| /* | 
 |  * linux/mm/page_isolation.c | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/page-isolation.h> | 
 | #include <linux/pageblock-flags.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/hugetlb.h> | 
 | #include "internal.h" | 
 |  | 
 | int set_migratetype_isolate(struct page *page, bool skip_hwpoisoned_pages) | 
 | { | 
 | 	struct zone *zone; | 
 | 	unsigned long flags, pfn; | 
 | 	struct memory_isolate_notify arg; | 
 | 	int notifier_ret; | 
 | 	int ret = -EBUSY; | 
 |  | 
 | 	zone = page_zone(page); | 
 |  | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 |  | 
 | 	pfn = page_to_pfn(page); | 
 | 	arg.start_pfn = pfn; | 
 | 	arg.nr_pages = pageblock_nr_pages; | 
 | 	arg.pages_found = 0; | 
 |  | 
 | 	/* | 
 | 	 * It may be possible to isolate a pageblock even if the | 
 | 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation | 
 | 	 * notifier chain is used by balloon drivers to return the | 
 | 	 * number of pages in a range that are held by the balloon | 
 | 	 * driver to shrink memory. If all the pages are accounted for | 
 | 	 * by balloons, are free, or on the LRU, isolation can continue. | 
 | 	 * Later, for example, when memory hotplug notifier runs, these | 
 | 	 * pages reported as "can be isolated" should be isolated(freed) | 
 | 	 * by the balloon driver through the memory notifier chain. | 
 | 	 */ | 
 | 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); | 
 | 	notifier_ret = notifier_to_errno(notifier_ret); | 
 | 	if (notifier_ret) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. | 
 | 	 * We just check MOVABLE pages. | 
 | 	 */ | 
 | 	if (!has_unmovable_pages(zone, page, arg.pages_found, | 
 | 				 skip_hwpoisoned_pages)) | 
 | 		ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * immobile means "not-on-lru" paes. If immobile is larger than | 
 | 	 * removable-by-driver pages reported by notifier, we'll fail. | 
 | 	 */ | 
 |  | 
 | out: | 
 | 	if (!ret) { | 
 | 		unsigned long nr_pages; | 
 | 		int migratetype = get_pageblock_migratetype(page); | 
 |  | 
 | 		set_pageblock_migratetype(page, MIGRATE_ISOLATE); | 
 | 		nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE); | 
 |  | 
 | 		__mod_zone_freepage_state(zone, -nr_pages, migratetype); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | 	if (!ret) | 
 | 		drain_all_pages(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void unset_migratetype_isolate(struct page *page, unsigned migratetype) | 
 | { | 
 | 	struct zone *zone; | 
 | 	unsigned long flags, nr_pages; | 
 |  | 
 | 	zone = page_zone(page); | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) | 
 | 		goto out; | 
 | 	nr_pages = move_freepages_block(zone, page, migratetype); | 
 | 	__mod_zone_freepage_state(zone, nr_pages, migratetype); | 
 | 	set_pageblock_migratetype(page, migratetype); | 
 | out: | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | } | 
 |  | 
 | static inline struct page * | 
 | __first_valid_page(unsigned long pfn, unsigned long nr_pages) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < nr_pages; i++) | 
 | 		if (pfn_valid_within(pfn + i)) | 
 | 			break; | 
 | 	if (unlikely(i == nr_pages)) | 
 | 		return NULL; | 
 | 	return pfn_to_page(pfn + i); | 
 | } | 
 |  | 
 | /* | 
 |  * start_isolate_page_range() -- make page-allocation-type of range of pages | 
 |  * to be MIGRATE_ISOLATE. | 
 |  * @start_pfn: The lower PFN of the range to be isolated. | 
 |  * @end_pfn: The upper PFN of the range to be isolated. | 
 |  * @migratetype: migrate type to set in error recovery. | 
 |  * | 
 |  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in | 
 |  * the range will never be allocated. Any free pages and pages freed in the | 
 |  * future will not be allocated again. | 
 |  * | 
 |  * start_pfn/end_pfn must be aligned to pageblock_order. | 
 |  * Returns 0 on success and -EBUSY if any part of range cannot be isolated. | 
 |  */ | 
 | int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, | 
 | 			     unsigned migratetype, bool skip_hwpoisoned_pages) | 
 | { | 
 | 	unsigned long pfn; | 
 | 	unsigned long undo_pfn; | 
 | 	struct page *page; | 
 |  | 
 | 	BUG_ON((start_pfn) & (pageblock_nr_pages - 1)); | 
 | 	BUG_ON((end_pfn) & (pageblock_nr_pages - 1)); | 
 |  | 
 | 	for (pfn = start_pfn; | 
 | 	     pfn < end_pfn; | 
 | 	     pfn += pageblock_nr_pages) { | 
 | 		page = __first_valid_page(pfn, pageblock_nr_pages); | 
 | 		if (page && | 
 | 		    set_migratetype_isolate(page, skip_hwpoisoned_pages)) { | 
 | 			undo_pfn = pfn; | 
 | 			goto undo; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | undo: | 
 | 	for (pfn = start_pfn; | 
 | 	     pfn < undo_pfn; | 
 | 	     pfn += pageblock_nr_pages) | 
 | 		unset_migratetype_isolate(pfn_to_page(pfn), migratetype); | 
 |  | 
 | 	return -EBUSY; | 
 | } | 
 |  | 
 | /* | 
 |  * Make isolated pages available again. | 
 |  */ | 
 | int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, | 
 | 			    unsigned migratetype) | 
 | { | 
 | 	unsigned long pfn; | 
 | 	struct page *page; | 
 | 	BUG_ON((start_pfn) & (pageblock_nr_pages - 1)); | 
 | 	BUG_ON((end_pfn) & (pageblock_nr_pages - 1)); | 
 | 	for (pfn = start_pfn; | 
 | 	     pfn < end_pfn; | 
 | 	     pfn += pageblock_nr_pages) { | 
 | 		page = __first_valid_page(pfn, pageblock_nr_pages); | 
 | 		if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE) | 
 | 			continue; | 
 | 		unset_migratetype_isolate(page, migratetype); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | /* | 
 |  * Test all pages in the range is free(means isolated) or not. | 
 |  * all pages in [start_pfn...end_pfn) must be in the same zone. | 
 |  * zone->lock must be held before call this. | 
 |  * | 
 |  * Returns 1 if all pages in the range are isolated. | 
 |  */ | 
 | static int | 
 | __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn, | 
 | 				  bool skip_hwpoisoned_pages) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	while (pfn < end_pfn) { | 
 | 		if (!pfn_valid_within(pfn)) { | 
 | 			pfn++; | 
 | 			continue; | 
 | 		} | 
 | 		page = pfn_to_page(pfn); | 
 | 		if (PageBuddy(page)) { | 
 | 			/* | 
 | 			 * If race between isolatation and allocation happens, | 
 | 			 * some free pages could be in MIGRATE_MOVABLE list | 
 | 			 * although pageblock's migratation type of the page | 
 | 			 * is MIGRATE_ISOLATE. Catch it and move the page into | 
 | 			 * MIGRATE_ISOLATE list. | 
 | 			 */ | 
 | 			if (get_freepage_migratetype(page) != MIGRATE_ISOLATE) { | 
 | 				struct page *end_page; | 
 |  | 
 | 				end_page = page + (1 << page_order(page)) - 1; | 
 | 				move_freepages(page_zone(page), page, end_page, | 
 | 						MIGRATE_ISOLATE); | 
 | 			} | 
 | 			pfn += 1 << page_order(page); | 
 | 		} | 
 | 		else if (page_count(page) == 0 && | 
 | 			get_freepage_migratetype(page) == MIGRATE_ISOLATE) | 
 | 			pfn += 1; | 
 | 		else if (skip_hwpoisoned_pages && PageHWPoison(page)) { | 
 | 			/* | 
 | 			 * The HWPoisoned page may be not in buddy | 
 | 			 * system, and page_count() is not 0. | 
 | 			 */ | 
 | 			pfn++; | 
 | 			continue; | 
 | 		} | 
 | 		else | 
 | 			break; | 
 | 	} | 
 | 	if (pfn < end_pfn) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn, | 
 | 			bool skip_hwpoisoned_pages) | 
 | { | 
 | 	unsigned long pfn, flags; | 
 | 	struct page *page; | 
 | 	struct zone *zone; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages | 
 | 	 * are not aligned to pageblock_nr_pages. | 
 | 	 * Then we just check migratetype first. | 
 | 	 */ | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { | 
 | 		page = __first_valid_page(pfn, pageblock_nr_pages); | 
 | 		if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE) | 
 | 			break; | 
 | 	} | 
 | 	page = __first_valid_page(start_pfn, end_pfn - start_pfn); | 
 | 	if ((pfn < end_pfn) || !page) | 
 | 		return -EBUSY; | 
 | 	/* Check all pages are free or marked as ISOLATED */ | 
 | 	zone = page_zone(page); | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 	ret = __test_page_isolated_in_pageblock(start_pfn, end_pfn, | 
 | 						skip_hwpoisoned_pages); | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | 	return ret ? 0 : -EBUSY; | 
 | } | 
 |  | 
 | struct page *alloc_migrate_target(struct page *page, unsigned long private, | 
 | 				  int **resultp) | 
 | { | 
 | 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE; | 
 |  | 
 | 	/* | 
 | 	 * TODO: allocate a destination hugepage from a nearest neighbor node, | 
 | 	 * accordance with memory policy of the user process if possible. For | 
 | 	 * now as a simple work-around, we use the next node for destination. | 
 | 	 */ | 
 | 	if (PageHuge(page)) { | 
 | 		nodemask_t src = nodemask_of_node(page_to_nid(page)); | 
 | 		nodemask_t dst; | 
 | 		nodes_complement(dst, src); | 
 | 		return alloc_huge_page_node(page_hstate(compound_head(page)), | 
 | 					    next_node(page_to_nid(page), dst)); | 
 | 	} | 
 |  | 
 | 	if (PageHighMem(page)) | 
 | 		gfp_mask |= __GFP_HIGHMEM; | 
 |  | 
 | 	return alloc_page(gfp_mask); | 
 | } |