|  | /* | 
|  | * Copyright (c) 2006 Oracle.  All rights reserved. | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the | 
|  | * OpenIB.org BSD license below: | 
|  | * | 
|  | *     Redistribution and use in source and binary forms, with or | 
|  | *     without modification, are permitted provided that the following | 
|  | *     conditions are met: | 
|  | * | 
|  | *      - Redistributions of source code must retain the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer. | 
|  | * | 
|  | *      - Redistributions in binary form must reproduce the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer in the documentation and/or other materials | 
|  | *        provided with the distribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | * | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/llist.h> | 
|  |  | 
|  | #include "rds.h" | 
|  | #include "ib.h" | 
|  |  | 
|  | static DEFINE_PER_CPU(unsigned long, clean_list_grace); | 
|  | #define CLEAN_LIST_BUSY_BIT 0 | 
|  |  | 
|  | /* | 
|  | * This is stored as mr->r_trans_private. | 
|  | */ | 
|  | struct rds_ib_mr { | 
|  | struct rds_ib_device	*device; | 
|  | struct rds_ib_mr_pool	*pool; | 
|  | struct ib_fmr		*fmr; | 
|  |  | 
|  | struct llist_node	llnode; | 
|  |  | 
|  | /* unmap_list is for freeing */ | 
|  | struct list_head	unmap_list; | 
|  | unsigned int		remap_count; | 
|  |  | 
|  | struct scatterlist	*sg; | 
|  | unsigned int		sg_len; | 
|  | u64			*dma; | 
|  | int			sg_dma_len; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Our own little FMR pool | 
|  | */ | 
|  | struct rds_ib_mr_pool { | 
|  | struct mutex		flush_lock;		/* serialize fmr invalidate */ | 
|  | struct delayed_work	flush_worker;		/* flush worker */ | 
|  |  | 
|  | atomic_t		item_count;		/* total # of MRs */ | 
|  | atomic_t		dirty_count;		/* # dirty of MRs */ | 
|  |  | 
|  | struct llist_head	drop_list;		/* MRs that have reached their max_maps limit */ | 
|  | struct llist_head	free_list;		/* unused MRs */ | 
|  | struct llist_head	clean_list;		/* global unused & unamapped MRs */ | 
|  | wait_queue_head_t	flush_wait; | 
|  |  | 
|  | atomic_t		free_pinned;		/* memory pinned by free MRs */ | 
|  | unsigned long		max_items; | 
|  | unsigned long		max_items_soft; | 
|  | unsigned long		max_free_pinned; | 
|  | struct ib_fmr_attr	fmr_attr; | 
|  | }; | 
|  |  | 
|  | static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **); | 
|  | static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr); | 
|  | static void rds_ib_mr_pool_flush_worker(struct work_struct *work); | 
|  |  | 
|  | static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr) | 
|  | { | 
|  | struct rds_ib_device *rds_ibdev; | 
|  | struct rds_ib_ipaddr *i_ipaddr; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) { | 
|  | list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { | 
|  | if (i_ipaddr->ipaddr == ipaddr) { | 
|  | atomic_inc(&rds_ibdev->refcount); | 
|  | rcu_read_unlock(); | 
|  | return rds_ibdev; | 
|  | } | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) | 
|  | { | 
|  | struct rds_ib_ipaddr *i_ipaddr; | 
|  |  | 
|  | i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL); | 
|  | if (!i_ipaddr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | i_ipaddr->ipaddr = ipaddr; | 
|  |  | 
|  | spin_lock_irq(&rds_ibdev->spinlock); | 
|  | list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list); | 
|  | spin_unlock_irq(&rds_ibdev->spinlock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) | 
|  | { | 
|  | struct rds_ib_ipaddr *i_ipaddr; | 
|  | struct rds_ib_ipaddr *to_free = NULL; | 
|  |  | 
|  |  | 
|  | spin_lock_irq(&rds_ibdev->spinlock); | 
|  | list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { | 
|  | if (i_ipaddr->ipaddr == ipaddr) { | 
|  | list_del_rcu(&i_ipaddr->list); | 
|  | to_free = i_ipaddr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&rds_ibdev->spinlock); | 
|  |  | 
|  | if (to_free) { | 
|  | synchronize_rcu(); | 
|  | kfree(to_free); | 
|  | } | 
|  | } | 
|  |  | 
|  | int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) | 
|  | { | 
|  | struct rds_ib_device *rds_ibdev_old; | 
|  |  | 
|  | rds_ibdev_old = rds_ib_get_device(ipaddr); | 
|  | if (rds_ibdev_old) { | 
|  | rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr); | 
|  | rds_ib_dev_put(rds_ibdev_old); | 
|  | } | 
|  |  | 
|  | return rds_ib_add_ipaddr(rds_ibdev, ipaddr); | 
|  | } | 
|  |  | 
|  | void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) | 
|  | { | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  |  | 
|  | /* conn was previously on the nodev_conns_list */ | 
|  | spin_lock_irq(&ib_nodev_conns_lock); | 
|  | BUG_ON(list_empty(&ib_nodev_conns)); | 
|  | BUG_ON(list_empty(&ic->ib_node)); | 
|  | list_del(&ic->ib_node); | 
|  |  | 
|  | spin_lock(&rds_ibdev->spinlock); | 
|  | list_add_tail(&ic->ib_node, &rds_ibdev->conn_list); | 
|  | spin_unlock(&rds_ibdev->spinlock); | 
|  | spin_unlock_irq(&ib_nodev_conns_lock); | 
|  |  | 
|  | ic->rds_ibdev = rds_ibdev; | 
|  | atomic_inc(&rds_ibdev->refcount); | 
|  | } | 
|  |  | 
|  | void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) | 
|  | { | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  |  | 
|  | /* place conn on nodev_conns_list */ | 
|  | spin_lock(&ib_nodev_conns_lock); | 
|  |  | 
|  | spin_lock_irq(&rds_ibdev->spinlock); | 
|  | BUG_ON(list_empty(&ic->ib_node)); | 
|  | list_del(&ic->ib_node); | 
|  | spin_unlock_irq(&rds_ibdev->spinlock); | 
|  |  | 
|  | list_add_tail(&ic->ib_node, &ib_nodev_conns); | 
|  |  | 
|  | spin_unlock(&ib_nodev_conns_lock); | 
|  |  | 
|  | ic->rds_ibdev = NULL; | 
|  | rds_ib_dev_put(rds_ibdev); | 
|  | } | 
|  |  | 
|  | void rds_ib_destroy_nodev_conns(void) | 
|  | { | 
|  | struct rds_ib_connection *ic, *_ic; | 
|  | LIST_HEAD(tmp_list); | 
|  |  | 
|  | /* avoid calling conn_destroy with irqs off */ | 
|  | spin_lock_irq(&ib_nodev_conns_lock); | 
|  | list_splice(&ib_nodev_conns, &tmp_list); | 
|  | spin_unlock_irq(&ib_nodev_conns_lock); | 
|  |  | 
|  | list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node) | 
|  | rds_conn_destroy(ic->conn); | 
|  | } | 
|  |  | 
|  | struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev) | 
|  | { | 
|  | struct rds_ib_mr_pool *pool; | 
|  |  | 
|  | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
|  | if (!pool) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | init_llist_head(&pool->free_list); | 
|  | init_llist_head(&pool->drop_list); | 
|  | init_llist_head(&pool->clean_list); | 
|  | mutex_init(&pool->flush_lock); | 
|  | init_waitqueue_head(&pool->flush_wait); | 
|  | INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker); | 
|  |  | 
|  | pool->fmr_attr.max_pages = fmr_message_size; | 
|  | pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps; | 
|  | pool->fmr_attr.page_shift = PAGE_SHIFT; | 
|  | pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4; | 
|  |  | 
|  | /* We never allow more than max_items MRs to be allocated. | 
|  | * When we exceed more than max_items_soft, we start freeing | 
|  | * items more aggressively. | 
|  | * Make sure that max_items > max_items_soft > max_items / 2 | 
|  | */ | 
|  | pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4; | 
|  | pool->max_items = rds_ibdev->max_fmrs; | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo) | 
|  | { | 
|  | struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; | 
|  |  | 
|  | iinfo->rdma_mr_max = pool->max_items; | 
|  | iinfo->rdma_mr_size = pool->fmr_attr.max_pages; | 
|  | } | 
|  |  | 
|  | void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool) | 
|  | { | 
|  | cancel_delayed_work_sync(&pool->flush_worker); | 
|  | rds_ib_flush_mr_pool(pool, 1, NULL); | 
|  | WARN_ON(atomic_read(&pool->item_count)); | 
|  | WARN_ON(atomic_read(&pool->free_pinned)); | 
|  | kfree(pool); | 
|  | } | 
|  |  | 
|  | static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool) | 
|  | { | 
|  | struct rds_ib_mr *ibmr = NULL; | 
|  | struct llist_node *ret; | 
|  | unsigned long *flag; | 
|  |  | 
|  | preempt_disable(); | 
|  | flag = &__get_cpu_var(clean_list_grace); | 
|  | set_bit(CLEAN_LIST_BUSY_BIT, flag); | 
|  | ret = llist_del_first(&pool->clean_list); | 
|  | if (ret) | 
|  | ibmr = llist_entry(ret, struct rds_ib_mr, llnode); | 
|  |  | 
|  | clear_bit(CLEAN_LIST_BUSY_BIT, flag); | 
|  | preempt_enable(); | 
|  | return ibmr; | 
|  | } | 
|  |  | 
|  | static inline void wait_clean_list_grace(void) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long *flag; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | flag = &per_cpu(clean_list_grace, cpu); | 
|  | while (test_bit(CLEAN_LIST_BUSY_BIT, flag)) | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev) | 
|  | { | 
|  | struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; | 
|  | struct rds_ib_mr *ibmr = NULL; | 
|  | int err = 0, iter = 0; | 
|  |  | 
|  | if (atomic_read(&pool->dirty_count) >= pool->max_items / 10) | 
|  | schedule_delayed_work(&pool->flush_worker, 10); | 
|  |  | 
|  | while (1) { | 
|  | ibmr = rds_ib_reuse_fmr(pool); | 
|  | if (ibmr) | 
|  | return ibmr; | 
|  |  | 
|  | /* No clean MRs - now we have the choice of either | 
|  | * allocating a fresh MR up to the limit imposed by the | 
|  | * driver, or flush any dirty unused MRs. | 
|  | * We try to avoid stalling in the send path if possible, | 
|  | * so we allocate as long as we're allowed to. | 
|  | * | 
|  | * We're fussy with enforcing the FMR limit, though. If the driver | 
|  | * tells us we can't use more than N fmrs, we shouldn't start | 
|  | * arguing with it */ | 
|  | if (atomic_inc_return(&pool->item_count) <= pool->max_items) | 
|  | break; | 
|  |  | 
|  | atomic_dec(&pool->item_count); | 
|  |  | 
|  | if (++iter > 2) { | 
|  | rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted); | 
|  | return ERR_PTR(-EAGAIN); | 
|  | } | 
|  |  | 
|  | /* We do have some empty MRs. Flush them out. */ | 
|  | rds_ib_stats_inc(s_ib_rdma_mr_pool_wait); | 
|  | rds_ib_flush_mr_pool(pool, 0, &ibmr); | 
|  | if (ibmr) | 
|  | return ibmr; | 
|  | } | 
|  |  | 
|  | ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev)); | 
|  | if (!ibmr) { | 
|  | err = -ENOMEM; | 
|  | goto out_no_cigar; | 
|  | } | 
|  |  | 
|  | memset(ibmr, 0, sizeof(*ibmr)); | 
|  |  | 
|  | ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd, | 
|  | (IB_ACCESS_LOCAL_WRITE | | 
|  | IB_ACCESS_REMOTE_READ | | 
|  | IB_ACCESS_REMOTE_WRITE| | 
|  | IB_ACCESS_REMOTE_ATOMIC), | 
|  | &pool->fmr_attr); | 
|  | if (IS_ERR(ibmr->fmr)) { | 
|  | err = PTR_ERR(ibmr->fmr); | 
|  | ibmr->fmr = NULL; | 
|  | printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err); | 
|  | goto out_no_cigar; | 
|  | } | 
|  |  | 
|  | rds_ib_stats_inc(s_ib_rdma_mr_alloc); | 
|  | return ibmr; | 
|  |  | 
|  | out_no_cigar: | 
|  | if (ibmr) { | 
|  | if (ibmr->fmr) | 
|  | ib_dealloc_fmr(ibmr->fmr); | 
|  | kfree(ibmr); | 
|  | } | 
|  | atomic_dec(&pool->item_count); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr, | 
|  | struct scatterlist *sg, unsigned int nents) | 
|  | { | 
|  | struct ib_device *dev = rds_ibdev->dev; | 
|  | struct scatterlist *scat = sg; | 
|  | u64 io_addr = 0; | 
|  | u64 *dma_pages; | 
|  | u32 len; | 
|  | int page_cnt, sg_dma_len; | 
|  | int i, j; | 
|  | int ret; | 
|  |  | 
|  | sg_dma_len = ib_dma_map_sg(dev, sg, nents, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (unlikely(!sg_dma_len)) { | 
|  | printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | len = 0; | 
|  | page_cnt = 0; | 
|  |  | 
|  | for (i = 0; i < sg_dma_len; ++i) { | 
|  | unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]); | 
|  | u64 dma_addr = ib_sg_dma_address(dev, &scat[i]); | 
|  |  | 
|  | if (dma_addr & ~PAGE_MASK) { | 
|  | if (i > 0) | 
|  | return -EINVAL; | 
|  | else | 
|  | ++page_cnt; | 
|  | } | 
|  | if ((dma_addr + dma_len) & ~PAGE_MASK) { | 
|  | if (i < sg_dma_len - 1) | 
|  | return -EINVAL; | 
|  | else | 
|  | ++page_cnt; | 
|  | } | 
|  |  | 
|  | len += dma_len; | 
|  | } | 
|  |  | 
|  | page_cnt += len >> PAGE_SHIFT; | 
|  | if (page_cnt > fmr_message_size) | 
|  | return -EINVAL; | 
|  |  | 
|  | dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC, | 
|  | rdsibdev_to_node(rds_ibdev)); | 
|  | if (!dma_pages) | 
|  | return -ENOMEM; | 
|  |  | 
|  | page_cnt = 0; | 
|  | for (i = 0; i < sg_dma_len; ++i) { | 
|  | unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]); | 
|  | u64 dma_addr = ib_sg_dma_address(dev, &scat[i]); | 
|  |  | 
|  | for (j = 0; j < dma_len; j += PAGE_SIZE) | 
|  | dma_pages[page_cnt++] = | 
|  | (dma_addr & PAGE_MASK) + j; | 
|  | } | 
|  |  | 
|  | ret = ib_map_phys_fmr(ibmr->fmr, | 
|  | dma_pages, page_cnt, io_addr); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* Success - we successfully remapped the MR, so we can | 
|  | * safely tear down the old mapping. */ | 
|  | rds_ib_teardown_mr(ibmr); | 
|  |  | 
|  | ibmr->sg = scat; | 
|  | ibmr->sg_len = nents; | 
|  | ibmr->sg_dma_len = sg_dma_len; | 
|  | ibmr->remap_count++; | 
|  |  | 
|  | rds_ib_stats_inc(s_ib_rdma_mr_used); | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | kfree(dma_pages); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void rds_ib_sync_mr(void *trans_private, int direction) | 
|  | { | 
|  | struct rds_ib_mr *ibmr = trans_private; | 
|  | struct rds_ib_device *rds_ibdev = ibmr->device; | 
|  |  | 
|  | switch (direction) { | 
|  | case DMA_FROM_DEVICE: | 
|  | ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg, | 
|  | ibmr->sg_dma_len, DMA_BIDIRECTIONAL); | 
|  | break; | 
|  | case DMA_TO_DEVICE: | 
|  | ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg, | 
|  | ibmr->sg_dma_len, DMA_BIDIRECTIONAL); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr) | 
|  | { | 
|  | struct rds_ib_device *rds_ibdev = ibmr->device; | 
|  |  | 
|  | if (ibmr->sg_dma_len) { | 
|  | ib_dma_unmap_sg(rds_ibdev->dev, | 
|  | ibmr->sg, ibmr->sg_len, | 
|  | DMA_BIDIRECTIONAL); | 
|  | ibmr->sg_dma_len = 0; | 
|  | } | 
|  |  | 
|  | /* Release the s/g list */ | 
|  | if (ibmr->sg_len) { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < ibmr->sg_len; ++i) { | 
|  | struct page *page = sg_page(&ibmr->sg[i]); | 
|  |  | 
|  | /* FIXME we need a way to tell a r/w MR | 
|  | * from a r/o MR */ | 
|  | BUG_ON(irqs_disabled()); | 
|  | set_page_dirty(page); | 
|  | put_page(page); | 
|  | } | 
|  | kfree(ibmr->sg); | 
|  |  | 
|  | ibmr->sg = NULL; | 
|  | ibmr->sg_len = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr) | 
|  | { | 
|  | unsigned int pinned = ibmr->sg_len; | 
|  |  | 
|  | __rds_ib_teardown_mr(ibmr); | 
|  | if (pinned) { | 
|  | struct rds_ib_device *rds_ibdev = ibmr->device; | 
|  | struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; | 
|  |  | 
|  | atomic_sub(pinned, &pool->free_pinned); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all) | 
|  | { | 
|  | unsigned int item_count; | 
|  |  | 
|  | item_count = atomic_read(&pool->item_count); | 
|  | if (free_all) | 
|  | return item_count; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * given an llist of mrs, put them all into the list_head for more processing | 
|  | */ | 
|  | static void llist_append_to_list(struct llist_head *llist, struct list_head *list) | 
|  | { | 
|  | struct rds_ib_mr *ibmr; | 
|  | struct llist_node *node; | 
|  | struct llist_node *next; | 
|  |  | 
|  | node = llist_del_all(llist); | 
|  | while (node) { | 
|  | next = node->next; | 
|  | ibmr = llist_entry(node, struct rds_ib_mr, llnode); | 
|  | list_add_tail(&ibmr->unmap_list, list); | 
|  | node = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this takes a list head of mrs and turns it into linked llist nodes | 
|  | * of clusters.  Each cluster has linked llist nodes of | 
|  | * MR_CLUSTER_SIZE mrs that are ready for reuse. | 
|  | */ | 
|  | static void list_to_llist_nodes(struct rds_ib_mr_pool *pool, | 
|  | struct list_head *list, | 
|  | struct llist_node **nodes_head, | 
|  | struct llist_node **nodes_tail) | 
|  | { | 
|  | struct rds_ib_mr *ibmr; | 
|  | struct llist_node *cur = NULL; | 
|  | struct llist_node **next = nodes_head; | 
|  |  | 
|  | list_for_each_entry(ibmr, list, unmap_list) { | 
|  | cur = &ibmr->llnode; | 
|  | *next = cur; | 
|  | next = &cur->next; | 
|  | } | 
|  | *next = NULL; | 
|  | *nodes_tail = cur; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush our pool of MRs. | 
|  | * At a minimum, all currently unused MRs are unmapped. | 
|  | * If the number of MRs allocated exceeds the limit, we also try | 
|  | * to free as many MRs as needed to get back to this limit. | 
|  | */ | 
|  | static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, | 
|  | int free_all, struct rds_ib_mr **ibmr_ret) | 
|  | { | 
|  | struct rds_ib_mr *ibmr, *next; | 
|  | struct llist_node *clean_nodes; | 
|  | struct llist_node *clean_tail; | 
|  | LIST_HEAD(unmap_list); | 
|  | LIST_HEAD(fmr_list); | 
|  | unsigned long unpinned = 0; | 
|  | unsigned int nfreed = 0, ncleaned = 0, free_goal; | 
|  | int ret = 0; | 
|  |  | 
|  | rds_ib_stats_inc(s_ib_rdma_mr_pool_flush); | 
|  |  | 
|  | if (ibmr_ret) { | 
|  | DEFINE_WAIT(wait); | 
|  | while(!mutex_trylock(&pool->flush_lock)) { | 
|  | ibmr = rds_ib_reuse_fmr(pool); | 
|  | if (ibmr) { | 
|  | *ibmr_ret = ibmr; | 
|  | finish_wait(&pool->flush_wait, &wait); | 
|  | goto out_nolock; | 
|  | } | 
|  |  | 
|  | prepare_to_wait(&pool->flush_wait, &wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | if (llist_empty(&pool->clean_list)) | 
|  | schedule(); | 
|  |  | 
|  | ibmr = rds_ib_reuse_fmr(pool); | 
|  | if (ibmr) { | 
|  | *ibmr_ret = ibmr; | 
|  | finish_wait(&pool->flush_wait, &wait); | 
|  | goto out_nolock; | 
|  | } | 
|  | } | 
|  | finish_wait(&pool->flush_wait, &wait); | 
|  | } else | 
|  | mutex_lock(&pool->flush_lock); | 
|  |  | 
|  | if (ibmr_ret) { | 
|  | ibmr = rds_ib_reuse_fmr(pool); | 
|  | if (ibmr) { | 
|  | *ibmr_ret = ibmr; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get the list of all MRs to be dropped. Ordering matters - | 
|  | * we want to put drop_list ahead of free_list. | 
|  | */ | 
|  | llist_append_to_list(&pool->drop_list, &unmap_list); | 
|  | llist_append_to_list(&pool->free_list, &unmap_list); | 
|  | if (free_all) | 
|  | llist_append_to_list(&pool->clean_list, &unmap_list); | 
|  |  | 
|  | free_goal = rds_ib_flush_goal(pool, free_all); | 
|  |  | 
|  | if (list_empty(&unmap_list)) | 
|  | goto out; | 
|  |  | 
|  | /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */ | 
|  | list_for_each_entry(ibmr, &unmap_list, unmap_list) | 
|  | list_add(&ibmr->fmr->list, &fmr_list); | 
|  |  | 
|  | ret = ib_unmap_fmr(&fmr_list); | 
|  | if (ret) | 
|  | printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret); | 
|  |  | 
|  | /* Now we can destroy the DMA mapping and unpin any pages */ | 
|  | list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) { | 
|  | unpinned += ibmr->sg_len; | 
|  | __rds_ib_teardown_mr(ibmr); | 
|  | if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) { | 
|  | rds_ib_stats_inc(s_ib_rdma_mr_free); | 
|  | list_del(&ibmr->unmap_list); | 
|  | ib_dealloc_fmr(ibmr->fmr); | 
|  | kfree(ibmr); | 
|  | nfreed++; | 
|  | } | 
|  | ncleaned++; | 
|  | } | 
|  |  | 
|  | if (!list_empty(&unmap_list)) { | 
|  | /* we have to make sure that none of the things we're about | 
|  | * to put on the clean list would race with other cpus trying | 
|  | * to pull items off.  The llist would explode if we managed to | 
|  | * remove something from the clean list and then add it back again | 
|  | * while another CPU was spinning on that same item in llist_del_first. | 
|  | * | 
|  | * This is pretty unlikely, but just in case  wait for an llist grace period | 
|  | * here before adding anything back into the clean list. | 
|  | */ | 
|  | wait_clean_list_grace(); | 
|  |  | 
|  | list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail); | 
|  | if (ibmr_ret) | 
|  | *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode); | 
|  |  | 
|  | /* more than one entry in llist nodes */ | 
|  | if (clean_nodes->next) | 
|  | llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list); | 
|  |  | 
|  | } | 
|  |  | 
|  | atomic_sub(unpinned, &pool->free_pinned); | 
|  | atomic_sub(ncleaned, &pool->dirty_count); | 
|  | atomic_sub(nfreed, &pool->item_count); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&pool->flush_lock); | 
|  | if (waitqueue_active(&pool->flush_wait)) | 
|  | wake_up(&pool->flush_wait); | 
|  | out_nolock: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void rds_ib_mr_pool_flush_worker(struct work_struct *work) | 
|  | { | 
|  | struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work); | 
|  |  | 
|  | rds_ib_flush_mr_pool(pool, 0, NULL); | 
|  | } | 
|  |  | 
|  | void rds_ib_free_mr(void *trans_private, int invalidate) | 
|  | { | 
|  | struct rds_ib_mr *ibmr = trans_private; | 
|  | struct rds_ib_device *rds_ibdev = ibmr->device; | 
|  | struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; | 
|  |  | 
|  | rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len); | 
|  |  | 
|  | /* Return it to the pool's free list */ | 
|  | if (ibmr->remap_count >= pool->fmr_attr.max_maps) | 
|  | llist_add(&ibmr->llnode, &pool->drop_list); | 
|  | else | 
|  | llist_add(&ibmr->llnode, &pool->free_list); | 
|  |  | 
|  | atomic_add(ibmr->sg_len, &pool->free_pinned); | 
|  | atomic_inc(&pool->dirty_count); | 
|  |  | 
|  | /* If we've pinned too many pages, request a flush */ | 
|  | if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned || | 
|  | atomic_read(&pool->dirty_count) >= pool->max_items / 10) | 
|  | schedule_delayed_work(&pool->flush_worker, 10); | 
|  |  | 
|  | if (invalidate) { | 
|  | if (likely(!in_interrupt())) { | 
|  | rds_ib_flush_mr_pool(pool, 0, NULL); | 
|  | } else { | 
|  | /* We get here if the user created a MR marked | 
|  | * as use_once and invalidate at the same time. */ | 
|  | schedule_delayed_work(&pool->flush_worker, 10); | 
|  | } | 
|  | } | 
|  |  | 
|  | rds_ib_dev_put(rds_ibdev); | 
|  | } | 
|  |  | 
|  | void rds_ib_flush_mrs(void) | 
|  | { | 
|  | struct rds_ib_device *rds_ibdev; | 
|  |  | 
|  | down_read(&rds_ib_devices_lock); | 
|  | list_for_each_entry(rds_ibdev, &rds_ib_devices, list) { | 
|  | struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool; | 
|  |  | 
|  | if (pool) | 
|  | rds_ib_flush_mr_pool(pool, 0, NULL); | 
|  | } | 
|  | up_read(&rds_ib_devices_lock); | 
|  | } | 
|  |  | 
|  | void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents, | 
|  | struct rds_sock *rs, u32 *key_ret) | 
|  | { | 
|  | struct rds_ib_device *rds_ibdev; | 
|  | struct rds_ib_mr *ibmr = NULL; | 
|  | int ret; | 
|  |  | 
|  | rds_ibdev = rds_ib_get_device(rs->rs_bound_addr); | 
|  | if (!rds_ibdev) { | 
|  | ret = -ENODEV; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!rds_ibdev->mr_pool) { | 
|  | ret = -ENODEV; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ibmr = rds_ib_alloc_fmr(rds_ibdev); | 
|  | if (IS_ERR(ibmr)) | 
|  | return ibmr; | 
|  |  | 
|  | ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents); | 
|  | if (ret == 0) | 
|  | *key_ret = ibmr->fmr->rkey; | 
|  | else | 
|  | printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret); | 
|  |  | 
|  | ibmr->device = rds_ibdev; | 
|  | rds_ibdev = NULL; | 
|  |  | 
|  | out: | 
|  | if (ret) { | 
|  | if (ibmr) | 
|  | rds_ib_free_mr(ibmr, 0); | 
|  | ibmr = ERR_PTR(ret); | 
|  | } | 
|  | if (rds_ibdev) | 
|  | rds_ib_dev_put(rds_ibdev); | 
|  | return ibmr; | 
|  | } | 
|  |  |