| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * SPI driver for NVIDIA's Tegra114 SPI Controller. |
| * |
| * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmapool.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/kthread.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/reset.h> |
| #include <linux/spi/spi.h> |
| |
| #define SPI_COMMAND1 0x000 |
| #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0) |
| #define SPI_PACKED (1 << 5) |
| #define SPI_TX_EN (1 << 11) |
| #define SPI_RX_EN (1 << 12) |
| #define SPI_BOTH_EN_BYTE (1 << 13) |
| #define SPI_BOTH_EN_BIT (1 << 14) |
| #define SPI_LSBYTE_FE (1 << 15) |
| #define SPI_LSBIT_FE (1 << 16) |
| #define SPI_BIDIROE (1 << 17) |
| #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18) |
| #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18) |
| #define SPI_IDLE_SDA_PULL_LOW (2 << 18) |
| #define SPI_IDLE_SDA_PULL_HIGH (3 << 18) |
| #define SPI_IDLE_SDA_MASK (3 << 18) |
| #define SPI_CS_SW_VAL (1 << 20) |
| #define SPI_CS_SW_HW (1 << 21) |
| /* SPI_CS_POL_INACTIVE bits are default high */ |
| /* n from 0 to 3 */ |
| #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n))) |
| #define SPI_CS_POL_INACTIVE_MASK (0xF << 22) |
| |
| #define SPI_CS_SEL_0 (0 << 26) |
| #define SPI_CS_SEL_1 (1 << 26) |
| #define SPI_CS_SEL_2 (2 << 26) |
| #define SPI_CS_SEL_3 (3 << 26) |
| #define SPI_CS_SEL_MASK (3 << 26) |
| #define SPI_CS_SEL(x) (((x) & 0x3) << 26) |
| #define SPI_CONTROL_MODE_0 (0 << 28) |
| #define SPI_CONTROL_MODE_1 (1 << 28) |
| #define SPI_CONTROL_MODE_2 (2 << 28) |
| #define SPI_CONTROL_MODE_3 (3 << 28) |
| #define SPI_CONTROL_MODE_MASK (3 << 28) |
| #define SPI_MODE_SEL(x) (((x) & 0x3) << 28) |
| #define SPI_M_S (1 << 30) |
| #define SPI_PIO (1 << 31) |
| |
| #define SPI_COMMAND2 0x004 |
| #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6) |
| #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0) |
| |
| #define SPI_CS_TIMING1 0x008 |
| #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold)) |
| #define SPI_CS_SETUP_HOLD(reg, cs, val) \ |
| ((((val) & 0xFFu) << ((cs) * 8)) | \ |
| ((reg) & ~(0xFFu << ((cs) * 8)))) |
| |
| #define SPI_CS_TIMING2 0x00C |
| #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0) |
| #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5) |
| #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8) |
| #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13) |
| #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16) |
| #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21) |
| #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24) |
| #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29) |
| #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \ |
| (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \ |
| ((reg) & ~(1 << ((cs) * 8 + 5)))) |
| #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \ |
| (reg = (((val) & 0x1F) << ((cs) * 8)) | \ |
| ((reg) & ~(0x1F << ((cs) * 8)))) |
| #define MAX_SETUP_HOLD_CYCLES 16 |
| #define MAX_INACTIVE_CYCLES 32 |
| |
| #define SPI_TRANS_STATUS 0x010 |
| #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF) |
| #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF) |
| #define SPI_RDY (1 << 30) |
| |
| #define SPI_FIFO_STATUS 0x014 |
| #define SPI_RX_FIFO_EMPTY (1 << 0) |
| #define SPI_RX_FIFO_FULL (1 << 1) |
| #define SPI_TX_FIFO_EMPTY (1 << 2) |
| #define SPI_TX_FIFO_FULL (1 << 3) |
| #define SPI_RX_FIFO_UNF (1 << 4) |
| #define SPI_RX_FIFO_OVF (1 << 5) |
| #define SPI_TX_FIFO_UNF (1 << 6) |
| #define SPI_TX_FIFO_OVF (1 << 7) |
| #define SPI_ERR (1 << 8) |
| #define SPI_TX_FIFO_FLUSH (1 << 14) |
| #define SPI_RX_FIFO_FLUSH (1 << 15) |
| #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F) |
| #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F) |
| #define SPI_FRAME_END (1 << 30) |
| #define SPI_CS_INACTIVE (1 << 31) |
| |
| #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \ |
| SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF) |
| #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY) |
| |
| #define SPI_TX_DATA 0x018 |
| #define SPI_RX_DATA 0x01C |
| |
| #define SPI_DMA_CTL 0x020 |
| #define SPI_TX_TRIG_1 (0 << 15) |
| #define SPI_TX_TRIG_4 (1 << 15) |
| #define SPI_TX_TRIG_8 (2 << 15) |
| #define SPI_TX_TRIG_16 (3 << 15) |
| #define SPI_TX_TRIG_MASK (3 << 15) |
| #define SPI_RX_TRIG_1 (0 << 19) |
| #define SPI_RX_TRIG_4 (1 << 19) |
| #define SPI_RX_TRIG_8 (2 << 19) |
| #define SPI_RX_TRIG_16 (3 << 19) |
| #define SPI_RX_TRIG_MASK (3 << 19) |
| #define SPI_IE_TX (1 << 28) |
| #define SPI_IE_RX (1 << 29) |
| #define SPI_CONT (1 << 30) |
| #define SPI_DMA (1 << 31) |
| #define SPI_DMA_EN SPI_DMA |
| |
| #define SPI_DMA_BLK 0x024 |
| #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0) |
| |
| #define SPI_TX_FIFO 0x108 |
| #define SPI_RX_FIFO 0x188 |
| #define SPI_INTR_MASK 0x18c |
| #define SPI_INTR_ALL_MASK (0x1fUL << 25) |
| #define MAX_CHIP_SELECT 4 |
| #define SPI_FIFO_DEPTH 64 |
| #define DATA_DIR_TX (1 << 0) |
| #define DATA_DIR_RX (1 << 1) |
| |
| #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) |
| #define DEFAULT_SPI_DMA_BUF_LEN (16*1024) |
| #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40) |
| #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0) |
| #define MAX_HOLD_CYCLES 16 |
| #define SPI_DEFAULT_SPEED 25000000 |
| |
| struct tegra_spi_soc_data { |
| bool has_intr_mask_reg; |
| }; |
| |
| struct tegra_spi_client_data { |
| int tx_clk_tap_delay; |
| int rx_clk_tap_delay; |
| }; |
| |
| struct tegra_spi_data { |
| struct device *dev; |
| struct spi_master *master; |
| spinlock_t lock; |
| |
| struct clk *clk; |
| struct reset_control *rst; |
| void __iomem *base; |
| phys_addr_t phys; |
| unsigned irq; |
| u32 cur_speed; |
| |
| struct spi_device *cur_spi; |
| struct spi_device *cs_control; |
| unsigned cur_pos; |
| unsigned words_per_32bit; |
| unsigned bytes_per_word; |
| unsigned curr_dma_words; |
| unsigned cur_direction; |
| |
| unsigned cur_rx_pos; |
| unsigned cur_tx_pos; |
| |
| unsigned dma_buf_size; |
| unsigned max_buf_size; |
| bool is_curr_dma_xfer; |
| bool use_hw_based_cs; |
| |
| struct completion rx_dma_complete; |
| struct completion tx_dma_complete; |
| |
| u32 tx_status; |
| u32 rx_status; |
| u32 status_reg; |
| bool is_packed; |
| |
| u32 command1_reg; |
| u32 dma_control_reg; |
| u32 def_command1_reg; |
| u32 def_command2_reg; |
| u32 spi_cs_timing1; |
| u32 spi_cs_timing2; |
| u8 last_used_cs; |
| |
| struct completion xfer_completion; |
| struct spi_transfer *curr_xfer; |
| struct dma_chan *rx_dma_chan; |
| u32 *rx_dma_buf; |
| dma_addr_t rx_dma_phys; |
| struct dma_async_tx_descriptor *rx_dma_desc; |
| |
| struct dma_chan *tx_dma_chan; |
| u32 *tx_dma_buf; |
| dma_addr_t tx_dma_phys; |
| struct dma_async_tx_descriptor *tx_dma_desc; |
| const struct tegra_spi_soc_data *soc_data; |
| }; |
| |
| static int tegra_spi_runtime_suspend(struct device *dev); |
| static int tegra_spi_runtime_resume(struct device *dev); |
| |
| static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi, |
| unsigned long reg) |
| { |
| return readl(tspi->base + reg); |
| } |
| |
| static inline void tegra_spi_writel(struct tegra_spi_data *tspi, |
| u32 val, unsigned long reg) |
| { |
| writel(val, tspi->base + reg); |
| |
| /* Read back register to make sure that register writes completed */ |
| if (reg != SPI_TX_FIFO) |
| readl(tspi->base + SPI_COMMAND1); |
| } |
| |
| static void tegra_spi_clear_status(struct tegra_spi_data *tspi) |
| { |
| u32 val; |
| |
| /* Write 1 to clear status register */ |
| val = tegra_spi_readl(tspi, SPI_TRANS_STATUS); |
| tegra_spi_writel(tspi, val, SPI_TRANS_STATUS); |
| |
| /* Clear fifo status error if any */ |
| val = tegra_spi_readl(tspi, SPI_FIFO_STATUS); |
| if (val & SPI_ERR) |
| tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR, |
| SPI_FIFO_STATUS); |
| } |
| |
| static unsigned tegra_spi_calculate_curr_xfer_param( |
| struct spi_device *spi, struct tegra_spi_data *tspi, |
| struct spi_transfer *t) |
| { |
| unsigned remain_len = t->len - tspi->cur_pos; |
| unsigned max_word; |
| unsigned bits_per_word = t->bits_per_word; |
| unsigned max_len; |
| unsigned total_fifo_words; |
| |
| tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8); |
| |
| if ((bits_per_word == 8 || bits_per_word == 16 || |
| bits_per_word == 32) && t->len > 3) { |
| tspi->is_packed = true; |
| tspi->words_per_32bit = 32/bits_per_word; |
| } else { |
| tspi->is_packed = false; |
| tspi->words_per_32bit = 1; |
| } |
| |
| if (tspi->is_packed) { |
| max_len = min(remain_len, tspi->max_buf_size); |
| tspi->curr_dma_words = max_len/tspi->bytes_per_word; |
| total_fifo_words = (max_len + 3) / 4; |
| } else { |
| max_word = (remain_len - 1) / tspi->bytes_per_word + 1; |
| max_word = min(max_word, tspi->max_buf_size/4); |
| tspi->curr_dma_words = max_word; |
| total_fifo_words = max_word; |
| } |
| return total_fifo_words; |
| } |
| |
| static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf( |
| struct tegra_spi_data *tspi, struct spi_transfer *t) |
| { |
| unsigned nbytes; |
| unsigned tx_empty_count; |
| u32 fifo_status; |
| unsigned max_n_32bit; |
| unsigned i, count; |
| unsigned int written_words; |
| unsigned fifo_words_left; |
| u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; |
| |
| fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); |
| tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status); |
| |
| if (tspi->is_packed) { |
| fifo_words_left = tx_empty_count * tspi->words_per_32bit; |
| written_words = min(fifo_words_left, tspi->curr_dma_words); |
| nbytes = written_words * tspi->bytes_per_word; |
| max_n_32bit = DIV_ROUND_UP(nbytes, 4); |
| for (count = 0; count < max_n_32bit; count++) { |
| u32 x = 0; |
| |
| for (i = 0; (i < 4) && nbytes; i++, nbytes--) |
| x |= (u32)(*tx_buf++) << (i * 8); |
| tegra_spi_writel(tspi, x, SPI_TX_FIFO); |
| } |
| |
| tspi->cur_tx_pos += written_words * tspi->bytes_per_word; |
| } else { |
| unsigned int write_bytes; |
| max_n_32bit = min(tspi->curr_dma_words, tx_empty_count); |
| written_words = max_n_32bit; |
| nbytes = written_words * tspi->bytes_per_word; |
| if (nbytes > t->len - tspi->cur_pos) |
| nbytes = t->len - tspi->cur_pos; |
| write_bytes = nbytes; |
| for (count = 0; count < max_n_32bit; count++) { |
| u32 x = 0; |
| |
| for (i = 0; nbytes && (i < tspi->bytes_per_word); |
| i++, nbytes--) |
| x |= (u32)(*tx_buf++) << (i * 8); |
| tegra_spi_writel(tspi, x, SPI_TX_FIFO); |
| } |
| |
| tspi->cur_tx_pos += write_bytes; |
| } |
| |
| return written_words; |
| } |
| |
| static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf( |
| struct tegra_spi_data *tspi, struct spi_transfer *t) |
| { |
| unsigned rx_full_count; |
| u32 fifo_status; |
| unsigned i, count; |
| unsigned int read_words = 0; |
| unsigned len; |
| u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos; |
| |
| fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); |
| rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status); |
| if (tspi->is_packed) { |
| len = tspi->curr_dma_words * tspi->bytes_per_word; |
| for (count = 0; count < rx_full_count; count++) { |
| u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO); |
| |
| for (i = 0; len && (i < 4); i++, len--) |
| *rx_buf++ = (x >> i*8) & 0xFF; |
| } |
| read_words += tspi->curr_dma_words; |
| tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; |
| } else { |
| u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; |
| u8 bytes_per_word = tspi->bytes_per_word; |
| unsigned int read_bytes; |
| |
| len = rx_full_count * bytes_per_word; |
| if (len > t->len - tspi->cur_pos) |
| len = t->len - tspi->cur_pos; |
| read_bytes = len; |
| for (count = 0; count < rx_full_count; count++) { |
| u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask; |
| |
| for (i = 0; len && (i < bytes_per_word); i++, len--) |
| *rx_buf++ = (x >> (i*8)) & 0xFF; |
| } |
| read_words += rx_full_count; |
| tspi->cur_rx_pos += read_bytes; |
| } |
| |
| return read_words; |
| } |
| |
| static void tegra_spi_copy_client_txbuf_to_spi_txbuf( |
| struct tegra_spi_data *tspi, struct spi_transfer *t) |
| { |
| /* Make the dma buffer to read by cpu */ |
| dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys, |
| tspi->dma_buf_size, DMA_TO_DEVICE); |
| |
| if (tspi->is_packed) { |
| unsigned len = tspi->curr_dma_words * tspi->bytes_per_word; |
| |
| memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len); |
| tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word; |
| } else { |
| unsigned int i; |
| unsigned int count; |
| u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos; |
| unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word; |
| unsigned int write_bytes; |
| |
| if (consume > t->len - tspi->cur_pos) |
| consume = t->len - tspi->cur_pos; |
| write_bytes = consume; |
| for (count = 0; count < tspi->curr_dma_words; count++) { |
| u32 x = 0; |
| |
| for (i = 0; consume && (i < tspi->bytes_per_word); |
| i++, consume--) |
| x |= (u32)(*tx_buf++) << (i * 8); |
| tspi->tx_dma_buf[count] = x; |
| } |
| |
| tspi->cur_tx_pos += write_bytes; |
| } |
| |
| /* Make the dma buffer to read by dma */ |
| dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys, |
| tspi->dma_buf_size, DMA_TO_DEVICE); |
| } |
| |
| static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf( |
| struct tegra_spi_data *tspi, struct spi_transfer *t) |
| { |
| /* Make the dma buffer to read by cpu */ |
| dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys, |
| tspi->dma_buf_size, DMA_FROM_DEVICE); |
| |
| if (tspi->is_packed) { |
| unsigned len = tspi->curr_dma_words * tspi->bytes_per_word; |
| |
| memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len); |
| tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word; |
| } else { |
| unsigned int i; |
| unsigned int count; |
| unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos; |
| u32 rx_mask = ((u32)1 << t->bits_per_word) - 1; |
| unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word; |
| unsigned int read_bytes; |
| |
| if (consume > t->len - tspi->cur_pos) |
| consume = t->len - tspi->cur_pos; |
| read_bytes = consume; |
| for (count = 0; count < tspi->curr_dma_words; count++) { |
| u32 x = tspi->rx_dma_buf[count] & rx_mask; |
| |
| for (i = 0; consume && (i < tspi->bytes_per_word); |
| i++, consume--) |
| *rx_buf++ = (x >> (i*8)) & 0xFF; |
| } |
| |
| tspi->cur_rx_pos += read_bytes; |
| } |
| |
| /* Make the dma buffer to read by dma */ |
| dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, |
| tspi->dma_buf_size, DMA_FROM_DEVICE); |
| } |
| |
| static void tegra_spi_dma_complete(void *args) |
| { |
| struct completion *dma_complete = args; |
| |
| complete(dma_complete); |
| } |
| |
| static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len) |
| { |
| reinit_completion(&tspi->tx_dma_complete); |
| tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan, |
| tspi->tx_dma_phys, len, DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!tspi->tx_dma_desc) { |
| dev_err(tspi->dev, "Not able to get desc for Tx\n"); |
| return -EIO; |
| } |
| |
| tspi->tx_dma_desc->callback = tegra_spi_dma_complete; |
| tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete; |
| |
| dmaengine_submit(tspi->tx_dma_desc); |
| dma_async_issue_pending(tspi->tx_dma_chan); |
| return 0; |
| } |
| |
| static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len) |
| { |
| reinit_completion(&tspi->rx_dma_complete); |
| tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan, |
| tspi->rx_dma_phys, len, DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!tspi->rx_dma_desc) { |
| dev_err(tspi->dev, "Not able to get desc for Rx\n"); |
| return -EIO; |
| } |
| |
| tspi->rx_dma_desc->callback = tegra_spi_dma_complete; |
| tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete; |
| |
| dmaengine_submit(tspi->rx_dma_desc); |
| dma_async_issue_pending(tspi->rx_dma_chan); |
| return 0; |
| } |
| |
| static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi) |
| { |
| unsigned long timeout = jiffies + HZ; |
| u32 status; |
| |
| status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); |
| if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) { |
| status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH; |
| tegra_spi_writel(tspi, status, SPI_FIFO_STATUS); |
| while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) { |
| status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); |
| if (time_after(jiffies, timeout)) { |
| dev_err(tspi->dev, |
| "timeout waiting for fifo flush\n"); |
| return -EIO; |
| } |
| |
| udelay(1); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int tegra_spi_start_dma_based_transfer( |
| struct tegra_spi_data *tspi, struct spi_transfer *t) |
| { |
| u32 val; |
| unsigned int len; |
| int ret = 0; |
| u8 dma_burst; |
| struct dma_slave_config dma_sconfig = {0}; |
| |
| val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1); |
| tegra_spi_writel(tspi, val, SPI_DMA_BLK); |
| |
| if (tspi->is_packed) |
| len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word, |
| 4) * 4; |
| else |
| len = tspi->curr_dma_words * 4; |
| |
| /* Set attention level based on length of transfer */ |
| if (len & 0xF) { |
| val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1; |
| dma_burst = 1; |
| } else if (((len) >> 4) & 0x1) { |
| val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4; |
| dma_burst = 4; |
| } else { |
| val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8; |
| dma_burst = 8; |
| } |
| |
| if (!tspi->soc_data->has_intr_mask_reg) { |
| if (tspi->cur_direction & DATA_DIR_TX) |
| val |= SPI_IE_TX; |
| |
| if (tspi->cur_direction & DATA_DIR_RX) |
| val |= SPI_IE_RX; |
| } |
| |
| tegra_spi_writel(tspi, val, SPI_DMA_CTL); |
| tspi->dma_control_reg = val; |
| |
| dma_sconfig.device_fc = true; |
| if (tspi->cur_direction & DATA_DIR_TX) { |
| dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO; |
| dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| dma_sconfig.dst_maxburst = dma_burst; |
| ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig); |
| if (ret < 0) { |
| dev_err(tspi->dev, |
| "DMA slave config failed: %d\n", ret); |
| return ret; |
| } |
| |
| tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t); |
| ret = tegra_spi_start_tx_dma(tspi, len); |
| if (ret < 0) { |
| dev_err(tspi->dev, |
| "Starting tx dma failed, err %d\n", ret); |
| return ret; |
| } |
| } |
| |
| if (tspi->cur_direction & DATA_DIR_RX) { |
| dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO; |
| dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| dma_sconfig.src_maxburst = dma_burst; |
| ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig); |
| if (ret < 0) { |
| dev_err(tspi->dev, |
| "DMA slave config failed: %d\n", ret); |
| return ret; |
| } |
| |
| /* Make the dma buffer to read by dma */ |
| dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, |
| tspi->dma_buf_size, DMA_FROM_DEVICE); |
| |
| ret = tegra_spi_start_rx_dma(tspi, len); |
| if (ret < 0) { |
| dev_err(tspi->dev, |
| "Starting rx dma failed, err %d\n", ret); |
| if (tspi->cur_direction & DATA_DIR_TX) |
| dmaengine_terminate_all(tspi->tx_dma_chan); |
| return ret; |
| } |
| } |
| tspi->is_curr_dma_xfer = true; |
| tspi->dma_control_reg = val; |
| |
| val |= SPI_DMA_EN; |
| tegra_spi_writel(tspi, val, SPI_DMA_CTL); |
| return ret; |
| } |
| |
| static int tegra_spi_start_cpu_based_transfer( |
| struct tegra_spi_data *tspi, struct spi_transfer *t) |
| { |
| u32 val; |
| unsigned cur_words; |
| |
| if (tspi->cur_direction & DATA_DIR_TX) |
| cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t); |
| else |
| cur_words = tspi->curr_dma_words; |
| |
| val = SPI_DMA_BLK_SET(cur_words - 1); |
| tegra_spi_writel(tspi, val, SPI_DMA_BLK); |
| |
| val = 0; |
| if (tspi->cur_direction & DATA_DIR_TX) |
| val |= SPI_IE_TX; |
| |
| if (tspi->cur_direction & DATA_DIR_RX) |
| val |= SPI_IE_RX; |
| |
| tegra_spi_writel(tspi, val, SPI_DMA_CTL); |
| tspi->dma_control_reg = val; |
| |
| tspi->is_curr_dma_xfer = false; |
| |
| val = tspi->command1_reg; |
| val |= SPI_PIO; |
| tegra_spi_writel(tspi, val, SPI_COMMAND1); |
| return 0; |
| } |
| |
| static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi, |
| bool dma_to_memory) |
| { |
| struct dma_chan *dma_chan; |
| u32 *dma_buf; |
| dma_addr_t dma_phys; |
| |
| dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx"); |
| if (IS_ERR(dma_chan)) |
| return dev_err_probe(tspi->dev, PTR_ERR(dma_chan), |
| "Dma channel is not available\n"); |
| |
| dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size, |
| &dma_phys, GFP_KERNEL); |
| if (!dma_buf) { |
| dev_err(tspi->dev, " Not able to allocate the dma buffer\n"); |
| dma_release_channel(dma_chan); |
| return -ENOMEM; |
| } |
| |
| if (dma_to_memory) { |
| tspi->rx_dma_chan = dma_chan; |
| tspi->rx_dma_buf = dma_buf; |
| tspi->rx_dma_phys = dma_phys; |
| } else { |
| tspi->tx_dma_chan = dma_chan; |
| tspi->tx_dma_buf = dma_buf; |
| tspi->tx_dma_phys = dma_phys; |
| } |
| return 0; |
| } |
| |
| static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi, |
| bool dma_to_memory) |
| { |
| u32 *dma_buf; |
| dma_addr_t dma_phys; |
| struct dma_chan *dma_chan; |
| |
| if (dma_to_memory) { |
| dma_buf = tspi->rx_dma_buf; |
| dma_chan = tspi->rx_dma_chan; |
| dma_phys = tspi->rx_dma_phys; |
| tspi->rx_dma_chan = NULL; |
| tspi->rx_dma_buf = NULL; |
| } else { |
| dma_buf = tspi->tx_dma_buf; |
| dma_chan = tspi->tx_dma_chan; |
| dma_phys = tspi->tx_dma_phys; |
| tspi->tx_dma_buf = NULL; |
| tspi->tx_dma_chan = NULL; |
| } |
| if (!dma_chan) |
| return; |
| |
| dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys); |
| dma_release_channel(dma_chan); |
| } |
| |
| static int tegra_spi_set_hw_cs_timing(struct spi_device *spi) |
| { |
| struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); |
| struct spi_delay *setup = &spi->cs_setup; |
| struct spi_delay *hold = &spi->cs_hold; |
| struct spi_delay *inactive = &spi->cs_inactive; |
| u8 setup_dly, hold_dly, inactive_dly; |
| u32 setup_hold; |
| u32 spi_cs_timing; |
| u32 inactive_cycles; |
| u8 cs_state; |
| |
| if ((setup && setup->unit != SPI_DELAY_UNIT_SCK) || |
| (hold && hold->unit != SPI_DELAY_UNIT_SCK) || |
| (inactive && inactive->unit != SPI_DELAY_UNIT_SCK)) { |
| dev_err(&spi->dev, |
| "Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n", |
| SPI_DELAY_UNIT_SCK); |
| return -EINVAL; |
| } |
| |
| setup_dly = setup ? setup->value : 0; |
| hold_dly = hold ? hold->value : 0; |
| inactive_dly = inactive ? inactive->value : 0; |
| |
| setup_dly = min_t(u8, setup_dly, MAX_SETUP_HOLD_CYCLES); |
| hold_dly = min_t(u8, hold_dly, MAX_SETUP_HOLD_CYCLES); |
| if (setup_dly && hold_dly) { |
| setup_hold = SPI_SETUP_HOLD(setup_dly - 1, hold_dly - 1); |
| spi_cs_timing = SPI_CS_SETUP_HOLD(tspi->spi_cs_timing1, |
| spi_get_chipselect(spi, 0), |
| setup_hold); |
| if (tspi->spi_cs_timing1 != spi_cs_timing) { |
| tspi->spi_cs_timing1 = spi_cs_timing; |
| tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING1); |
| } |
| } |
| |
| inactive_cycles = min_t(u8, inactive_dly, MAX_INACTIVE_CYCLES); |
| if (inactive_cycles) |
| inactive_cycles--; |
| cs_state = inactive_cycles ? 0 : 1; |
| spi_cs_timing = tspi->spi_cs_timing2; |
| SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0), |
| cs_state); |
| SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing, spi_get_chipselect(spi, 0), |
| inactive_cycles); |
| if (tspi->spi_cs_timing2 != spi_cs_timing) { |
| tspi->spi_cs_timing2 = spi_cs_timing; |
| tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING2); |
| } |
| |
| return 0; |
| } |
| |
| static u32 tegra_spi_setup_transfer_one(struct spi_device *spi, |
| struct spi_transfer *t, |
| bool is_first_of_msg, |
| bool is_single_xfer) |
| { |
| struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); |
| struct tegra_spi_client_data *cdata = spi->controller_data; |
| u32 speed = t->speed_hz; |
| u8 bits_per_word = t->bits_per_word; |
| u32 command1, command2; |
| int req_mode; |
| u32 tx_tap = 0, rx_tap = 0; |
| |
| if (speed != tspi->cur_speed) { |
| clk_set_rate(tspi->clk, speed); |
| tspi->cur_speed = speed; |
| } |
| |
| tspi->cur_spi = spi; |
| tspi->cur_pos = 0; |
| tspi->cur_rx_pos = 0; |
| tspi->cur_tx_pos = 0; |
| tspi->curr_xfer = t; |
| |
| if (is_first_of_msg) { |
| tegra_spi_clear_status(tspi); |
| |
| command1 = tspi->def_command1_reg; |
| command1 |= SPI_BIT_LENGTH(bits_per_word - 1); |
| |
| command1 &= ~SPI_CONTROL_MODE_MASK; |
| req_mode = spi->mode & 0x3; |
| if (req_mode == SPI_MODE_0) |
| command1 |= SPI_CONTROL_MODE_0; |
| else if (req_mode == SPI_MODE_1) |
| command1 |= SPI_CONTROL_MODE_1; |
| else if (req_mode == SPI_MODE_2) |
| command1 |= SPI_CONTROL_MODE_2; |
| else if (req_mode == SPI_MODE_3) |
| command1 |= SPI_CONTROL_MODE_3; |
| |
| if (spi->mode & SPI_LSB_FIRST) |
| command1 |= SPI_LSBIT_FE; |
| else |
| command1 &= ~SPI_LSBIT_FE; |
| |
| if (spi->mode & SPI_3WIRE) |
| command1 |= SPI_BIDIROE; |
| else |
| command1 &= ~SPI_BIDIROE; |
| |
| if (tspi->cs_control) { |
| if (tspi->cs_control != spi) |
| tegra_spi_writel(tspi, command1, SPI_COMMAND1); |
| tspi->cs_control = NULL; |
| } else |
| tegra_spi_writel(tspi, command1, SPI_COMMAND1); |
| |
| /* GPIO based chip select control */ |
| if (spi_get_csgpiod(spi, 0)) |
| gpiod_set_value(spi_get_csgpiod(spi, 0), 1); |
| |
| if (is_single_xfer && !(t->cs_change)) { |
| tspi->use_hw_based_cs = true; |
| command1 &= ~(SPI_CS_SW_HW | SPI_CS_SW_VAL); |
| } else { |
| tspi->use_hw_based_cs = false; |
| command1 |= SPI_CS_SW_HW; |
| if (spi->mode & SPI_CS_HIGH) |
| command1 |= SPI_CS_SW_VAL; |
| else |
| command1 &= ~SPI_CS_SW_VAL; |
| } |
| |
| if (tspi->last_used_cs != spi_get_chipselect(spi, 0)) { |
| if (cdata && cdata->tx_clk_tap_delay) |
| tx_tap = cdata->tx_clk_tap_delay; |
| if (cdata && cdata->rx_clk_tap_delay) |
| rx_tap = cdata->rx_clk_tap_delay; |
| command2 = SPI_TX_TAP_DELAY(tx_tap) | |
| SPI_RX_TAP_DELAY(rx_tap); |
| if (command2 != tspi->def_command2_reg) |
| tegra_spi_writel(tspi, command2, SPI_COMMAND2); |
| tspi->last_used_cs = spi_get_chipselect(spi, 0); |
| } |
| |
| } else { |
| command1 = tspi->command1_reg; |
| command1 &= ~SPI_BIT_LENGTH(~0); |
| command1 |= SPI_BIT_LENGTH(bits_per_word - 1); |
| } |
| |
| return command1; |
| } |
| |
| static int tegra_spi_start_transfer_one(struct spi_device *spi, |
| struct spi_transfer *t, u32 command1) |
| { |
| struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); |
| unsigned total_fifo_words; |
| int ret; |
| |
| total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t); |
| |
| if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL) |
| command1 |= SPI_BOTH_EN_BIT; |
| else |
| command1 &= ~SPI_BOTH_EN_BIT; |
| |
| if (tspi->is_packed) |
| command1 |= SPI_PACKED; |
| else |
| command1 &= ~SPI_PACKED; |
| |
| command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN); |
| tspi->cur_direction = 0; |
| if (t->rx_buf) { |
| command1 |= SPI_RX_EN; |
| tspi->cur_direction |= DATA_DIR_RX; |
| } |
| if (t->tx_buf) { |
| command1 |= SPI_TX_EN; |
| tspi->cur_direction |= DATA_DIR_TX; |
| } |
| command1 |= SPI_CS_SEL(spi_get_chipselect(spi, 0)); |
| tegra_spi_writel(tspi, command1, SPI_COMMAND1); |
| tspi->command1_reg = command1; |
| |
| dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n", |
| tspi->def_command1_reg, (unsigned)command1); |
| |
| ret = tegra_spi_flush_fifos(tspi); |
| if (ret < 0) |
| return ret; |
| if (total_fifo_words > SPI_FIFO_DEPTH) |
| ret = tegra_spi_start_dma_based_transfer(tspi, t); |
| else |
| ret = tegra_spi_start_cpu_based_transfer(tspi, t); |
| return ret; |
| } |
| |
| static struct tegra_spi_client_data |
| *tegra_spi_parse_cdata_dt(struct spi_device *spi) |
| { |
| struct tegra_spi_client_data *cdata; |
| struct device_node *slave_np; |
| |
| slave_np = spi->dev.of_node; |
| if (!slave_np) { |
| dev_dbg(&spi->dev, "device node not found\n"); |
| return NULL; |
| } |
| |
| cdata = kzalloc(sizeof(*cdata), GFP_KERNEL); |
| if (!cdata) |
| return NULL; |
| |
| of_property_read_u32(slave_np, "nvidia,tx-clk-tap-delay", |
| &cdata->tx_clk_tap_delay); |
| of_property_read_u32(slave_np, "nvidia,rx-clk-tap-delay", |
| &cdata->rx_clk_tap_delay); |
| return cdata; |
| } |
| |
| static void tegra_spi_cleanup(struct spi_device *spi) |
| { |
| struct tegra_spi_client_data *cdata = spi->controller_data; |
| |
| spi->controller_data = NULL; |
| if (spi->dev.of_node) |
| kfree(cdata); |
| } |
| |
| static int tegra_spi_setup(struct spi_device *spi) |
| { |
| struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); |
| struct tegra_spi_client_data *cdata = spi->controller_data; |
| u32 val; |
| unsigned long flags; |
| int ret; |
| |
| dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n", |
| spi->bits_per_word, |
| spi->mode & SPI_CPOL ? "" : "~", |
| spi->mode & SPI_CPHA ? "" : "~", |
| spi->max_speed_hz); |
| |
| if (!cdata) { |
| cdata = tegra_spi_parse_cdata_dt(spi); |
| spi->controller_data = cdata; |
| } |
| |
| ret = pm_runtime_resume_and_get(tspi->dev); |
| if (ret < 0) { |
| dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret); |
| if (cdata) |
| tegra_spi_cleanup(spi); |
| return ret; |
| } |
| |
| if (tspi->soc_data->has_intr_mask_reg) { |
| val = tegra_spi_readl(tspi, SPI_INTR_MASK); |
| val &= ~SPI_INTR_ALL_MASK; |
| tegra_spi_writel(tspi, val, SPI_INTR_MASK); |
| } |
| |
| spin_lock_irqsave(&tspi->lock, flags); |
| /* GPIO based chip select control */ |
| if (spi_get_csgpiod(spi, 0)) |
| gpiod_set_value(spi_get_csgpiod(spi, 0), 0); |
| |
| val = tspi->def_command1_reg; |
| if (spi->mode & SPI_CS_HIGH) |
| val &= ~SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0)); |
| else |
| val |= SPI_CS_POL_INACTIVE(spi_get_chipselect(spi, 0)); |
| tspi->def_command1_reg = val; |
| tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); |
| spin_unlock_irqrestore(&tspi->lock, flags); |
| |
| pm_runtime_put(tspi->dev); |
| return 0; |
| } |
| |
| static void tegra_spi_transfer_end(struct spi_device *spi) |
| { |
| struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); |
| int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1; |
| |
| /* GPIO based chip select control */ |
| if (spi_get_csgpiod(spi, 0)) |
| gpiod_set_value(spi_get_csgpiod(spi, 0), 0); |
| |
| if (!tspi->use_hw_based_cs) { |
| if (cs_val) |
| tspi->command1_reg |= SPI_CS_SW_VAL; |
| else |
| tspi->command1_reg &= ~SPI_CS_SW_VAL; |
| tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1); |
| } |
| |
| tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); |
| } |
| |
| static void tegra_spi_dump_regs(struct tegra_spi_data *tspi) |
| { |
| dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n"); |
| dev_dbg(tspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n", |
| tegra_spi_readl(tspi, SPI_COMMAND1), |
| tegra_spi_readl(tspi, SPI_COMMAND2)); |
| dev_dbg(tspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n", |
| tegra_spi_readl(tspi, SPI_DMA_CTL), |
| tegra_spi_readl(tspi, SPI_DMA_BLK)); |
| dev_dbg(tspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n", |
| tegra_spi_readl(tspi, SPI_TRANS_STATUS), |
| tegra_spi_readl(tspi, SPI_FIFO_STATUS)); |
| } |
| |
| static int tegra_spi_transfer_one_message(struct spi_master *master, |
| struct spi_message *msg) |
| { |
| bool is_first_msg = true; |
| struct tegra_spi_data *tspi = spi_master_get_devdata(master); |
| struct spi_transfer *xfer; |
| struct spi_device *spi = msg->spi; |
| int ret; |
| bool skip = false; |
| int single_xfer; |
| |
| msg->status = 0; |
| msg->actual_length = 0; |
| |
| single_xfer = list_is_singular(&msg->transfers); |
| list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| u32 cmd1; |
| |
| reinit_completion(&tspi->xfer_completion); |
| |
| cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg, |
| single_xfer); |
| |
| if (!xfer->len) { |
| ret = 0; |
| skip = true; |
| goto complete_xfer; |
| } |
| |
| ret = tegra_spi_start_transfer_one(spi, xfer, cmd1); |
| if (ret < 0) { |
| dev_err(tspi->dev, |
| "spi can not start transfer, err %d\n", ret); |
| goto complete_xfer; |
| } |
| |
| is_first_msg = false; |
| ret = wait_for_completion_timeout(&tspi->xfer_completion, |
| SPI_DMA_TIMEOUT); |
| if (WARN_ON(ret == 0)) { |
| dev_err(tspi->dev, "spi transfer timeout\n"); |
| if (tspi->is_curr_dma_xfer && |
| (tspi->cur_direction & DATA_DIR_TX)) |
| dmaengine_terminate_all(tspi->tx_dma_chan); |
| if (tspi->is_curr_dma_xfer && |
| (tspi->cur_direction & DATA_DIR_RX)) |
| dmaengine_terminate_all(tspi->rx_dma_chan); |
| ret = -EIO; |
| tegra_spi_dump_regs(tspi); |
| tegra_spi_flush_fifos(tspi); |
| reset_control_assert(tspi->rst); |
| udelay(2); |
| reset_control_deassert(tspi->rst); |
| tspi->last_used_cs = master->num_chipselect + 1; |
| goto complete_xfer; |
| } |
| |
| if (tspi->tx_status || tspi->rx_status) { |
| dev_err(tspi->dev, "Error in Transfer\n"); |
| ret = -EIO; |
| tegra_spi_dump_regs(tspi); |
| goto complete_xfer; |
| } |
| msg->actual_length += xfer->len; |
| |
| complete_xfer: |
| if (ret < 0 || skip) { |
| tegra_spi_transfer_end(spi); |
| spi_transfer_delay_exec(xfer); |
| goto exit; |
| } else if (list_is_last(&xfer->transfer_list, |
| &msg->transfers)) { |
| if (xfer->cs_change) |
| tspi->cs_control = spi; |
| else { |
| tegra_spi_transfer_end(spi); |
| spi_transfer_delay_exec(xfer); |
| } |
| } else if (xfer->cs_change) { |
| tegra_spi_transfer_end(spi); |
| spi_transfer_delay_exec(xfer); |
| } |
| |
| } |
| ret = 0; |
| exit: |
| msg->status = ret; |
| spi_finalize_current_message(master); |
| return ret; |
| } |
| |
| static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi) |
| { |
| struct spi_transfer *t = tspi->curr_xfer; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&tspi->lock, flags); |
| if (tspi->tx_status || tspi->rx_status) { |
| dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n", |
| tspi->status_reg); |
| dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n", |
| tspi->command1_reg, tspi->dma_control_reg); |
| tegra_spi_dump_regs(tspi); |
| tegra_spi_flush_fifos(tspi); |
| complete(&tspi->xfer_completion); |
| spin_unlock_irqrestore(&tspi->lock, flags); |
| reset_control_assert(tspi->rst); |
| udelay(2); |
| reset_control_deassert(tspi->rst); |
| return IRQ_HANDLED; |
| } |
| |
| if (tspi->cur_direction & DATA_DIR_RX) |
| tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t); |
| |
| if (tspi->cur_direction & DATA_DIR_TX) |
| tspi->cur_pos = tspi->cur_tx_pos; |
| else |
| tspi->cur_pos = tspi->cur_rx_pos; |
| |
| if (tspi->cur_pos == t->len) { |
| complete(&tspi->xfer_completion); |
| goto exit; |
| } |
| |
| tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t); |
| tegra_spi_start_cpu_based_transfer(tspi, t); |
| exit: |
| spin_unlock_irqrestore(&tspi->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi) |
| { |
| struct spi_transfer *t = tspi->curr_xfer; |
| long wait_status; |
| int err = 0; |
| unsigned total_fifo_words; |
| unsigned long flags; |
| |
| /* Abort dmas if any error */ |
| if (tspi->cur_direction & DATA_DIR_TX) { |
| if (tspi->tx_status) { |
| dmaengine_terminate_all(tspi->tx_dma_chan); |
| err += 1; |
| } else { |
| wait_status = wait_for_completion_interruptible_timeout( |
| &tspi->tx_dma_complete, SPI_DMA_TIMEOUT); |
| if (wait_status <= 0) { |
| dmaengine_terminate_all(tspi->tx_dma_chan); |
| dev_err(tspi->dev, "TxDma Xfer failed\n"); |
| err += 1; |
| } |
| } |
| } |
| |
| if (tspi->cur_direction & DATA_DIR_RX) { |
| if (tspi->rx_status) { |
| dmaengine_terminate_all(tspi->rx_dma_chan); |
| err += 2; |
| } else { |
| wait_status = wait_for_completion_interruptible_timeout( |
| &tspi->rx_dma_complete, SPI_DMA_TIMEOUT); |
| if (wait_status <= 0) { |
| dmaengine_terminate_all(tspi->rx_dma_chan); |
| dev_err(tspi->dev, "RxDma Xfer failed\n"); |
| err += 2; |
| } |
| } |
| } |
| |
| spin_lock_irqsave(&tspi->lock, flags); |
| if (err) { |
| dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n", |
| tspi->status_reg); |
| dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n", |
| tspi->command1_reg, tspi->dma_control_reg); |
| tegra_spi_dump_regs(tspi); |
| tegra_spi_flush_fifos(tspi); |
| complete(&tspi->xfer_completion); |
| spin_unlock_irqrestore(&tspi->lock, flags); |
| reset_control_assert(tspi->rst); |
| udelay(2); |
| reset_control_deassert(tspi->rst); |
| return IRQ_HANDLED; |
| } |
| |
| if (tspi->cur_direction & DATA_DIR_RX) |
| tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t); |
| |
| if (tspi->cur_direction & DATA_DIR_TX) |
| tspi->cur_pos = tspi->cur_tx_pos; |
| else |
| tspi->cur_pos = tspi->cur_rx_pos; |
| |
| if (tspi->cur_pos == t->len) { |
| complete(&tspi->xfer_completion); |
| goto exit; |
| } |
| |
| /* Continue transfer in current message */ |
| total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, |
| tspi, t); |
| if (total_fifo_words > SPI_FIFO_DEPTH) |
| err = tegra_spi_start_dma_based_transfer(tspi, t); |
| else |
| err = tegra_spi_start_cpu_based_transfer(tspi, t); |
| |
| exit: |
| spin_unlock_irqrestore(&tspi->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data) |
| { |
| struct tegra_spi_data *tspi = context_data; |
| |
| if (!tspi->is_curr_dma_xfer) |
| return handle_cpu_based_xfer(tspi); |
| return handle_dma_based_xfer(tspi); |
| } |
| |
| static irqreturn_t tegra_spi_isr(int irq, void *context_data) |
| { |
| struct tegra_spi_data *tspi = context_data; |
| |
| tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS); |
| if (tspi->cur_direction & DATA_DIR_TX) |
| tspi->tx_status = tspi->status_reg & |
| (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF); |
| |
| if (tspi->cur_direction & DATA_DIR_RX) |
| tspi->rx_status = tspi->status_reg & |
| (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF); |
| tegra_spi_clear_status(tspi); |
| |
| return IRQ_WAKE_THREAD; |
| } |
| |
| static struct tegra_spi_soc_data tegra114_spi_soc_data = { |
| .has_intr_mask_reg = false, |
| }; |
| |
| static struct tegra_spi_soc_data tegra124_spi_soc_data = { |
| .has_intr_mask_reg = false, |
| }; |
| |
| static struct tegra_spi_soc_data tegra210_spi_soc_data = { |
| .has_intr_mask_reg = true, |
| }; |
| |
| static const struct of_device_id tegra_spi_of_match[] = { |
| { |
| .compatible = "nvidia,tegra114-spi", |
| .data = &tegra114_spi_soc_data, |
| }, { |
| .compatible = "nvidia,tegra124-spi", |
| .data = &tegra124_spi_soc_data, |
| }, { |
| .compatible = "nvidia,tegra210-spi", |
| .data = &tegra210_spi_soc_data, |
| }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, tegra_spi_of_match); |
| |
| static int tegra_spi_probe(struct platform_device *pdev) |
| { |
| struct spi_master *master; |
| struct tegra_spi_data *tspi; |
| struct resource *r; |
| int ret, spi_irq; |
| int bus_num; |
| |
| master = spi_alloc_master(&pdev->dev, sizeof(*tspi)); |
| if (!master) { |
| dev_err(&pdev->dev, "master allocation failed\n"); |
| return -ENOMEM; |
| } |
| platform_set_drvdata(pdev, master); |
| tspi = spi_master_get_devdata(master); |
| |
| if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency", |
| &master->max_speed_hz)) |
| master->max_speed_hz = 25000000; /* 25MHz */ |
| |
| /* the spi->mode bits understood by this driver: */ |
| master->use_gpio_descriptors = true; |
| master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST | |
| SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE; |
| master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); |
| master->setup = tegra_spi_setup; |
| master->cleanup = tegra_spi_cleanup; |
| master->transfer_one_message = tegra_spi_transfer_one_message; |
| master->set_cs_timing = tegra_spi_set_hw_cs_timing; |
| master->num_chipselect = MAX_CHIP_SELECT; |
| master->auto_runtime_pm = true; |
| bus_num = of_alias_get_id(pdev->dev.of_node, "spi"); |
| if (bus_num >= 0) |
| master->bus_num = bus_num; |
| |
| tspi->master = master; |
| tspi->dev = &pdev->dev; |
| spin_lock_init(&tspi->lock); |
| |
| tspi->soc_data = of_device_get_match_data(&pdev->dev); |
| if (!tspi->soc_data) { |
| dev_err(&pdev->dev, "unsupported tegra\n"); |
| ret = -ENODEV; |
| goto exit_free_master; |
| } |
| |
| tspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r); |
| if (IS_ERR(tspi->base)) { |
| ret = PTR_ERR(tspi->base); |
| goto exit_free_master; |
| } |
| tspi->phys = r->start; |
| |
| spi_irq = platform_get_irq(pdev, 0); |
| if (spi_irq < 0) { |
| ret = spi_irq; |
| goto exit_free_master; |
| } |
| tspi->irq = spi_irq; |
| |
| tspi->clk = devm_clk_get(&pdev->dev, "spi"); |
| if (IS_ERR(tspi->clk)) { |
| dev_err(&pdev->dev, "can not get clock\n"); |
| ret = PTR_ERR(tspi->clk); |
| goto exit_free_master; |
| } |
| |
| tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi"); |
| if (IS_ERR(tspi->rst)) { |
| dev_err(&pdev->dev, "can not get reset\n"); |
| ret = PTR_ERR(tspi->rst); |
| goto exit_free_master; |
| } |
| |
| tspi->max_buf_size = SPI_FIFO_DEPTH << 2; |
| tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN; |
| |
| ret = tegra_spi_init_dma_param(tspi, true); |
| if (ret < 0) |
| goto exit_free_master; |
| ret = tegra_spi_init_dma_param(tspi, false); |
| if (ret < 0) |
| goto exit_rx_dma_free; |
| tspi->max_buf_size = tspi->dma_buf_size; |
| init_completion(&tspi->tx_dma_complete); |
| init_completion(&tspi->rx_dma_complete); |
| |
| init_completion(&tspi->xfer_completion); |
| |
| pm_runtime_enable(&pdev->dev); |
| if (!pm_runtime_enabled(&pdev->dev)) { |
| ret = tegra_spi_runtime_resume(&pdev->dev); |
| if (ret) |
| goto exit_pm_disable; |
| } |
| |
| ret = pm_runtime_resume_and_get(&pdev->dev); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret); |
| goto exit_pm_disable; |
| } |
| |
| reset_control_assert(tspi->rst); |
| udelay(2); |
| reset_control_deassert(tspi->rst); |
| tspi->def_command1_reg = SPI_M_S; |
| tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); |
| tspi->spi_cs_timing1 = tegra_spi_readl(tspi, SPI_CS_TIMING1); |
| tspi->spi_cs_timing2 = tegra_spi_readl(tspi, SPI_CS_TIMING2); |
| tspi->def_command2_reg = tegra_spi_readl(tspi, SPI_COMMAND2); |
| tspi->last_used_cs = master->num_chipselect + 1; |
| pm_runtime_put(&pdev->dev); |
| ret = request_threaded_irq(tspi->irq, tegra_spi_isr, |
| tegra_spi_isr_thread, IRQF_ONESHOT, |
| dev_name(&pdev->dev), tspi); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n", |
| tspi->irq); |
| goto exit_pm_disable; |
| } |
| |
| master->dev.of_node = pdev->dev.of_node; |
| ret = devm_spi_register_master(&pdev->dev, master); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "can not register to master err %d\n", ret); |
| goto exit_free_irq; |
| } |
| return ret; |
| |
| exit_free_irq: |
| free_irq(spi_irq, tspi); |
| exit_pm_disable: |
| pm_runtime_disable(&pdev->dev); |
| if (!pm_runtime_status_suspended(&pdev->dev)) |
| tegra_spi_runtime_suspend(&pdev->dev); |
| tegra_spi_deinit_dma_param(tspi, false); |
| exit_rx_dma_free: |
| tegra_spi_deinit_dma_param(tspi, true); |
| exit_free_master: |
| spi_master_put(master); |
| return ret; |
| } |
| |
| static void tegra_spi_remove(struct platform_device *pdev) |
| { |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct tegra_spi_data *tspi = spi_master_get_devdata(master); |
| |
| free_irq(tspi->irq, tspi); |
| |
| if (tspi->tx_dma_chan) |
| tegra_spi_deinit_dma_param(tspi, false); |
| |
| if (tspi->rx_dma_chan) |
| tegra_spi_deinit_dma_param(tspi, true); |
| |
| pm_runtime_disable(&pdev->dev); |
| if (!pm_runtime_status_suspended(&pdev->dev)) |
| tegra_spi_runtime_suspend(&pdev->dev); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int tegra_spi_suspend(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| |
| return spi_master_suspend(master); |
| } |
| |
| static int tegra_spi_resume(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct tegra_spi_data *tspi = spi_master_get_devdata(master); |
| int ret; |
| |
| ret = pm_runtime_resume_and_get(dev); |
| if (ret < 0) { |
| dev_err(dev, "pm runtime failed, e = %d\n", ret); |
| return ret; |
| } |
| tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1); |
| tegra_spi_writel(tspi, tspi->def_command2_reg, SPI_COMMAND2); |
| tspi->last_used_cs = master->num_chipselect + 1; |
| pm_runtime_put(dev); |
| |
| return spi_master_resume(master); |
| } |
| #endif |
| |
| static int tegra_spi_runtime_suspend(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct tegra_spi_data *tspi = spi_master_get_devdata(master); |
| |
| /* Flush all write which are in PPSB queue by reading back */ |
| tegra_spi_readl(tspi, SPI_COMMAND1); |
| |
| clk_disable_unprepare(tspi->clk); |
| return 0; |
| } |
| |
| static int tegra_spi_runtime_resume(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct tegra_spi_data *tspi = spi_master_get_devdata(master); |
| int ret; |
| |
| ret = clk_prepare_enable(tspi->clk); |
| if (ret < 0) { |
| dev_err(tspi->dev, "clk_prepare failed: %d\n", ret); |
| return ret; |
| } |
| return 0; |
| } |
| |
| static const struct dev_pm_ops tegra_spi_pm_ops = { |
| SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend, |
| tegra_spi_runtime_resume, NULL) |
| SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume) |
| }; |
| static struct platform_driver tegra_spi_driver = { |
| .driver = { |
| .name = "spi-tegra114", |
| .pm = &tegra_spi_pm_ops, |
| .of_match_table = tegra_spi_of_match, |
| }, |
| .probe = tegra_spi_probe, |
| .remove_new = tegra_spi_remove, |
| }; |
| module_platform_driver(tegra_spi_driver); |
| |
| MODULE_ALIAS("platform:spi-tegra114"); |
| MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver"); |
| MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>"); |
| MODULE_LICENSE("GPL v2"); |