| /* | 
 |  * RTC related functions | 
 |  */ | 
 | #include <linux/platform_device.h> | 
 | #include <linux/mc146818rtc.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/bcd.h> | 
 | #include <linux/export.h> | 
 | #include <linux/pnp.h> | 
 | #include <linux/of.h> | 
 |  | 
 | #include <asm/vsyscall.h> | 
 | #include <asm/x86_init.h> | 
 | #include <asm/time.h> | 
 | #include <asm/mrst.h> | 
 | #include <asm/rtc.h> | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | /* | 
 |  * This is a special lock that is owned by the CPU and holds the index | 
 |  * register we are working with.  It is required for NMI access to the | 
 |  * CMOS/RTC registers.  See include/asm-i386/mc146818rtc.h for details. | 
 |  */ | 
 | volatile unsigned long cmos_lock; | 
 | EXPORT_SYMBOL(cmos_lock); | 
 | #endif /* CONFIG_X86_32 */ | 
 |  | 
 | /* For two digit years assume time is always after that */ | 
 | #define CMOS_YEARS_OFFS 2000 | 
 |  | 
 | DEFINE_SPINLOCK(rtc_lock); | 
 | EXPORT_SYMBOL(rtc_lock); | 
 |  | 
 | /* | 
 |  * In order to set the CMOS clock precisely, set_rtc_mmss has to be | 
 |  * called 500 ms after the second nowtime has started, because when | 
 |  * nowtime is written into the registers of the CMOS clock, it will | 
 |  * jump to the next second precisely 500 ms later. Check the Motorola | 
 |  * MC146818A or Dallas DS12887 data sheet for details. | 
 |  */ | 
 | int mach_set_rtc_mmss(unsigned long nowtime) | 
 | { | 
 | 	struct rtc_time tm; | 
 | 	int retval = 0; | 
 |  | 
 | 	rtc_time_to_tm(nowtime, &tm); | 
 | 	if (!rtc_valid_tm(&tm)) { | 
 | 		retval = set_rtc_time(&tm); | 
 | 		if (retval) | 
 | 			printk(KERN_ERR "%s: RTC write failed with error %d\n", | 
 | 			       __FUNCTION__, retval); | 
 | 	} else { | 
 | 		printk(KERN_ERR | 
 | 		       "%s: Invalid RTC value: write of %lx to RTC failed\n", | 
 | 			__FUNCTION__, nowtime); | 
 | 		retval = -EINVAL; | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | unsigned long mach_get_cmos_time(void) | 
 | { | 
 | 	unsigned int status, year, mon, day, hour, min, sec, century = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&rtc_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * If UIP is clear, then we have >= 244 microseconds before | 
 | 	 * RTC registers will be updated.  Spec sheet says that this | 
 | 	 * is the reliable way to read RTC - registers. If UIP is set | 
 | 	 * then the register access might be invalid. | 
 | 	 */ | 
 | 	while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)) | 
 | 		cpu_relax(); | 
 |  | 
 | 	sec = CMOS_READ(RTC_SECONDS); | 
 | 	min = CMOS_READ(RTC_MINUTES); | 
 | 	hour = CMOS_READ(RTC_HOURS); | 
 | 	day = CMOS_READ(RTC_DAY_OF_MONTH); | 
 | 	mon = CMOS_READ(RTC_MONTH); | 
 | 	year = CMOS_READ(RTC_YEAR); | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | 	if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID && | 
 | 	    acpi_gbl_FADT.century) | 
 | 		century = CMOS_READ(acpi_gbl_FADT.century); | 
 | #endif | 
 |  | 
 | 	status = CMOS_READ(RTC_CONTROL); | 
 | 	WARN_ON_ONCE(RTC_ALWAYS_BCD && (status & RTC_DM_BINARY)); | 
 |  | 
 | 	spin_unlock_irqrestore(&rtc_lock, flags); | 
 |  | 
 | 	if (RTC_ALWAYS_BCD || !(status & RTC_DM_BINARY)) { | 
 | 		sec = bcd2bin(sec); | 
 | 		min = bcd2bin(min); | 
 | 		hour = bcd2bin(hour); | 
 | 		day = bcd2bin(day); | 
 | 		mon = bcd2bin(mon); | 
 | 		year = bcd2bin(year); | 
 | 	} | 
 |  | 
 | 	if (century) { | 
 | 		century = bcd2bin(century); | 
 | 		year += century * 100; | 
 | 	} else | 
 | 		year += CMOS_YEARS_OFFS; | 
 |  | 
 | 	return mktime(year, mon, day, hour, min, sec); | 
 | } | 
 |  | 
 | /* Routines for accessing the CMOS RAM/RTC. */ | 
 | unsigned char rtc_cmos_read(unsigned char addr) | 
 | { | 
 | 	unsigned char val; | 
 |  | 
 | 	lock_cmos_prefix(addr); | 
 | 	outb(addr, RTC_PORT(0)); | 
 | 	val = inb(RTC_PORT(1)); | 
 | 	lock_cmos_suffix(addr); | 
 |  | 
 | 	return val; | 
 | } | 
 | EXPORT_SYMBOL(rtc_cmos_read); | 
 |  | 
 | void rtc_cmos_write(unsigned char val, unsigned char addr) | 
 | { | 
 | 	lock_cmos_prefix(addr); | 
 | 	outb(addr, RTC_PORT(0)); | 
 | 	outb(val, RTC_PORT(1)); | 
 | 	lock_cmos_suffix(addr); | 
 | } | 
 | EXPORT_SYMBOL(rtc_cmos_write); | 
 |  | 
 | int update_persistent_clock(struct timespec now) | 
 | { | 
 | 	return x86_platform.set_wallclock(now.tv_sec); | 
 | } | 
 |  | 
 | /* not static: needed by APM */ | 
 | void read_persistent_clock(struct timespec *ts) | 
 | { | 
 | 	unsigned long retval; | 
 |  | 
 | 	retval = x86_platform.get_wallclock(); | 
 |  | 
 | 	ts->tv_sec = retval; | 
 | 	ts->tv_nsec = 0; | 
 | } | 
 |  | 
 |  | 
 | static struct resource rtc_resources[] = { | 
 | 	[0] = { | 
 | 		.start	= RTC_PORT(0), | 
 | 		.end	= RTC_PORT(1), | 
 | 		.flags	= IORESOURCE_IO, | 
 | 	}, | 
 | 	[1] = { | 
 | 		.start	= RTC_IRQ, | 
 | 		.end	= RTC_IRQ, | 
 | 		.flags	= IORESOURCE_IRQ, | 
 | 	} | 
 | }; | 
 |  | 
 | static struct platform_device rtc_device = { | 
 | 	.name		= "rtc_cmos", | 
 | 	.id		= -1, | 
 | 	.resource	= rtc_resources, | 
 | 	.num_resources	= ARRAY_SIZE(rtc_resources), | 
 | }; | 
 |  | 
 | static __init int add_rtc_cmos(void) | 
 | { | 
 | #ifdef CONFIG_PNP | 
 | 	static const char * const  const ids[] __initconst = | 
 | 	    { "PNP0b00", "PNP0b01", "PNP0b02", }; | 
 | 	struct pnp_dev *dev; | 
 | 	struct pnp_id *id; | 
 | 	int i; | 
 |  | 
 | 	pnp_for_each_dev(dev) { | 
 | 		for (id = dev->id; id; id = id->next) { | 
 | 			for (i = 0; i < ARRAY_SIZE(ids); i++) { | 
 | 				if (compare_pnp_id(id, ids[i]) != 0) | 
 | 					return 0; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	if (of_have_populated_dt()) | 
 | 		return 0; | 
 |  | 
 | 	/* Intel MID platforms don't have ioport rtc */ | 
 | 	if (mrst_identify_cpu()) | 
 | 		return -ENODEV; | 
 |  | 
 | 	platform_device_register(&rtc_device); | 
 | 	dev_info(&rtc_device.dev, | 
 | 		 "registered platform RTC device (no PNP device found)\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 | device_initcall(add_rtc_cmos); |