counter then finish early. */ | 
|  | idx = armpmu->get_event_idx(hw_events, event); | 
|  | if (idx < 0) { | 
|  | err = idx; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is an event in the counter we are going to use then make | 
|  | * sure it is disabled. | 
|  | */ | 
|  | event->hw.idx = idx; | 
|  | armpmu->disable(event); | 
|  | hw_events->events[idx] = event; | 
|  |  | 
|  | hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
|  | if (flags & PERF_EF_START) | 
|  | armpmu_start(event, PERF_EF_RELOAD); | 
|  |  | 
|  | /* Propagate our changes to the userspace mapping. */ | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | out: | 
|  | perf_pmu_enable(event->pmu); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int | 
|  | validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, | 
|  | struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu; | 
|  |  | 
|  | if (is_software_event(event)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The | 
|  | * core perf code won't check that the pmu->ctx == leader->ctx | 
|  | * until after pmu->event_init(event). | 
|  | */ | 
|  | if (event->pmu != pmu) | 
|  | return 0; | 
|  |  | 
|  | if (event->state < PERF_EVENT_STATE_OFF) | 
|  | return 1; | 
|  |  | 
|  | if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) | 
|  | return 1; | 
|  |  | 
|  | armpmu = to_arm_pmu(event->pmu); | 
|  | return armpmu->get_event_idx(hw_events, event) >= 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | validate_group(struct perf_event *event) | 
|  | { | 
|  | struct perf_event *sibling, *leader = event->group_leader; | 
|  | struct pmu_hw_events fake_pmu; | 
|  |  | 
|  | /* | 
|  | * Initialise the fake PMU. We only need to populate the | 
|  | * used_mask for the purposes of validation. | 
|  | */ | 
|  | memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); | 
|  |  | 
|  | if (!validate_event(event->pmu, &fake_pmu, leader)) | 
|  | return -EINVAL; | 
|  |  | 
|  | list_for_each_entry(sibling, &leader->sibling_list, group_entry) { | 
|  | if (!validate_event(event->pmu, &fake_pmu, sibling)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!validate_event(event->pmu, &fake_pmu, event)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) | 
|  | { | 
|  | struct arm_pmu *armpmu; | 
|  | struct platform_device *plat_device; | 
|  | struct arm_pmu_platdata *plat; | 
|  | int ret; | 
|  | u64 start_clock, finish_clock; | 
|  |  | 
|  | /* | 
|  | * we request the IRQ with a (possibly percpu) struct arm_pmu**, but | 
|  | * the handlers expect a struct arm_pmu*. The percpu_irq framework will | 
|  | * do any necessary shifting, we just need to perform the first | 
|  | * dereference. | 
|  | */ | 
|  | armpmu = *(void **)dev; | 
|  | plat_device = armpmu->plat_device; | 
|  | plat = dev_get_platdata(&plat_device->dev); | 
|  |  | 
|  | start_clock = sched_clock(); | 
|  | if (plat && plat->handle_irq) | 
|  | ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq); | 
|  | else | 
|  | ret = armpmu->handle_irq(irq, armpmu); | 
|  | finish_clock = sched_clock(); | 
|  |  | 
|  | perf_sample_event_took(finish_clock - start_clock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_release_hardware(struct arm_pmu *armpmu) | 
|  | { | 
|  | armpmu->free_irq(armpmu); | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_reserve_hardware(struct arm_pmu *armpmu) | 
|  | { | 
|  | int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq); | 
|  | if (err) { | 
|  | armpmu_release_hardware(armpmu); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | hw_perf_event_destroy(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | atomic_t *active_events	 = &armpmu->active_events; | 
|  | struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex; | 
|  |  | 
|  | if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) { | 
|  | armpmu_release_hardware(armpmu); | 
|  | mutex_unlock(pmu_reserve_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | event_requires_mode_exclusion(struct perf_event_attr *attr) | 
|  | { | 
|  | return attr->exclude_idle || attr->exclude_user || | 
|  | attr->exclude_kernel || attr->exclude_hv; | 
|  | } | 
|  |  | 
|  | static int | 
|  | __hw_perf_event_init(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int mapping; | 
|  |  | 
|  | mapping = armpmu->map_event(event); | 
|  |  | 
|  | if (mapping < 0) { | 
|  | pr_debug("event %x:%llx not supported\n", event->attr.type, | 
|  | event->attr.config); | 
|  | return mapping; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't assign an index until we actually place the event onto | 
|  | * hardware. Use -1 to signify that we haven't decided where to put it | 
|  | * yet. For SMP systems, each core has it's own PMU so we can't do any | 
|  | * clever allocation or constraints checking at this point. | 
|  | */ | 
|  | hwc->idx		= -1; | 
|  | hwc->config_base	= 0; | 
|  | hwc->config		= 0; | 
|  | hwc->event_base		= 0; | 
|  |  | 
|  | /* | 
|  | * Check whether we need to exclude the counter from certain modes. | 
|  | */ | 
|  | if ((!armpmu->set_event_filter || | 
|  | armpmu->set_event_filter(hwc, &event->attr)) && | 
|  | event_requires_mode_exclusion(&event->attr)) { | 
|  | pr_debug("ARM performance counters do not support " | 
|  | "mode exclusion\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Store the event encoding into the config_base field. | 
|  | */ | 
|  | hwc->config_base	    |= (unsigned long)mapping; | 
|  |  | 
|  | if (!is_sampling_event(event)) { | 
|  | /* | 
|  | * For non-sampling runs, limit the sample_period to half | 
|  | * of the counter width. That way, the new counter value | 
|  | * is far less likely to overtake the previous one unless | 
|  | * you have some serious IRQ latency issues. | 
|  | */ | 
|  | hwc->sample_period  = armpmu->max_period >> 1; | 
|  | hwc->last_period    = hwc->sample_period; | 
|  | local64_set(&hwc->period_left, hwc->sample_period); | 
|  | } | 
|  |  | 
|  | if (event->group_leader != event) { | 
|  | if (validate_group(event) != 0) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int armpmu_event_init(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | int err = 0; | 
|  | atomic_t *active_events = &armpmu->active_events; | 
|  |  | 
|  | /* | 
|  | * Reject CPU-affine events for CPUs that are of a different class to | 
|  | * that which this PMU handles. Process-following events (where | 
|  | * event->cpu == -1) can be migrated between CPUs, and thus we have to | 
|  | * reject them later (in armpmu_add) if they're scheduled on a | 
|  | * different class of CPU. | 
|  | */ | 
|  | if (event->cpu != -1 && | 
|  | !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* does not support taken branch sampling */ | 
|  | if (has_branch_stack(event)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (armpmu->map_event(event) == -ENOENT) | 
|  | return -ENOENT; | 
|  |  | 
|  | event->destroy = hw_perf_event_destroy; | 
|  |  | 
|  | if (!atomic_inc_not_zero(active_events)) { | 
|  | mutex_lock(&armpmu->reserve_mutex); | 
|  | if (atomic_read(active_events) == 0) | 
|  | err = armpmu_reserve_hardware(armpmu); | 
|  |  | 
|  | if (!err) | 
|  | atomic_inc(active_events); | 
|  | mutex_unlock(&armpmu->reserve_mutex); | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = __hw_perf_event_init(event); | 
|  | if (err) | 
|  | hw_perf_event_destroy(event); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void armpmu_enable(struct pmu *pmu) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(pmu); | 
|  | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
|  | int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); | 
|  |  | 
|  | /* For task-bound events we may be called on other CPUs */ | 
|  | if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) | 
|  | return; | 
|  |  | 
|  | if (enabled) | 
|  | armpmu->start(armpmu); | 
|  | } | 
|  |  | 
|  | static void armpmu_disable(struct pmu *pmu) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(pmu); | 
|  |  | 
|  | /* For task-bound events we may be called on other CPUs */ | 
|  | if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) | 
|  | return; | 
|  |  | 
|  | armpmu->stop(armpmu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In heterogeneous systems, events are specific to a particular | 
|  | * microarchitecture, and aren't suitable for another. Thus, only match CPUs of | 
|  | * the same microarchitecture. | 
|  | */ | 
|  | static int armpmu_filter_match(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | return cpumask_test_cpu(cpu, &armpmu->supported_cpus); | 
|  | } | 
|  |  | 
|  | static ssize_t armpmu_cpumask_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); | 
|  | return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL); | 
|  |  | 
|  | static struct attribute *armpmu_common_attrs[] = { | 
|  | &dev_attr_cpus.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute_group armpmu_common_attr_group = { | 
|  | .attrs = armpmu_common_attrs, | 
|  | }; | 
|  |  | 
|  | static void armpmu_init(struct arm_pmu *armpmu) | 
|  | { | 
|  | atomic_set(&armpmu->active_events, 0); | 
|  | mutex_init(&armpmu->reserve_mutex); | 
|  |  | 
|  | armpmu->pmu = (struct pmu) { | 
|  | .pmu_enable	= armpmu_enable, | 
|  | .pmu_disable	= armpmu_disable, | 
|  | .event_init	= armpmu_event_init, | 
|  | .add		= armpmu_add, | 
|  | .del		= armpmu_del, | 
|  | .start		= armpmu_start, | 
|  | .stop		= armpmu_stop, | 
|  | .read		= armpmu_read, | 
|  | .filter_match	= armpmu_filter_match, | 
|  | .attr_groups	= armpmu->attr_groups, | 
|  | }; | 
|  | armpmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = | 
|  | &armpmu_common_attr_group; | 
|  | } | 
|  |  | 
|  | /* Set at runtime when we know what CPU type we are. */ | 
|  | static struct arm_pmu *__oprofile_cpu_pmu; | 
|  |  | 
|  | /* | 
|  | * Despite the names, these two functions are CPU-specific and are used | 
|  | * by the OProfile/perf code. | 
|  | */ | 
|  | const char *perf_pmu_name(void) | 
|  | { | 
|  | if (!__oprofile_cpu_pmu) | 
|  | return NULL; | 
|  |  | 
|  | return __oprofile_cpu_pmu->name; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_pmu_name); | 
|  |  | 
|  | int perf_num_counters(void) | 
|  | { | 
|  | int max_events = 0; | 
|  |  | 
|  | if (__oprofile_cpu_pmu != NULL) | 
|  | max_events = __oprofile_cpu_pmu->num_events; | 
|  |  | 
|  | return max_events; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_num_counters); | 
|  |  | 
|  | static void cpu_pmu_enable_percpu_irq(void *data) | 
|  | { | 
|  | int irq = *(int *)data; | 
|  |  | 
|  | enable_percpu_irq(irq, IRQ_TYPE_NONE); | 
|  | } | 
|  |  | 
|  | static void cpu_pmu_disable_percpu_irq(void *data) | 
|  | { | 
|  | int irq = *(int *)data; | 
|  |  | 
|  | disable_percpu_irq(irq); | 
|  | } | 
|  |  | 
|  | static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu) | 
|  | { | 
|  | int i, irq, irqs; | 
|  | struct platform_device *pmu_device = cpu_pmu->plat_device; | 
|  | struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events; | 
|  |  | 
|  | irqs = min(pmu_device->num_resources, num_possible_cpus()); | 
|  |  | 
|  | irq = platform_get_irq(pmu_device, 0); | 
|  | if (irq > 0 && irq_is_percpu(irq)) { | 
|  | on_each_cpu_mask(&cpu_pmu->supported_cpus, | 
|  | cpu_pmu_disable_percpu_irq, &irq, 1); | 
|  | free_percpu_irq(irq, &hw_events->percpu_pmu); | 
|  | } else { | 
|  | for (i = 0; i < irqs; ++i) { | 
|  | int cpu = i; | 
|  |  | 
|  | if (cpu_pmu->irq_affinity) | 
|  | cpu = cpu_pmu->irq_affinity[i]; | 
|  |  | 
|  | if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs)) | 
|  | continue; | 
|  | irq = platform_get_irq(pmu_device, i); | 
|  | if (irq > 0) | 
|  | free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler) | 
|  | { | 
|  | int i, err, irq, irqs; | 
|  | struct platform_device *pmu_device = cpu_pmu->plat_device; | 
|  | struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events; | 
|  |  | 
|  | if (!pmu_device) | 
|  | return -ENODEV; | 
|  |  | 
|  | irqs = min(pmu_device->num_resources, num_possible_cpus()); | 
|  | if (irqs < 1) { | 
|  | pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | irq = platform_get_irq(pmu_device, 0); | 
|  | if (irq > 0 && irq_is_percpu(irq)) { | 
|  | err = request_percpu_irq(irq, handler, "arm-pmu", | 
|  | &hw_events->percpu_pmu); | 
|  | if (err) { | 
|  | pr_err("unable to request IRQ%d for ARM PMU counters\n", | 
|  | irq); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | on_each_cpu_mask(&cpu_pmu->supported_cpus, | 
|  | cpu_pmu_enable_percpu_irq, &irq, 1); | 
|  | } else { | 
|  | for (i = 0; i < irqs; ++i) { | 
|  | int cpu = i; | 
|  |  | 
|  | err = 0; | 
|  | irq = platform_get_irq(pmu_device, i); | 
|  | if (irq < 0) | 
|  | continue; | 
|  |  | 
|  | if (cpu_pmu->irq_affinity) | 
|  | cpu = cpu_pmu->irq_affinity[i]; | 
|  |  | 
|  | /* | 
|  | * If we have a single PMU interrupt that we can't shift, | 
|  | * assume that we're running on a uniprocessor machine and | 
|  | * continue. Otherwise, continue without this interrupt. | 
|  | */ | 
|  | if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) { | 
|  | pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", | 
|  | irq, cpu); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | err = request_irq(irq, handler, | 
|  | IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu", | 
|  | per_cpu_ptr(&hw_events->percpu_pmu, cpu)); | 
|  | if (err) { | 
|  | pr_err("unable to request IRQ%d for ARM PMU counters\n", | 
|  | irq); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | cpumask_set_cpu(cpu, &cpu_pmu->active_irqs); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PMU hardware loses all context when a CPU goes offline. | 
|  | * When a CPU is hotplugged back in, since some hardware registers are | 
|  | * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading | 
|  | * junk values out of them. | 
|  | */ | 
|  | static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) | 
|  | { | 
|  | struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) | 
|  | return 0; | 
|  | if (pmu->reset) | 
|  | pmu->reset(pmu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_PM | 
|  | static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) | 
|  | { | 
|  | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
|  | struct perf_event *event; | 
|  | int idx; | 
|  |  | 
|  | for (idx = 0; idx < armpmu->num_events; idx++) { | 
|  | /* | 
|  | * If the counter is not used skip it, there is no | 
|  | * need of stopping/restarting it. | 
|  | */ | 
|  | if (!test_bit(idx, hw_events->used_mask)) | 
|  | continue; | 
|  |  | 
|  | event = hw_events->events[idx]; | 
|  |  | 
|  | switch (cmd) { | 
|  | case CPU_PM_ENTER: | 
|  | /* | 
|  | * Stop and update the counter | 
|  | */ | 
|  | armpmu_stop(event, PERF_EF_UPDATE); | 
|  | break; | 
|  | case CPU_PM_EXIT: | 
|  | case CPU_PM_ENTER_FAILED: | 
|  | /* | 
|  | * Restore and enable the counter. | 
|  | * armpmu_start() indirectly calls | 
|  | * | 
|  | * perf_event_update_userpage() | 
|  | * | 
|  | * that requires RCU read locking to be functional, | 
|  | * wrap the call within RCU_NONIDLE to make the | 
|  | * RCU subsystem aware this cpu is not idle from | 
|  | * an RCU perspective for the armpmu_start() call | 
|  | * duration. | 
|  | */ | 
|  | RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, | 
|  | void *v) | 
|  | { | 
|  | struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); | 
|  | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
|  | int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); | 
|  |  | 
|  | if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | /* | 
|  | * Always reset the PMU registers on power-up even if | 
|  | * there are no events running. | 
|  | */ | 
|  | if (cmd == CPU_PM_EXIT && armpmu->reset) | 
|  | armpmu->reset(armpmu); | 
|  |  | 
|  | if (!enabled) | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | switch (cmd) { | 
|  | case CPU_PM_ENTER: | 
|  | armpmu->stop(armpmu); | 
|  | cpu_pm_pmu_setup(armpmu, cmd); | 
|  | break; | 
|  | case CPU_PM_EXIT: | 
|  | cpu_pm_pmu_setup(armpmu, cmd); | 
|  | case CPU_PM_ENTER_FAILED: | 
|  | armpmu->start(armpmu); | 
|  | break; | 
|  | default: | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) | 
|  | { | 
|  | cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; | 
|  | return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); | 
|  | } | 
|  |  | 
|  | static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) | 
|  | { | 
|  | cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); | 
|  | } | 
|  | #else | 
|  | static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } | 
|  | static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } | 
|  | #endif | 
|  |  | 
|  | static int cpu_pmu_init(struct arm_pmu *cpu_pmu) | 
|  | { | 
|  | int err; | 
|  | int cpu; | 
|  | struct pmu_hw_events __percpu *cpu_hw_events; | 
|  |  | 
|  | cpu_hw_events = alloc_percpu(struct pmu_hw_events); | 
|  | if (!cpu_hw_events) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = cpuhp_state_add_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, | 
|  | &cpu_pmu->node); | 
|  | if (err) | 
|  | goto out_free; | 
|  |  | 
|  | err = cpu_pm_pmu_register(cpu_pmu); | 
|  | if (err) | 
|  | goto out_unregister; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu); | 
|  | raw_spin_lock_init(&events->pmu_lock); | 
|  | events->percpu_pmu = cpu_pmu; | 
|  | } | 
|  |  | 
|  | cpu_pmu->hw_events	= cpu_hw_events; | 
|  | cpu_pmu->request_irq	= cpu_pmu_request_irq; | 
|  | cpu_pmu->free_irq	= cpu_pmu_free_irq; | 
|  |  | 
|  | /* Ensure the PMU has sane values out of reset. */ | 
|  | if (cpu_pmu->reset) | 
|  | on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset, | 
|  | cpu_pmu, 1); | 
|  |  | 
|  | /* If no interrupts available, set the corresponding capability flag */ | 
|  | if (!platform_get_irq(cpu_pmu->plat_device, 0)) | 
|  | cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; | 
|  |  | 
|  | /* | 
|  | * This is a CPU PMU potentially in a heterogeneous configuration (e.g. | 
|  | * big.LITTLE). This is not an uncore PMU, and we have taken ctx | 
|  | * sharing into account (e.g. with our pmu::filter_match callback and | 
|  | * pmu::event_init group validation). | 
|  | */ | 
|  | cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unregister: | 
|  | cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, | 
|  | &cpu_pmu->node); | 
|  | out_free: | 
|  | free_percpu(cpu_hw_events); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) | 
|  | { | 
|  | cpu_pm_pmu_unregister(cpu_pmu); | 
|  | cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, | 
|  | &cpu_pmu->node); | 
|  | free_percpu(cpu_pmu->hw_events); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CPU PMU identification and probing. | 
|  | */ | 
|  | static int probe_current_pmu(struct arm_pmu *pmu, | 
|  | const struct pmu_probe_info *info) | 
|  | { | 
|  | int cpu = get_cpu(); | 
|  | unsigned int cpuid = read_cpuid_id(); | 
|  | int ret = -ENODEV; | 
|  |  | 
|  | pr_info("probing PMU on CPU %d\n", cpu); | 
|  |  | 
|  | for (; info->init != NULL; info++) { | 
|  | if ((cpuid & info->mask) != info->cpuid) | 
|  | continue; | 
|  | ret = info->init(pmu); | 
|  | break; | 
|  | } | 
|  |  | 
|  | put_cpu(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int of_pmu_irq_cfg(struct arm_pmu *pmu) | 
|  | { | 
|  | int *irqs, i = 0; | 
|  | bool using_spi = false; | 
|  | struct platform_device *pdev = pmu->plat_device; | 
|  |  | 
|  | irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL); | 
|  | if (!irqs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | do { | 
|  | struct device_node *dn; | 
|  | int cpu, irq; | 
|  |  | 
|  | /* See if we have an affinity entry */ | 
|  | dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i); | 
|  | if (!dn) | 
|  | break; | 
|  |  | 
|  | /* Check the IRQ type and prohibit a mix of PPIs and SPIs */ | 
|  | irq = platform_get_irq(pdev, i); | 
|  | if (irq > 0) { | 
|  | bool spi = !irq_is_percpu(irq); | 
|  |  | 
|  | if (i > 0 && spi != using_spi) { | 
|  | pr_err("PPI/SPI IRQ type mismatch for %s!\n", | 
|  | dn->name); | 
|  | of_node_put(dn); | 
|  | kfree(irqs); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | using_spi = spi; | 
|  | } | 
|  |  | 
|  | /* Now look up the logical CPU number */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct device_node *cpu_dn; | 
|  |  | 
|  | cpu_dn = of_cpu_device_node_get(cpu); | 
|  | of_node_put(cpu_dn); | 
|  |  | 
|  | if (dn == cpu_dn) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (cpu >= nr_cpu_ids) { | 
|  | pr_warn("Failed to find logical CPU for %s\n", | 
|  | dn->name); | 
|  | of_node_put(dn); | 
|  | cpumask_setall(&pmu->supported_cpus); | 
|  | break; | 
|  | } | 
|  | of_node_put(dn); | 
|  |  | 
|  | /* For SPIs, we need to track the affinity per IRQ */ | 
|  | if (using_spi) { | 
|  | if (i >= pdev->num_resources) | 
|  | break; | 
|  |  | 
|  | irqs[i] = cpu; | 
|  | } | 
|  |  | 
|  | /* Keep track of the CPUs containing this PMU type */ | 
|  | cpumask_set_cpu(cpu, &pmu->supported_cpus); | 
|  | i++; | 
|  | } while (1); | 
|  |  | 
|  | /* If we didn't manage to parse anything, try the interrupt affinity */ | 
|  | if (cpumask_weight(&pmu->supported_cpus) == 0) { | 
|  | int irq = platform_get_irq(pdev, 0); | 
|  |  | 
|  | if (irq > 0 && irq_is_percpu(irq)) { | 
|  | /* If using PPIs, check the affinity of the partition */ | 
|  | int ret; | 
|  |  | 
|  | ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus); | 
|  | if (ret) { | 
|  | kfree(irqs); | 
|  | return ret; | 
|  | } | 
|  | } else { | 
|  | /* Otherwise default to all CPUs */ | 
|  | cpumask_setall(&pmu->supported_cpus); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we matched up the IRQ affinities, use them to route the SPIs */ | 
|  | if (using_spi && i == pdev->num_resources) | 
|  | pmu->irq_affinity = irqs; | 
|  | else | 
|  | kfree(irqs); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int arm_pmu_device_probe(struct platform_device *pdev, | 
|  | const struct of_device_id *of_table, | 
|  | const struct pmu_probe_info *probe_table) | 
|  | { | 
|  | const struct of_device_id *of_id; | 
|  | const int (*init_fn)(struct arm_pmu *); | 
|  | struct device_node *node = pdev->dev.of_node; | 
|  | struct arm_pmu *pmu; | 
|  | int ret = -ENODEV; | 
|  |  | 
|  | pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL); | 
|  | if (!pmu) { | 
|  | pr_info("failed to allocate PMU device!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | armpmu_init(pmu); | 
|  |  | 
|  | pmu->plat_device = pdev; | 
|  |  | 
|  | if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) { | 
|  | init_fn = of_id->data; | 
|  |  | 
|  | pmu->secure_access = of_property_read_bool(pdev->dev.of_node, | 
|  | "secure-reg-access"); | 
|  |  | 
|  | /* arm64 systems boot only as non-secure */ | 
|  | if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) { | 
|  | pr_warn("ignoring \"secure-reg-access\" property for arm64\n"); | 
|  | pmu->secure_access = false; | 
|  | } | 
|  |  | 
|  | ret = of_pmu_irq_cfg(pmu); | 
|  | if (!ret) | 
|  | ret = init_fn(pmu); | 
|  | } else if (probe_table) { | 
|  | cpumask_setall(&pmu->supported_cpus); | 
|  | ret = probe_current_pmu(pmu, probe_table); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | pr_info("%s: failed to probe PMU!\n", of_node_full_name(node)); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  |  | 
|  | ret = cpu_pmu_init(pmu); | 
|  | if (ret) | 
|  | goto out_free; | 
|  |  | 
|  | ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); | 
|  | if (ret) | 
|  | goto out_destroy; | 
|  |  | 
|  | if (!__oprofile_cpu_pmu) | 
|  | __oprofile_cpu_pmu = pmu; | 
|  |  | 
|  | pr_info("enabled with %s PMU driver, %d counters available\n", | 
|  | pmu->name, pmu->num_events); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_destroy: | 
|  | cpu_pmu_destroy(pmu); | 
|  | out_free: | 
|  | pr_info("%s: failed to register PMU devices!\n", | 
|  | of_node_full_name(node)); | 
|  | kfree(pmu->irq_affinity); | 
|  | kfree(pmu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int arm_pmu_hp_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, | 
|  | "AP_PERF_ARM_STARTING", | 
|  | arm_perf_starting_cpu, NULL); | 
|  | if (ret) | 
|  | pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", | 
|  | ret); | 
|  | return ret; | 
|  | } | 
|  | subsys_initcall(arm_pmu_hp_init); |