|  | /* | 
|  | * Octeon Watchdog driver | 
|  | * | 
|  | * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks | 
|  | * | 
|  | * Some parts derived from wdt.c | 
|  | * | 
|  | *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>, | 
|  | *						All Rights Reserved. | 
|  | * | 
|  | *	This program is free software; you can redistribute it and/or | 
|  | *	modify it under the terms of the GNU General Public License | 
|  | *	as published by the Free Software Foundation; either version | 
|  | *	2 of the License, or (at your option) any later version. | 
|  | * | 
|  | *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide | 
|  | *	warranty for any of this software. This material is provided | 
|  | *	"AS-IS" and at no charge. | 
|  | * | 
|  | *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk> | 
|  | * | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * | 
|  | * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock. | 
|  | * For most systems this is less than 10 seconds, so to allow for | 
|  | * software to request longer watchdog heartbeats, we maintain software | 
|  | * counters to count multiples of the base rate.  If the system locks | 
|  | * up in such a manner that we can not run the software counters, the | 
|  | * only result is a watchdog reset sooner than was requested.  But | 
|  | * that is OK, because in this case userspace would likely not be able | 
|  | * to do anything anyhow. | 
|  | * | 
|  | * The hardware watchdog interval we call the period.  The OCTEON | 
|  | * watchdog goes through several stages, after the first period an | 
|  | * irq is asserted, then if it is not reset, after the next period NMI | 
|  | * is asserted, then after an additional period a chip wide soft reset. | 
|  | * So for the software counters, we reset watchdog after each period | 
|  | * and decrement the counter.  But for the last two periods we need to | 
|  | * let the watchdog progress to the NMI stage so we disable the irq | 
|  | * and let it proceed.  Once in the NMI, we print the register state | 
|  | * to the serial port and then wait for the reset. | 
|  | * | 
|  | * A watchdog is maintained for each CPU in the system, that way if | 
|  | * one CPU suffers a lockup, we also get a register dump and reset. | 
|  | * The userspace ping resets the watchdog on all CPUs. | 
|  | * | 
|  | * Before userspace opens the watchdog device, we still run the | 
|  | * watchdogs to catch any lockups that may be kernel related. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/miscdevice.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/watchdog.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/irq.h> | 
|  |  | 
|  | #include <asm/mipsregs.h> | 
|  | #include <asm/uasm.h> | 
|  |  | 
|  | #include <asm/octeon/octeon.h> | 
|  |  | 
|  | /* The count needed to achieve timeout_sec. */ | 
|  | static unsigned int timeout_cnt; | 
|  |  | 
|  | /* The maximum period supported. */ | 
|  | static unsigned int max_timeout_sec; | 
|  |  | 
|  | /* The current period.  */ | 
|  | static unsigned int timeout_sec; | 
|  |  | 
|  | /* Set to non-zero when userspace countdown mode active */ | 
|  | static int do_coundown; | 
|  | static unsigned int countdown_reset; | 
|  | static unsigned int per_cpu_countdown[NR_CPUS]; | 
|  |  | 
|  | static cpumask_t irq_enabled_cpus; | 
|  |  | 
|  | #define WD_TIMO 60			/* Default heartbeat = 60 seconds */ | 
|  |  | 
|  | static int heartbeat = WD_TIMO; | 
|  | module_param(heartbeat, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(heartbeat, | 
|  | "Watchdog heartbeat in seconds. (0 < heartbeat, default=" | 
|  | __MODULE_STRING(WD_TIMO) ")"); | 
|  |  | 
|  | static bool nowayout = WATCHDOG_NOWAYOUT; | 
|  | module_param(nowayout, bool, S_IRUGO); | 
|  | MODULE_PARM_DESC(nowayout, | 
|  | "Watchdog cannot be stopped once started (default=" | 
|  | __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); | 
|  |  | 
|  | static unsigned long octeon_wdt_is_open; | 
|  | static char expect_close; | 
|  |  | 
|  | static u32 __initdata nmi_stage1_insns[64]; | 
|  | /* We need one branch and therefore one relocation per target label. */ | 
|  | static struct uasm_label __initdata labels[5]; | 
|  | static struct uasm_reloc __initdata relocs[5]; | 
|  |  | 
|  | enum lable_id { | 
|  | label_enter_bootloader = 1 | 
|  | }; | 
|  |  | 
|  | /* Some CP0 registers */ | 
|  | #define K0		26 | 
|  | #define C0_CVMMEMCTL 11, 7 | 
|  | #define C0_STATUS 12, 0 | 
|  | #define C0_EBASE 15, 1 | 
|  | #define C0_DESAVE 31, 0 | 
|  |  | 
|  | void octeon_wdt_nmi_stage2(void); | 
|  |  | 
|  | static void __init octeon_wdt_build_stage1(void) | 
|  | { | 
|  | int i; | 
|  | int len; | 
|  | u32 *p = nmi_stage1_insns; | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | struct uasm_label *l = labels; | 
|  | struct uasm_reloc *r = relocs; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * For the next few instructions running the debugger may | 
|  | * cause corruption of k0 in the saved registers. Since we're | 
|  | * about to crash, nobody probably cares. | 
|  | * | 
|  | * Save K0 into the debug scratch register | 
|  | */ | 
|  | uasm_i_dmtc0(&p, K0, C0_DESAVE); | 
|  |  | 
|  | uasm_i_mfc0(&p, K0, C0_STATUS); | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | if (octeon_bootloader_entry_addr) | 
|  | uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), | 
|  | label_enter_bootloader); | 
|  | #endif | 
|  | /* Force 64-bit addressing enabled */ | 
|  | uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX); | 
|  | uasm_i_mtc0(&p, K0, C0_STATUS); | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | if (octeon_bootloader_entry_addr) { | 
|  | uasm_i_mfc0(&p, K0, C0_EBASE); | 
|  | /* Coreid number in K0 */ | 
|  | uasm_i_andi(&p, K0, K0, 0xf); | 
|  | /* 8 * coreid in bits 16-31 */ | 
|  | uasm_i_dsll_safe(&p, K0, K0, 3 + 16); | 
|  | uasm_i_ori(&p, K0, K0, 0x8001); | 
|  | uasm_i_dsll_safe(&p, K0, K0, 16); | 
|  | uasm_i_ori(&p, K0, K0, 0x0700); | 
|  | uasm_i_drotr_safe(&p, K0, K0, 32); | 
|  | /* | 
|  | * Should result in: 0x8001,0700,0000,8*coreid which is | 
|  | * CVMX_CIU_WDOGX(coreid) - 0x0500 | 
|  | * | 
|  | * Now ld K0, CVMX_CIU_WDOGX(coreid) | 
|  | */ | 
|  | uasm_i_ld(&p, K0, 0x500, K0); | 
|  | /* | 
|  | * If bit one set handle the NMI as a watchdog event. | 
|  | * otherwise transfer control to bootloader. | 
|  | */ | 
|  | uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader); | 
|  | uasm_i_nop(&p); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Clear Dcache so cvmseg works right. */ | 
|  | uasm_i_cache(&p, 1, 0, 0); | 
|  |  | 
|  | /* Use K0 to do a read/modify/write of CVMMEMCTL */ | 
|  | uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL); | 
|  | /* Clear out the size of CVMSEG	*/ | 
|  | uasm_i_dins(&p, K0, 0, 0, 6); | 
|  | /* Set CVMSEG to its largest value */ | 
|  | uasm_i_ori(&p, K0, K0, 0x1c0 | 54); | 
|  | /* Store the CVMMEMCTL value */ | 
|  | uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL); | 
|  |  | 
|  | /* Load the address of the second stage handler */ | 
|  | UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2); | 
|  | uasm_i_jr(&p, K0); | 
|  | uasm_i_dmfc0(&p, K0, C0_DESAVE); | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | if (octeon_bootloader_entry_addr) { | 
|  | uasm_build_label(&l, p, label_enter_bootloader); | 
|  | /* Jump to the bootloader and restore K0 */ | 
|  | UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr); | 
|  | uasm_i_jr(&p, K0); | 
|  | uasm_i_dmfc0(&p, K0, C0_DESAVE); | 
|  | } | 
|  | #endif | 
|  | uasm_resolve_relocs(relocs, labels); | 
|  |  | 
|  | len = (int)(p - nmi_stage1_insns); | 
|  | pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len); | 
|  |  | 
|  | pr_debug("\t.set push\n"); | 
|  | pr_debug("\t.set noreorder\n"); | 
|  | for (i = 0; i < len; i++) | 
|  | pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]); | 
|  | pr_debug("\t.set pop\n"); | 
|  |  | 
|  | if (len > 32) | 
|  | panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len); | 
|  | } | 
|  |  | 
|  | static int cpu2core(int cpu) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | return cpu_logical_map(cpu); | 
|  | #else | 
|  | return cvmx_get_core_num(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int core2cpu(int coreid) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | return cpu_number_map(coreid); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Poke the watchdog when an interrupt is received | 
|  | * | 
|  | * @cpl: | 
|  | * @dev_id: | 
|  | * | 
|  | * Returns | 
|  | */ | 
|  | static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id) | 
|  | { | 
|  | unsigned int core = cvmx_get_core_num(); | 
|  | int cpu = core2cpu(core); | 
|  |  | 
|  | if (do_coundown) { | 
|  | if (per_cpu_countdown[cpu] > 0) { | 
|  | /* We're alive, poke the watchdog */ | 
|  | cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1); | 
|  | per_cpu_countdown[cpu]--; | 
|  | } else { | 
|  | /* Bad news, you are about to reboot. */ | 
|  | disable_irq_nosync(cpl); | 
|  | cpumask_clear_cpu(cpu, &irq_enabled_cpus); | 
|  | } | 
|  | } else { | 
|  | /* Not open, just ping away... */ | 
|  | cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1); | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* From setup.c */ | 
|  | extern int prom_putchar(char c); | 
|  |  | 
|  | /** | 
|  | * Write a string to the uart | 
|  | * | 
|  | * @str:        String to write | 
|  | */ | 
|  | static void octeon_wdt_write_string(const char *str) | 
|  | { | 
|  | /* Just loop writing one byte at a time */ | 
|  | while (*str) | 
|  | prom_putchar(*str++); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Write a hex number out of the uart | 
|  | * | 
|  | * @value:      Number to display | 
|  | * @digits:     Number of digits to print (1 to 16) | 
|  | */ | 
|  | static void octeon_wdt_write_hex(u64 value, int digits) | 
|  | { | 
|  | int d; | 
|  | int v; | 
|  | for (d = 0; d < digits; d++) { | 
|  | v = (value >> ((digits - d - 1) * 4)) & 0xf; | 
|  | if (v >= 10) | 
|  | prom_putchar('a' + v - 10); | 
|  | else | 
|  | prom_putchar('0' + v); | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *reg_name[] = { | 
|  | "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", | 
|  | "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3", | 
|  | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | 
|  | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra" | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * NMI stage 3 handler. NMIs are handled in the following manner: | 
|  | * 1) The first NMI handler enables CVMSEG and transfers from | 
|  | * the bootbus region into normal memory. It is careful to not | 
|  | * destroy any registers. | 
|  | * 2) The second stage handler uses CVMSEG to save the registers | 
|  | * and create a stack for C code. It then calls the third level | 
|  | * handler with one argument, a pointer to the register values. | 
|  | * 3) The third, and final, level handler is the following C | 
|  | * function that prints out some useful infomration. | 
|  | * | 
|  | * @reg:    Pointer to register state before the NMI | 
|  | */ | 
|  | void octeon_wdt_nmi_stage3(u64 reg[32]) | 
|  | { | 
|  | u64 i; | 
|  |  | 
|  | unsigned int coreid = cvmx_get_core_num(); | 
|  | /* | 
|  | * Save status and cause early to get them before any changes | 
|  | * might happen. | 
|  | */ | 
|  | u64 cp0_cause = read_c0_cause(); | 
|  | u64 cp0_status = read_c0_status(); | 
|  | u64 cp0_error_epc = read_c0_errorepc(); | 
|  | u64 cp0_epc = read_c0_epc(); | 
|  |  | 
|  | /* Delay so output from all cores output is not jumbled together. */ | 
|  | __delay(100000000ull * coreid); | 
|  |  | 
|  | octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x"); | 
|  | octeon_wdt_write_hex(coreid, 1); | 
|  | octeon_wdt_write_string(" ***\r\n"); | 
|  | for (i = 0; i < 32; i++) { | 
|  | octeon_wdt_write_string("\t"); | 
|  | octeon_wdt_write_string(reg_name[i]); | 
|  | octeon_wdt_write_string("\t0x"); | 
|  | octeon_wdt_write_hex(reg[i], 16); | 
|  | if (i & 1) | 
|  | octeon_wdt_write_string("\r\n"); | 
|  | } | 
|  | octeon_wdt_write_string("\terr_epc\t0x"); | 
|  | octeon_wdt_write_hex(cp0_error_epc, 16); | 
|  |  | 
|  | octeon_wdt_write_string("\tepc\t0x"); | 
|  | octeon_wdt_write_hex(cp0_epc, 16); | 
|  | octeon_wdt_write_string("\r\n"); | 
|  |  | 
|  | octeon_wdt_write_string("\tstatus\t0x"); | 
|  | octeon_wdt_write_hex(cp0_status, 16); | 
|  | octeon_wdt_write_string("\tcause\t0x"); | 
|  | octeon_wdt_write_hex(cp0_cause, 16); | 
|  | octeon_wdt_write_string("\r\n"); | 
|  |  | 
|  | octeon_wdt_write_string("\tsum0\t0x"); | 
|  | octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16); | 
|  | octeon_wdt_write_string("\ten0\t0x"); | 
|  | octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16); | 
|  | octeon_wdt_write_string("\r\n"); | 
|  |  | 
|  | octeon_wdt_write_string("*** Chip soft reset soon ***\r\n"); | 
|  | } | 
|  |  | 
|  | static void octeon_wdt_disable_interrupt(int cpu) | 
|  | { | 
|  | unsigned int core; | 
|  | unsigned int irq; | 
|  | union cvmx_ciu_wdogx ciu_wdog; | 
|  |  | 
|  | core = cpu2core(cpu); | 
|  |  | 
|  | irq = OCTEON_IRQ_WDOG0 + core; | 
|  |  | 
|  | /* Poke the watchdog to clear out its state */ | 
|  | cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1); | 
|  |  | 
|  | /* Disable the hardware. */ | 
|  | ciu_wdog.u64 = 0; | 
|  | cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64); | 
|  |  | 
|  | free_irq(irq, octeon_wdt_poke_irq); | 
|  | } | 
|  |  | 
|  | static void octeon_wdt_setup_interrupt(int cpu) | 
|  | { | 
|  | unsigned int core; | 
|  | unsigned int irq; | 
|  | union cvmx_ciu_wdogx ciu_wdog; | 
|  |  | 
|  | core = cpu2core(cpu); | 
|  |  | 
|  | /* Disable it before doing anything with the interrupts. */ | 
|  | ciu_wdog.u64 = 0; | 
|  | cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64); | 
|  |  | 
|  | per_cpu_countdown[cpu] = countdown_reset; | 
|  |  | 
|  | irq = OCTEON_IRQ_WDOG0 + core; | 
|  |  | 
|  | if (request_irq(irq, octeon_wdt_poke_irq, | 
|  | IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq)) | 
|  | panic("octeon_wdt: Couldn't obtain irq %d", irq); | 
|  |  | 
|  | cpumask_set_cpu(cpu, &irq_enabled_cpus); | 
|  |  | 
|  | /* Poke the watchdog to clear out its state */ | 
|  | cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1); | 
|  |  | 
|  | /* Finally enable the watchdog now that all handlers are installed */ | 
|  | ciu_wdog.u64 = 0; | 
|  | ciu_wdog.s.len = timeout_cnt; | 
|  | ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */ | 
|  | cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64); | 
|  | } | 
|  |  | 
|  | static int octeon_wdt_cpu_callback(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | unsigned int cpu = (unsigned long)hcpu; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_DOWN_PREPARE: | 
|  | octeon_wdt_disable_interrupt(cpu); | 
|  | break; | 
|  | case CPU_ONLINE: | 
|  | case CPU_DOWN_FAILED: | 
|  | octeon_wdt_setup_interrupt(cpu); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static void octeon_wdt_ping(void) | 
|  | { | 
|  | int cpu; | 
|  | int coreid; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | coreid = cpu2core(cpu); | 
|  | cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1); | 
|  | per_cpu_countdown[cpu] = countdown_reset; | 
|  | if ((countdown_reset || !do_coundown) && | 
|  | !cpumask_test_cpu(cpu, &irq_enabled_cpus)) { | 
|  | /* We have to enable the irq */ | 
|  | int irq = OCTEON_IRQ_WDOG0 + coreid; | 
|  | enable_irq(irq); | 
|  | cpumask_set_cpu(cpu, &irq_enabled_cpus); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void octeon_wdt_calc_parameters(int t) | 
|  | { | 
|  | unsigned int periods; | 
|  |  | 
|  | timeout_sec = max_timeout_sec; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Find the largest interrupt period, that can evenly divide | 
|  | * the requested heartbeat time. | 
|  | */ | 
|  | while ((t % timeout_sec) != 0) | 
|  | timeout_sec--; | 
|  |  | 
|  | periods = t / timeout_sec; | 
|  |  | 
|  | /* | 
|  | * The last two periods are after the irq is disabled, and | 
|  | * then to the nmi, so we subtract them off. | 
|  | */ | 
|  |  | 
|  | countdown_reset = periods > 2 ? periods - 2 : 0; | 
|  | heartbeat = t; | 
|  | timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8; | 
|  | } | 
|  |  | 
|  | static int octeon_wdt_set_heartbeat(int t) | 
|  | { | 
|  | int cpu; | 
|  | int coreid; | 
|  | union cvmx_ciu_wdogx ciu_wdog; | 
|  |  | 
|  | if (t <= 0) | 
|  | return -1; | 
|  |  | 
|  | octeon_wdt_calc_parameters(t); | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | coreid = cpu2core(cpu); | 
|  | cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1); | 
|  | ciu_wdog.u64 = 0; | 
|  | ciu_wdog.s.len = timeout_cnt; | 
|  | ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */ | 
|  | cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64); | 
|  | cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1); | 
|  | } | 
|  | octeon_wdt_ping(); /* Get the irqs back on. */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	octeon_wdt_write: | 
|  | *	@file: file handle to the watchdog | 
|  | *	@buf: buffer to write (unused as data does not matter here | 
|  | *	@count: count of bytes | 
|  | *	@ppos: pointer to the position to write. No seeks allowed | 
|  | * | 
|  | *	A write to a watchdog device is defined as a keepalive signal. Any | 
|  | *	write of data will do, as we we don't define content meaning. | 
|  | */ | 
|  |  | 
|  | static ssize_t octeon_wdt_write(struct file *file, const char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | if (count) { | 
|  | if (!nowayout) { | 
|  | size_t i; | 
|  |  | 
|  | /* In case it was set long ago */ | 
|  | expect_close = 0; | 
|  |  | 
|  | for (i = 0; i != count; i++) { | 
|  | char c; | 
|  | if (get_user(c, buf + i)) | 
|  | return -EFAULT; | 
|  | if (c == 'V') | 
|  | expect_close = 1; | 
|  | } | 
|  | } | 
|  | octeon_wdt_ping(); | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	octeon_wdt_ioctl: | 
|  | *	@file: file handle to the device | 
|  | *	@cmd: watchdog command | 
|  | *	@arg: argument pointer | 
|  | * | 
|  | *	The watchdog API defines a common set of functions for all | 
|  | *	watchdogs according to their available features. We only | 
|  | *	actually usefully support querying capabilities and setting | 
|  | *	the timeout. | 
|  | */ | 
|  |  | 
|  | static long octeon_wdt_ioctl(struct file *file, unsigned int cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | void __user *argp = (void __user *)arg; | 
|  | int __user *p = argp; | 
|  | int new_heartbeat; | 
|  |  | 
|  | static struct watchdog_info ident = { | 
|  | .options =		WDIOF_SETTIMEOUT| | 
|  | WDIOF_MAGICCLOSE| | 
|  | WDIOF_KEEPALIVEPING, | 
|  | .firmware_version =	1, | 
|  | .identity =		"OCTEON", | 
|  | }; | 
|  |  | 
|  | switch (cmd) { | 
|  | case WDIOC_GETSUPPORT: | 
|  | return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0; | 
|  | case WDIOC_GETSTATUS: | 
|  | case WDIOC_GETBOOTSTATUS: | 
|  | return put_user(0, p); | 
|  | case WDIOC_KEEPALIVE: | 
|  | octeon_wdt_ping(); | 
|  | return 0; | 
|  | case WDIOC_SETTIMEOUT: | 
|  | if (get_user(new_heartbeat, p)) | 
|  | return -EFAULT; | 
|  | if (octeon_wdt_set_heartbeat(new_heartbeat)) | 
|  | return -EINVAL; | 
|  | /* Fall through. */ | 
|  | case WDIOC_GETTIMEOUT: | 
|  | return put_user(heartbeat, p); | 
|  | default: | 
|  | return -ENOTTY; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	octeon_wdt_open: | 
|  | *	@inode: inode of device | 
|  | *	@file: file handle to device | 
|  | * | 
|  | *	The watchdog device has been opened. The watchdog device is single | 
|  | *	open and on opening we do a ping to reset the counters. | 
|  | */ | 
|  |  | 
|  | static int octeon_wdt_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | if (test_and_set_bit(0, &octeon_wdt_is_open)) | 
|  | return -EBUSY; | 
|  | /* | 
|  | *	Activate | 
|  | */ | 
|  | octeon_wdt_ping(); | 
|  | do_coundown = 1; | 
|  | return nonseekable_open(inode, file); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	octeon_wdt_release: | 
|  | *	@inode: inode to board | 
|  | *	@file: file handle to board | 
|  | * | 
|  | *	The watchdog has a configurable API. There is a religious dispute | 
|  | *	between people who want their watchdog to be able to shut down and | 
|  | *	those who want to be sure if the watchdog manager dies the machine | 
|  | *	reboots. In the former case we disable the counters, in the latter | 
|  | *	case you have to open it again very soon. | 
|  | */ | 
|  |  | 
|  | static int octeon_wdt_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | if (expect_close) { | 
|  | do_coundown = 0; | 
|  | octeon_wdt_ping(); | 
|  | } else { | 
|  | pr_crit("WDT device closed unexpectedly.  WDT will not stop!\n"); | 
|  | } | 
|  | clear_bit(0, &octeon_wdt_is_open); | 
|  | expect_close = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct file_operations octeon_wdt_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .llseek		= no_llseek, | 
|  | .write		= octeon_wdt_write, | 
|  | .unlocked_ioctl	= octeon_wdt_ioctl, | 
|  | .open		= octeon_wdt_open, | 
|  | .release	= octeon_wdt_release, | 
|  | }; | 
|  |  | 
|  | static struct miscdevice octeon_wdt_miscdev = { | 
|  | .minor	= WATCHDOG_MINOR, | 
|  | .name	= "watchdog", | 
|  | .fops	= &octeon_wdt_fops, | 
|  | }; | 
|  |  | 
|  | static struct notifier_block octeon_wdt_cpu_notifier = { | 
|  | .notifier_call = octeon_wdt_cpu_callback, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Module/ driver initialization. | 
|  | * | 
|  | * Returns Zero on success | 
|  | */ | 
|  | static int __init octeon_wdt_init(void) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  | int cpu; | 
|  | u64 *ptr; | 
|  |  | 
|  | /* | 
|  | * Watchdog time expiration length = The 16 bits of LEN | 
|  | * represent the most significant bits of a 24 bit decrementer | 
|  | * that decrements every 256 cycles. | 
|  | * | 
|  | * Try for a timeout of 5 sec, if that fails a smaller number | 
|  | * of even seconds, | 
|  | */ | 
|  | max_timeout_sec = 6; | 
|  | do { | 
|  | max_timeout_sec--; | 
|  | timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8; | 
|  | } while (timeout_cnt > 65535); | 
|  |  | 
|  | BUG_ON(timeout_cnt == 0); | 
|  |  | 
|  | octeon_wdt_calc_parameters(heartbeat); | 
|  |  | 
|  | pr_info("Initial granularity %d Sec\n", timeout_sec); | 
|  |  | 
|  | ret = misc_register(&octeon_wdt_miscdev); | 
|  | if (ret) { | 
|  | pr_err("cannot register miscdev on minor=%d (err=%d)\n", | 
|  | WATCHDOG_MINOR, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Build the NMI handler ... */ | 
|  | octeon_wdt_build_stage1(); | 
|  |  | 
|  | /* ... and install it. */ | 
|  | ptr = (u64 *) nmi_stage1_insns; | 
|  | for (i = 0; i < 16; i++) { | 
|  | cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8); | 
|  | cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]); | 
|  | } | 
|  | cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000); | 
|  |  | 
|  | cpumask_clear(&irq_enabled_cpus); | 
|  |  | 
|  | cpu_notifier_register_begin(); | 
|  | for_each_online_cpu(cpu) | 
|  | octeon_wdt_setup_interrupt(cpu); | 
|  |  | 
|  | __register_hotcpu_notifier(&octeon_wdt_cpu_notifier); | 
|  | cpu_notifier_register_done(); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Module / driver shutdown | 
|  | */ | 
|  | static void __exit octeon_wdt_cleanup(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | misc_deregister(&octeon_wdt_miscdev); | 
|  |  | 
|  | cpu_notifier_register_begin(); | 
|  | __unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier); | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | int core = cpu2core(cpu); | 
|  | /* Disable the watchdog */ | 
|  | cvmx_write_csr(CVMX_CIU_WDOGX(core), 0); | 
|  | /* Free the interrupt handler */ | 
|  | free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq); | 
|  | } | 
|  |  | 
|  | cpu_notifier_register_done(); | 
|  |  | 
|  | /* | 
|  | * Disable the boot-bus memory, the code it points to is soon | 
|  | * to go missing. | 
|  | */ | 
|  | cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0); | 
|  | } | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>"); | 
|  | MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver."); | 
|  | module_init(octeon_wdt_init); | 
|  | module_exit(octeon_wdt_cleanup); |