|  | /* | 
|  | * page.c - buffer/page management specific to NILFS | 
|  | * | 
|  | * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | * | 
|  | * Written by Ryusuke Konishi <ryusuke@osrg.net>, | 
|  | *            Seiji Kihara <kihara@osrg.net>. | 
|  | */ | 
|  |  | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include "nilfs.h" | 
|  | #include "page.h" | 
|  | #include "mdt.h" | 
|  |  | 
|  |  | 
|  | #define NILFS_BUFFER_INHERENT_BITS  \ | 
|  | ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \ | 
|  | (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Allocated)) | 
|  |  | 
|  | static struct buffer_head * | 
|  | __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index, | 
|  | int blkbits, unsigned long b_state) | 
|  |  | 
|  | { | 
|  | unsigned long first_block; | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | if (!page_has_buffers(page)) | 
|  | create_empty_buffers(page, 1 << blkbits, b_state); | 
|  |  | 
|  | first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits); | 
|  | bh = nilfs_page_get_nth_block(page, block - first_block); | 
|  |  | 
|  | touch_buffer(bh); | 
|  | wait_on_buffer(bh); | 
|  | return bh; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since the page cache of B-tree node pages or data page cache of pseudo | 
|  | * inodes does not have a valid mapping->host pointer, calling | 
|  | * mark_buffer_dirty() for their buffers causes a NULL pointer dereference; | 
|  | * it calls __mark_inode_dirty(NULL) through __set_page_dirty(). | 
|  | * To avoid this problem, the old style mark_buffer_dirty() is used instead. | 
|  | */ | 
|  | void nilfs_mark_buffer_dirty(struct buffer_head *bh) | 
|  | { | 
|  | if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) | 
|  | __set_page_dirty_nobuffers(bh->b_page); | 
|  | } | 
|  |  | 
|  | struct buffer_head *nilfs_grab_buffer(struct inode *inode, | 
|  | struct address_space *mapping, | 
|  | unsigned long blkoff, | 
|  | unsigned long b_state) | 
|  | { | 
|  | int blkbits = inode->i_blkbits; | 
|  | pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits); | 
|  | struct page *page, *opage; | 
|  | struct buffer_head *bh, *obh; | 
|  |  | 
|  | page = grab_cache_page(mapping, index); | 
|  | if (unlikely(!page)) | 
|  | return NULL; | 
|  |  | 
|  | bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state); | 
|  | if (unlikely(!bh)) { | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | return NULL; | 
|  | } | 
|  | if (!buffer_uptodate(bh) && mapping->assoc_mapping != NULL) { | 
|  | /* | 
|  | * Shadow page cache uses assoc_mapping to point its original | 
|  | * page cache.  The following code tries the original cache | 
|  | * if the given cache is a shadow and it didn't hit. | 
|  | */ | 
|  | opage = find_lock_page(mapping->assoc_mapping, index); | 
|  | if (!opage) | 
|  | return bh; | 
|  |  | 
|  | obh = __nilfs_get_page_block(opage, blkoff, index, blkbits, | 
|  | b_state); | 
|  | if (buffer_uptodate(obh)) { | 
|  | nilfs_copy_buffer(bh, obh); | 
|  | if (buffer_dirty(obh)) { | 
|  | nilfs_mark_buffer_dirty(bh); | 
|  | if (!buffer_nilfs_node(bh) && NILFS_MDT(inode)) | 
|  | nilfs_mdt_mark_dirty(inode); | 
|  | } | 
|  | } | 
|  | brelse(obh); | 
|  | unlock_page(opage); | 
|  | page_cache_release(opage); | 
|  | } | 
|  | return bh; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nilfs_forget_buffer - discard dirty state | 
|  | * @inode: owner inode of the buffer | 
|  | * @bh: buffer head of the buffer to be discarded | 
|  | */ | 
|  | void nilfs_forget_buffer(struct buffer_head *bh) | 
|  | { | 
|  | struct page *page = bh->b_page; | 
|  |  | 
|  | lock_buffer(bh); | 
|  | clear_buffer_nilfs_volatile(bh); | 
|  | clear_buffer_dirty(bh); | 
|  | if (nilfs_page_buffers_clean(page)) | 
|  | __nilfs_clear_page_dirty(page); | 
|  |  | 
|  | clear_buffer_uptodate(bh); | 
|  | clear_buffer_mapped(bh); | 
|  | bh->b_blocknr = -1; | 
|  | ClearPageUptodate(page); | 
|  | ClearPageMappedToDisk(page); | 
|  | unlock_buffer(bh); | 
|  | brelse(bh); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nilfs_copy_buffer -- copy buffer data and flags | 
|  | * @dbh: destination buffer | 
|  | * @sbh: source buffer | 
|  | */ | 
|  | void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh) | 
|  | { | 
|  | void *kaddr0, *kaddr1; | 
|  | unsigned long bits; | 
|  | struct page *spage = sbh->b_page, *dpage = dbh->b_page; | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | kaddr0 = kmap_atomic(spage, KM_USER0); | 
|  | kaddr1 = kmap_atomic(dpage, KM_USER1); | 
|  | memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size); | 
|  | kunmap_atomic(kaddr1, KM_USER1); | 
|  | kunmap_atomic(kaddr0, KM_USER0); | 
|  |  | 
|  | dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS; | 
|  | dbh->b_blocknr = sbh->b_blocknr; | 
|  | dbh->b_bdev = sbh->b_bdev; | 
|  |  | 
|  | bh = dbh; | 
|  | bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped)); | 
|  | while ((bh = bh->b_this_page) != dbh) { | 
|  | lock_buffer(bh); | 
|  | bits &= bh->b_state; | 
|  | unlock_buffer(bh); | 
|  | } | 
|  | if (bits & (1UL << BH_Uptodate)) | 
|  | SetPageUptodate(dpage); | 
|  | else | 
|  | ClearPageUptodate(dpage); | 
|  | if (bits & (1UL << BH_Mapped)) | 
|  | SetPageMappedToDisk(dpage); | 
|  | else | 
|  | ClearPageMappedToDisk(dpage); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nilfs_page_buffers_clean - check if a page has dirty buffers or not. | 
|  | * @page: page to be checked | 
|  | * | 
|  | * nilfs_page_buffers_clean() returns zero if the page has dirty buffers. | 
|  | * Otherwise, it returns non-zero value. | 
|  | */ | 
|  | int nilfs_page_buffers_clean(struct page *page) | 
|  | { | 
|  | struct buffer_head *bh, *head; | 
|  |  | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | if (buffer_dirty(bh)) | 
|  | return 0; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void nilfs_page_bug(struct page *page) | 
|  | { | 
|  | struct address_space *m; | 
|  | unsigned long ino = 0; | 
|  |  | 
|  | if (unlikely(!page)) { | 
|  | printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | m = page->mapping; | 
|  | if (m) { | 
|  | struct inode *inode = NILFS_AS_I(m); | 
|  | if (inode != NULL) | 
|  | ino = inode->i_ino; | 
|  | } | 
|  | printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx " | 
|  | "mapping=%p ino=%lu\n", | 
|  | page, atomic_read(&page->_count), | 
|  | (unsigned long long)page->index, page->flags, m, ino); | 
|  |  | 
|  | if (page_has_buffers(page)) { | 
|  | struct buffer_head *bh, *head; | 
|  | int i = 0; | 
|  |  | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | printk(KERN_CRIT | 
|  | " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n", | 
|  | i++, bh, atomic_read(&bh->b_count), | 
|  | (unsigned long long)bh->b_blocknr, bh->b_state); | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nilfs_alloc_private_page - allocate a private page with buffer heads | 
|  | * | 
|  | * Return Value: On success, a pointer to the allocated page is returned. | 
|  | * On error, NULL is returned. | 
|  | */ | 
|  | struct page *nilfs_alloc_private_page(struct block_device *bdev, int size, | 
|  | unsigned long state) | 
|  | { | 
|  | struct buffer_head *bh, *head, *tail; | 
|  | struct page *page; | 
|  |  | 
|  | page = alloc_page(GFP_NOFS); /* page_count of the returned page is 1 */ | 
|  | if (unlikely(!page)) | 
|  | return NULL; | 
|  |  | 
|  | lock_page(page); | 
|  | head = alloc_page_buffers(page, size, 0); | 
|  | if (unlikely(!head)) { | 
|  | unlock_page(page); | 
|  | __free_page(page); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bh = head; | 
|  | do { | 
|  | bh->b_state = (1UL << BH_NILFS_Allocated) | state; | 
|  | tail = bh; | 
|  | bh->b_bdev = bdev; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh); | 
|  |  | 
|  | tail->b_this_page = head; | 
|  | attach_page_buffers(page, head); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | void nilfs_free_private_page(struct page *page) | 
|  | { | 
|  | BUG_ON(!PageLocked(page)); | 
|  | BUG_ON(page->mapping); | 
|  |  | 
|  | if (page_has_buffers(page) && !try_to_free_buffers(page)) | 
|  | NILFS_PAGE_BUG(page, "failed to free page"); | 
|  |  | 
|  | unlock_page(page); | 
|  | __free_page(page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nilfs_copy_page -- copy the page with buffers | 
|  | * @dst: destination page | 
|  | * @src: source page | 
|  | * @copy_dirty: flag whether to copy dirty states on the page's buffer heads. | 
|  | * | 
|  | * This fuction is for both data pages and btnode pages.  The dirty flag | 
|  | * should be treated by caller.  The page must not be under i/o. | 
|  | * Both src and dst page must be locked | 
|  | */ | 
|  | static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty) | 
|  | { | 
|  | struct buffer_head *dbh, *dbufs, *sbh, *sbufs; | 
|  | unsigned long mask = NILFS_BUFFER_INHERENT_BITS; | 
|  |  | 
|  | BUG_ON(PageWriteback(dst)); | 
|  |  | 
|  | sbh = sbufs = page_buffers(src); | 
|  | if (!page_has_buffers(dst)) | 
|  | create_empty_buffers(dst, sbh->b_size, 0); | 
|  |  | 
|  | if (copy_dirty) | 
|  | mask |= (1UL << BH_Dirty); | 
|  |  | 
|  | dbh = dbufs = page_buffers(dst); | 
|  | do { | 
|  | lock_buffer(sbh); | 
|  | lock_buffer(dbh); | 
|  | dbh->b_state = sbh->b_state & mask; | 
|  | dbh->b_blocknr = sbh->b_blocknr; | 
|  | dbh->b_bdev = sbh->b_bdev; | 
|  | sbh = sbh->b_this_page; | 
|  | dbh = dbh->b_this_page; | 
|  | } while (dbh != dbufs); | 
|  |  | 
|  | copy_highpage(dst, src); | 
|  |  | 
|  | if (PageUptodate(src) && !PageUptodate(dst)) | 
|  | SetPageUptodate(dst); | 
|  | else if (!PageUptodate(src) && PageUptodate(dst)) | 
|  | ClearPageUptodate(dst); | 
|  | if (PageMappedToDisk(src) && !PageMappedToDisk(dst)) | 
|  | SetPageMappedToDisk(dst); | 
|  | else if (!PageMappedToDisk(src) && PageMappedToDisk(dst)) | 
|  | ClearPageMappedToDisk(dst); | 
|  |  | 
|  | do { | 
|  | unlock_buffer(sbh); | 
|  | unlock_buffer(dbh); | 
|  | sbh = sbh->b_this_page; | 
|  | dbh = dbh->b_this_page; | 
|  | } while (dbh != dbufs); | 
|  | } | 
|  |  | 
|  | int nilfs_copy_dirty_pages(struct address_space *dmap, | 
|  | struct address_space *smap) | 
|  | { | 
|  | struct pagevec pvec; | 
|  | unsigned int i; | 
|  | pgoff_t index = 0; | 
|  | int err = 0; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | repeat: | 
|  | if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY, | 
|  | PAGEVEC_SIZE)) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i], *dpage; | 
|  |  | 
|  | lock_page(page); | 
|  | if (unlikely(!PageDirty(page))) | 
|  | NILFS_PAGE_BUG(page, "inconsistent dirty state"); | 
|  |  | 
|  | dpage = grab_cache_page(dmap, page->index); | 
|  | if (unlikely(!dpage)) { | 
|  | /* No empty page is added to the page cache */ | 
|  | err = -ENOMEM; | 
|  | unlock_page(page); | 
|  | break; | 
|  | } | 
|  | if (unlikely(!page_has_buffers(page))) | 
|  | NILFS_PAGE_BUG(page, | 
|  | "found empty page in dat page cache"); | 
|  |  | 
|  | nilfs_copy_page(dpage, page, 1); | 
|  | __set_page_dirty_nobuffers(dpage); | 
|  |  | 
|  | unlock_page(dpage); | 
|  | page_cache_release(dpage); | 
|  | unlock_page(page); | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  |  | 
|  | if (likely(!err)) | 
|  | goto repeat; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nilfs_copy_back_pages -- copy back pages to orignal cache from shadow cache | 
|  | * @dmap: destination page cache | 
|  | * @smap: source page cache | 
|  | * | 
|  | * No pages must no be added to the cache during this process. | 
|  | * This must be ensured by the caller. | 
|  | */ | 
|  | void nilfs_copy_back_pages(struct address_space *dmap, | 
|  | struct address_space *smap) | 
|  | { | 
|  | struct pagevec pvec; | 
|  | unsigned int i, n; | 
|  | pgoff_t index = 0; | 
|  | int err; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | repeat: | 
|  | n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE); | 
|  | if (!n) | 
|  | return; | 
|  | index = pvec.pages[n - 1]->index + 1; | 
|  |  | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i], *dpage; | 
|  | pgoff_t offset = page->index; | 
|  |  | 
|  | lock_page(page); | 
|  | dpage = find_lock_page(dmap, offset); | 
|  | if (dpage) { | 
|  | /* override existing page on the destination cache */ | 
|  | WARN_ON(PageDirty(dpage)); | 
|  | nilfs_copy_page(dpage, page, 0); | 
|  | unlock_page(dpage); | 
|  | page_cache_release(dpage); | 
|  | } else { | 
|  | struct page *page2; | 
|  |  | 
|  | /* move the page to the destination cache */ | 
|  | spin_lock_irq(&smap->tree_lock); | 
|  | page2 = radix_tree_delete(&smap->page_tree, offset); | 
|  | WARN_ON(page2 != page); | 
|  |  | 
|  | smap->nrpages--; | 
|  | spin_unlock_irq(&smap->tree_lock); | 
|  |  | 
|  | spin_lock_irq(&dmap->tree_lock); | 
|  | err = radix_tree_insert(&dmap->page_tree, offset, page); | 
|  | if (unlikely(err < 0)) { | 
|  | WARN_ON(err == -EEXIST); | 
|  | page->mapping = NULL; | 
|  | page_cache_release(page); /* for cache */ | 
|  | } else { | 
|  | page->mapping = dmap; | 
|  | dmap->nrpages++; | 
|  | if (PageDirty(page)) | 
|  | radix_tree_tag_set(&dmap->page_tree, | 
|  | offset, | 
|  | PAGECACHE_TAG_DIRTY); | 
|  | } | 
|  | spin_unlock_irq(&dmap->tree_lock); | 
|  | } | 
|  | unlock_page(page); | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  |  | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | void nilfs_clear_dirty_pages(struct address_space *mapping) | 
|  | { | 
|  | struct pagevec pvec; | 
|  | unsigned int i; | 
|  | pgoff_t index = 0; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  |  | 
|  | while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY, | 
|  | PAGEVEC_SIZE)) { | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  | struct buffer_head *bh, *head; | 
|  |  | 
|  | lock_page(page); | 
|  | ClearPageUptodate(page); | 
|  | ClearPageMappedToDisk(page); | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | lock_buffer(bh); | 
|  | clear_buffer_dirty(bh); | 
|  | clear_buffer_nilfs_volatile(bh); | 
|  | clear_buffer_uptodate(bh); | 
|  | clear_buffer_mapped(bh); | 
|  | unlock_buffer(bh); | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  |  | 
|  | __nilfs_clear_page_dirty(page); | 
|  | unlock_page(page); | 
|  | } | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned nilfs_page_count_clean_buffers(struct page *page, | 
|  | unsigned from, unsigned to) | 
|  | { | 
|  | unsigned block_start, block_end; | 
|  | struct buffer_head *bh, *head; | 
|  | unsigned nc = 0; | 
|  |  | 
|  | for (bh = head = page_buffers(page), block_start = 0; | 
|  | bh != head || !block_start; | 
|  | block_start = block_end, bh = bh->b_this_page) { | 
|  | block_end = block_start + bh->b_size; | 
|  | if (block_end > from && block_start < to && !buffer_dirty(bh)) | 
|  | nc++; | 
|  | } | 
|  | return nc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NILFS2 needs clear_page_dirty() in the following two cases: | 
|  | * | 
|  | * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears | 
|  | *    page dirty flags when it copies back pages from the shadow cache | 
|  | *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache | 
|  | *    (dat->{i_mapping,i_btnode_cache}). | 
|  | * | 
|  | * 2) Some B-tree operations like insertion or deletion may dispose buffers | 
|  | *    in dirty state, and this needs to cancel the dirty state of their pages. | 
|  | */ | 
|  | int __nilfs_clear_page_dirty(struct page *page) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  |  | 
|  | if (mapping) { | 
|  | spin_lock_irq(&mapping->tree_lock); | 
|  | if (test_bit(PG_dirty, &page->flags)) { | 
|  | radix_tree_tag_clear(&mapping->page_tree, | 
|  | page_index(page), | 
|  | PAGECACHE_TAG_DIRTY); | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | return clear_page_dirty_for_io(page); | 
|  | } | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | return 0; | 
|  | } | 
|  | return TestClearPageDirty(page); | 
|  | } |