|  | /* | 
|  | * SPI init/core code | 
|  | * | 
|  | * Copyright (C) 2005 David Brownell | 
|  | * Copyright (C) 2008 Secret Lab Technologies Ltd. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/of_device.h> | 
|  | #include <linux/of_irq.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mod_devicetable.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/of_gpio.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/sched/rt.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/acpi.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/spi.h> | 
|  |  | 
|  | static void spidev_release(struct device *dev) | 
|  | { | 
|  | struct spi_device	*spi = to_spi_device(dev); | 
|  |  | 
|  | /* spi masters may cleanup for released devices */ | 
|  | if (spi->master->cleanup) | 
|  | spi->master->cleanup(spi); | 
|  |  | 
|  | spi_master_put(spi->master); | 
|  | kfree(spi); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | modalias_show(struct device *dev, struct device_attribute *a, char *buf) | 
|  | { | 
|  | const struct spi_device	*spi = to_spi_device(dev); | 
|  | int len; | 
|  |  | 
|  | len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); | 
|  | if (len != -ENODEV) | 
|  | return len; | 
|  |  | 
|  | return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); | 
|  | } | 
|  | static DEVICE_ATTR_RO(modalias); | 
|  |  | 
|  | static struct attribute *spi_dev_attrs[] = { | 
|  | &dev_attr_modalias.attr, | 
|  | NULL, | 
|  | }; | 
|  | ATTRIBUTE_GROUPS(spi_dev); | 
|  |  | 
|  | /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, | 
|  | * and the sysfs version makes coldplug work too. | 
|  | */ | 
|  |  | 
|  | static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, | 
|  | const struct spi_device *sdev) | 
|  | { | 
|  | while (id->name[0]) { | 
|  | if (!strcmp(sdev->modalias, id->name)) | 
|  | return id; | 
|  | id++; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) | 
|  | { | 
|  | const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); | 
|  |  | 
|  | return spi_match_id(sdrv->id_table, sdev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_get_device_id); | 
|  |  | 
|  | static int spi_match_device(struct device *dev, struct device_driver *drv) | 
|  | { | 
|  | const struct spi_device	*spi = to_spi_device(dev); | 
|  | const struct spi_driver	*sdrv = to_spi_driver(drv); | 
|  |  | 
|  | /* Attempt an OF style match */ | 
|  | if (of_driver_match_device(dev, drv)) | 
|  | return 1; | 
|  |  | 
|  | /* Then try ACPI */ | 
|  | if (acpi_driver_match_device(dev, drv)) | 
|  | return 1; | 
|  |  | 
|  | if (sdrv->id_table) | 
|  | return !!spi_match_id(sdrv->id_table, spi); | 
|  |  | 
|  | return strcmp(spi->modalias, drv->name) == 0; | 
|  | } | 
|  |  | 
|  | static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) | 
|  | { | 
|  | const struct spi_device		*spi = to_spi_device(dev); | 
|  | int rc; | 
|  |  | 
|  | rc = acpi_device_uevent_modalias(dev, env); | 
|  | if (rc != -ENODEV) | 
|  | return rc; | 
|  |  | 
|  | add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | static int spi_legacy_suspend(struct device *dev, pm_message_t message) | 
|  | { | 
|  | int			value = 0; | 
|  | struct spi_driver	*drv = to_spi_driver(dev->driver); | 
|  |  | 
|  | /* suspend will stop irqs and dma; no more i/o */ | 
|  | if (drv) { | 
|  | if (drv->suspend) | 
|  | value = drv->suspend(to_spi_device(dev), message); | 
|  | else | 
|  | dev_dbg(dev, "... can't suspend\n"); | 
|  | } | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static int spi_legacy_resume(struct device *dev) | 
|  | { | 
|  | int			value = 0; | 
|  | struct spi_driver	*drv = to_spi_driver(dev->driver); | 
|  |  | 
|  | /* resume may restart the i/o queue */ | 
|  | if (drv) { | 
|  | if (drv->resume) | 
|  | value = drv->resume(to_spi_device(dev)); | 
|  | else | 
|  | dev_dbg(dev, "... can't resume\n"); | 
|  | } | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static int spi_pm_suspend(struct device *dev) | 
|  | { | 
|  | const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; | 
|  |  | 
|  | if (pm) | 
|  | return pm_generic_suspend(dev); | 
|  | else | 
|  | return spi_legacy_suspend(dev, PMSG_SUSPEND); | 
|  | } | 
|  |  | 
|  | static int spi_pm_resume(struct device *dev) | 
|  | { | 
|  | const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; | 
|  |  | 
|  | if (pm) | 
|  | return pm_generic_resume(dev); | 
|  | else | 
|  | return spi_legacy_resume(dev); | 
|  | } | 
|  |  | 
|  | static int spi_pm_freeze(struct device *dev) | 
|  | { | 
|  | const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; | 
|  |  | 
|  | if (pm) | 
|  | return pm_generic_freeze(dev); | 
|  | else | 
|  | return spi_legacy_suspend(dev, PMSG_FREEZE); | 
|  | } | 
|  |  | 
|  | static int spi_pm_thaw(struct device *dev) | 
|  | { | 
|  | const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; | 
|  |  | 
|  | if (pm) | 
|  | return pm_generic_thaw(dev); | 
|  | else | 
|  | return spi_legacy_resume(dev); | 
|  | } | 
|  |  | 
|  | static int spi_pm_poweroff(struct device *dev) | 
|  | { | 
|  | const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; | 
|  |  | 
|  | if (pm) | 
|  | return pm_generic_poweroff(dev); | 
|  | else | 
|  | return spi_legacy_suspend(dev, PMSG_HIBERNATE); | 
|  | } | 
|  |  | 
|  | static int spi_pm_restore(struct device *dev) | 
|  | { | 
|  | const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; | 
|  |  | 
|  | if (pm) | 
|  | return pm_generic_restore(dev); | 
|  | else | 
|  | return spi_legacy_resume(dev); | 
|  | } | 
|  | #else | 
|  | #define spi_pm_suspend	NULL | 
|  | #define spi_pm_resume	NULL | 
|  | #define spi_pm_freeze	NULL | 
|  | #define spi_pm_thaw	NULL | 
|  | #define spi_pm_poweroff	NULL | 
|  | #define spi_pm_restore	NULL | 
|  | #endif | 
|  |  | 
|  | static const struct dev_pm_ops spi_pm = { | 
|  | .suspend = spi_pm_suspend, | 
|  | .resume = spi_pm_resume, | 
|  | .freeze = spi_pm_freeze, | 
|  | .thaw = spi_pm_thaw, | 
|  | .poweroff = spi_pm_poweroff, | 
|  | .restore = spi_pm_restore, | 
|  | SET_RUNTIME_PM_OPS( | 
|  | pm_generic_runtime_suspend, | 
|  | pm_generic_runtime_resume, | 
|  | NULL | 
|  | ) | 
|  | }; | 
|  |  | 
|  | struct bus_type spi_bus_type = { | 
|  | .name		= "spi", | 
|  | .dev_groups	= spi_dev_groups, | 
|  | .match		= spi_match_device, | 
|  | .uevent		= spi_uevent, | 
|  | .pm		= &spi_pm, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(spi_bus_type); | 
|  |  | 
|  |  | 
|  | static int spi_drv_probe(struct device *dev) | 
|  | { | 
|  | const struct spi_driver		*sdrv = to_spi_driver(dev->driver); | 
|  | int ret; | 
|  |  | 
|  | acpi_dev_pm_attach(dev, true); | 
|  | ret = sdrv->probe(to_spi_device(dev)); | 
|  | if (ret) | 
|  | acpi_dev_pm_detach(dev, true); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spi_drv_remove(struct device *dev) | 
|  | { | 
|  | const struct spi_driver		*sdrv = to_spi_driver(dev->driver); | 
|  | int ret; | 
|  |  | 
|  | ret = sdrv->remove(to_spi_device(dev)); | 
|  | acpi_dev_pm_detach(dev, true); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void spi_drv_shutdown(struct device *dev) | 
|  | { | 
|  | const struct spi_driver		*sdrv = to_spi_driver(dev->driver); | 
|  |  | 
|  | sdrv->shutdown(to_spi_device(dev)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_register_driver - register a SPI driver | 
|  | * @sdrv: the driver to register | 
|  | * Context: can sleep | 
|  | */ | 
|  | int spi_register_driver(struct spi_driver *sdrv) | 
|  | { | 
|  | sdrv->driver.bus = &spi_bus_type; | 
|  | if (sdrv->probe) | 
|  | sdrv->driver.probe = spi_drv_probe; | 
|  | if (sdrv->remove) | 
|  | sdrv->driver.remove = spi_drv_remove; | 
|  | if (sdrv->shutdown) | 
|  | sdrv->driver.shutdown = spi_drv_shutdown; | 
|  | return driver_register(&sdrv->driver); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_register_driver); | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* SPI devices should normally not be created by SPI device drivers; that | 
|  | * would make them board-specific.  Similarly with SPI master drivers. | 
|  | * Device registration normally goes into like arch/.../mach.../board-YYY.c | 
|  | * with other readonly (flashable) information about mainboard devices. | 
|  | */ | 
|  |  | 
|  | struct boardinfo { | 
|  | struct list_head	list; | 
|  | struct spi_board_info	board_info; | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(board_list); | 
|  | static LIST_HEAD(spi_master_list); | 
|  |  | 
|  | /* | 
|  | * Used to protect add/del opertion for board_info list and | 
|  | * spi_master list, and their matching process | 
|  | */ | 
|  | static DEFINE_MUTEX(board_lock); | 
|  |  | 
|  | /** | 
|  | * spi_alloc_device - Allocate a new SPI device | 
|  | * @master: Controller to which device is connected | 
|  | * Context: can sleep | 
|  | * | 
|  | * Allows a driver to allocate and initialize a spi_device without | 
|  | * registering it immediately.  This allows a driver to directly | 
|  | * fill the spi_device with device parameters before calling | 
|  | * spi_add_device() on it. | 
|  | * | 
|  | * Caller is responsible to call spi_add_device() on the returned | 
|  | * spi_device structure to add it to the SPI master.  If the caller | 
|  | * needs to discard the spi_device without adding it, then it should | 
|  | * call spi_dev_put() on it. | 
|  | * | 
|  | * Returns a pointer to the new device, or NULL. | 
|  | */ | 
|  | struct spi_device *spi_alloc_device(struct spi_master *master) | 
|  | { | 
|  | struct spi_device	*spi; | 
|  | struct device		*dev = master->dev.parent; | 
|  |  | 
|  | if (!spi_master_get(master)) | 
|  | return NULL; | 
|  |  | 
|  | spi = kzalloc(sizeof(*spi), GFP_KERNEL); | 
|  | if (!spi) { | 
|  | dev_err(dev, "cannot alloc spi_device\n"); | 
|  | spi_master_put(master); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | spi->master = master; | 
|  | spi->dev.parent = &master->dev; | 
|  | spi->dev.bus = &spi_bus_type; | 
|  | spi->dev.release = spidev_release; | 
|  | spi->cs_gpio = -ENOENT; | 
|  | device_initialize(&spi->dev); | 
|  | return spi; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_alloc_device); | 
|  |  | 
|  | static void spi_dev_set_name(struct spi_device *spi) | 
|  | { | 
|  | struct acpi_device *adev = ACPI_COMPANION(&spi->dev); | 
|  |  | 
|  | if (adev) { | 
|  | dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), | 
|  | spi->chip_select); | 
|  | } | 
|  |  | 
|  | static int spi_dev_check(struct device *dev, void *data) | 
|  | { | 
|  | struct spi_device *spi = to_spi_device(dev); | 
|  | struct spi_device *new_spi = data; | 
|  |  | 
|  | if (spi->master == new_spi->master && | 
|  | spi->chip_select == new_spi->chip_select) | 
|  | return -EBUSY; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_add_device - Add spi_device allocated with spi_alloc_device | 
|  | * @spi: spi_device to register | 
|  | * | 
|  | * Companion function to spi_alloc_device.  Devices allocated with | 
|  | * spi_alloc_device can be added onto the spi bus with this function. | 
|  | * | 
|  | * Returns 0 on success; negative errno on failure | 
|  | */ | 
|  | int spi_add_device(struct spi_device *spi) | 
|  | { | 
|  | static DEFINE_MUTEX(spi_add_lock); | 
|  | struct spi_master *master = spi->master; | 
|  | struct device *dev = master->dev.parent; | 
|  | int status; | 
|  |  | 
|  | /* Chipselects are numbered 0..max; validate. */ | 
|  | if (spi->chip_select >= master->num_chipselect) { | 
|  | dev_err(dev, "cs%d >= max %d\n", | 
|  | spi->chip_select, | 
|  | master->num_chipselect); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Set the bus ID string */ | 
|  | spi_dev_set_name(spi); | 
|  |  | 
|  | /* We need to make sure there's no other device with this | 
|  | * chipselect **BEFORE** we call setup(), else we'll trash | 
|  | * its configuration.  Lock against concurrent add() calls. | 
|  | */ | 
|  | mutex_lock(&spi_add_lock); | 
|  |  | 
|  | status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); | 
|  | if (status) { | 
|  | dev_err(dev, "chipselect %d already in use\n", | 
|  | spi->chip_select); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (master->cs_gpios) | 
|  | spi->cs_gpio = master->cs_gpios[spi->chip_select]; | 
|  |  | 
|  | /* Drivers may modify this initial i/o setup, but will | 
|  | * normally rely on the device being setup.  Devices | 
|  | * using SPI_CS_HIGH can't coexist well otherwise... | 
|  | */ | 
|  | status = spi_setup(spi); | 
|  | if (status < 0) { | 
|  | dev_err(dev, "can't setup %s, status %d\n", | 
|  | dev_name(&spi->dev), status); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Device may be bound to an active driver when this returns */ | 
|  | status = device_add(&spi->dev); | 
|  | if (status < 0) | 
|  | dev_err(dev, "can't add %s, status %d\n", | 
|  | dev_name(&spi->dev), status); | 
|  | else | 
|  | dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); | 
|  |  | 
|  | done: | 
|  | mutex_unlock(&spi_add_lock); | 
|  | return status; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_add_device); | 
|  |  | 
|  | /** | 
|  | * spi_new_device - instantiate one new SPI device | 
|  | * @master: Controller to which device is connected | 
|  | * @chip: Describes the SPI device | 
|  | * Context: can sleep | 
|  | * | 
|  | * On typical mainboards, this is purely internal; and it's not needed | 
|  | * after board init creates the hard-wired devices.  Some development | 
|  | * platforms may not be able to use spi_register_board_info though, and | 
|  | * this is exported so that for example a USB or parport based adapter | 
|  | * driver could add devices (which it would learn about out-of-band). | 
|  | * | 
|  | * Returns the new device, or NULL. | 
|  | */ | 
|  | struct spi_device *spi_new_device(struct spi_master *master, | 
|  | struct spi_board_info *chip) | 
|  | { | 
|  | struct spi_device	*proxy; | 
|  | int			status; | 
|  |  | 
|  | /* NOTE:  caller did any chip->bus_num checks necessary. | 
|  | * | 
|  | * Also, unless we change the return value convention to use | 
|  | * error-or-pointer (not NULL-or-pointer), troubleshootability | 
|  | * suggests syslogged diagnostics are best here (ugh). | 
|  | */ | 
|  |  | 
|  | proxy = spi_alloc_device(master); | 
|  | if (!proxy) | 
|  | return NULL; | 
|  |  | 
|  | WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); | 
|  |  | 
|  | proxy->chip_select = chip->chip_select; | 
|  | proxy->max_speed_hz = chip->max_speed_hz; | 
|  | proxy->mode = chip->mode; | 
|  | proxy->irq = chip->irq; | 
|  | strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); | 
|  | proxy->dev.platform_data = (void *) chip->platform_data; | 
|  | proxy->controller_data = chip->controller_data; | 
|  | proxy->controller_state = NULL; | 
|  |  | 
|  | status = spi_add_device(proxy); | 
|  | if (status < 0) { | 
|  | spi_dev_put(proxy); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return proxy; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_new_device); | 
|  |  | 
|  | static void spi_match_master_to_boardinfo(struct spi_master *master, | 
|  | struct spi_board_info *bi) | 
|  | { | 
|  | struct spi_device *dev; | 
|  |  | 
|  | if (master->bus_num != bi->bus_num) | 
|  | return; | 
|  |  | 
|  | dev = spi_new_device(master, bi); | 
|  | if (!dev) | 
|  | dev_err(master->dev.parent, "can't create new device for %s\n", | 
|  | bi->modalias); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_register_board_info - register SPI devices for a given board | 
|  | * @info: array of chip descriptors | 
|  | * @n: how many descriptors are provided | 
|  | * Context: can sleep | 
|  | * | 
|  | * Board-specific early init code calls this (probably during arch_initcall) | 
|  | * with segments of the SPI device table.  Any device nodes are created later, | 
|  | * after the relevant parent SPI controller (bus_num) is defined.  We keep | 
|  | * this table of devices forever, so that reloading a controller driver will | 
|  | * not make Linux forget about these hard-wired devices. | 
|  | * | 
|  | * Other code can also call this, e.g. a particular add-on board might provide | 
|  | * SPI devices through its expansion connector, so code initializing that board | 
|  | * would naturally declare its SPI devices. | 
|  | * | 
|  | * The board info passed can safely be __initdata ... but be careful of | 
|  | * any embedded pointers (platform_data, etc), they're copied as-is. | 
|  | */ | 
|  | int spi_register_board_info(struct spi_board_info const *info, unsigned n) | 
|  | { | 
|  | struct boardinfo *bi; | 
|  | int i; | 
|  |  | 
|  | bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); | 
|  | if (!bi) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < n; i++, bi++, info++) { | 
|  | struct spi_master *master; | 
|  |  | 
|  | memcpy(&bi->board_info, info, sizeof(*info)); | 
|  | mutex_lock(&board_lock); | 
|  | list_add_tail(&bi->list, &board_list); | 
|  | list_for_each_entry(master, &spi_master_list, list) | 
|  | spi_match_master_to_boardinfo(master, &bi->board_info); | 
|  | mutex_unlock(&board_lock); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void spi_set_cs(struct spi_device *spi, bool enable) | 
|  | { | 
|  | if (spi->mode & SPI_CS_HIGH) | 
|  | enable = !enable; | 
|  |  | 
|  | if (spi->cs_gpio >= 0) | 
|  | gpio_set_value(spi->cs_gpio, !enable); | 
|  | else if (spi->master->set_cs) | 
|  | spi->master->set_cs(spi, !enable); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAS_DMA | 
|  | static int spi_map_buf(struct spi_master *master, struct device *dev, | 
|  | struct sg_table *sgt, void *buf, size_t len, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | const bool vmalloced_buf = is_vmalloc_addr(buf); | 
|  | const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len; | 
|  | const int sgs = DIV_ROUND_UP(len, desc_len); | 
|  | struct page *vm_page; | 
|  | void *sg_buf; | 
|  | size_t min; | 
|  | int i, ret; | 
|  |  | 
|  | ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < sgs; i++) { | 
|  | min = min_t(size_t, len, desc_len); | 
|  |  | 
|  | if (vmalloced_buf) { | 
|  | vm_page = vmalloc_to_page(buf); | 
|  | if (!vm_page) { | 
|  | sg_free_table(sgt); | 
|  | return -ENOMEM; | 
|  | } | 
|  | sg_buf = page_address(vm_page) + | 
|  | ((size_t)buf & ~PAGE_MASK); | 
|  | } else { | 
|  | sg_buf = buf; | 
|  | } | 
|  |  | 
|  | sg_set_buf(&sgt->sgl[i], sg_buf, min); | 
|  |  | 
|  | buf += min; | 
|  | len -= min; | 
|  | } | 
|  |  | 
|  | ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); | 
|  | if (ret < 0) { | 
|  | sg_free_table(sgt); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | sgt->nents = ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void spi_unmap_buf(struct spi_master *master, struct device *dev, | 
|  | struct sg_table *sgt, enum dma_data_direction dir) | 
|  | { | 
|  | if (sgt->orig_nents) { | 
|  | dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); | 
|  | sg_free_table(sgt); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __spi_map_msg(struct spi_master *master, struct spi_message *msg) | 
|  | { | 
|  | struct device *tx_dev, *rx_dev; | 
|  | struct spi_transfer *xfer; | 
|  | int ret; | 
|  |  | 
|  | if (!master->can_dma) | 
|  | return 0; | 
|  |  | 
|  | tx_dev = &master->dma_tx->dev->device; | 
|  | rx_dev = &master->dma_rx->dev->device; | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | if (!master->can_dma(master, msg->spi, xfer)) | 
|  | continue; | 
|  |  | 
|  | if (xfer->tx_buf != NULL) { | 
|  | ret = spi_map_buf(master, tx_dev, &xfer->tx_sg, | 
|  | (void *)xfer->tx_buf, xfer->len, | 
|  | DMA_TO_DEVICE); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (xfer->rx_buf != NULL) { | 
|  | ret = spi_map_buf(master, rx_dev, &xfer->rx_sg, | 
|  | xfer->rx_buf, xfer->len, | 
|  | DMA_FROM_DEVICE); | 
|  | if (ret != 0) { | 
|  | spi_unmap_buf(master, tx_dev, &xfer->tx_sg, | 
|  | DMA_TO_DEVICE); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | master->cur_msg_mapped = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg) | 
|  | { | 
|  | struct spi_transfer *xfer; | 
|  | struct device *tx_dev, *rx_dev; | 
|  |  | 
|  | if (!master->cur_msg_mapped || !master->can_dma) | 
|  | return 0; | 
|  |  | 
|  | tx_dev = &master->dma_tx->dev->device; | 
|  | rx_dev = &master->dma_rx->dev->device; | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | if (!master->can_dma(master, msg->spi, xfer)) | 
|  | continue; | 
|  |  | 
|  | spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); | 
|  | spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else /* !CONFIG_HAS_DMA */ | 
|  | static inline int __spi_map_msg(struct spi_master *master, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int spi_unmap_msg(struct spi_master *master, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* !CONFIG_HAS_DMA */ | 
|  |  | 
|  | static int spi_map_msg(struct spi_master *master, struct spi_message *msg) | 
|  | { | 
|  | struct spi_transfer *xfer; | 
|  | void *tmp; | 
|  | unsigned int max_tx, max_rx; | 
|  |  | 
|  | if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) { | 
|  | max_tx = 0; | 
|  | max_rx = 0; | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | if ((master->flags & SPI_MASTER_MUST_TX) && | 
|  | !xfer->tx_buf) | 
|  | max_tx = max(xfer->len, max_tx); | 
|  | if ((master->flags & SPI_MASTER_MUST_RX) && | 
|  | !xfer->rx_buf) | 
|  | max_rx = max(xfer->len, max_rx); | 
|  | } | 
|  |  | 
|  | if (max_tx) { | 
|  | tmp = krealloc(master->dummy_tx, max_tx, | 
|  | GFP_KERNEL | GFP_DMA); | 
|  | if (!tmp) | 
|  | return -ENOMEM; | 
|  | master->dummy_tx = tmp; | 
|  | memset(tmp, 0, max_tx); | 
|  | } | 
|  |  | 
|  | if (max_rx) { | 
|  | tmp = krealloc(master->dummy_rx, max_rx, | 
|  | GFP_KERNEL | GFP_DMA); | 
|  | if (!tmp) | 
|  | return -ENOMEM; | 
|  | master->dummy_rx = tmp; | 
|  | } | 
|  |  | 
|  | if (max_tx || max_rx) { | 
|  | list_for_each_entry(xfer, &msg->transfers, | 
|  | transfer_list) { | 
|  | if (!xfer->tx_buf) | 
|  | xfer->tx_buf = master->dummy_tx; | 
|  | if (!xfer->rx_buf) | 
|  | xfer->rx_buf = master->dummy_rx; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return __spi_map_msg(master, msg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * spi_transfer_one_message - Default implementation of transfer_one_message() | 
|  | * | 
|  | * This is a standard implementation of transfer_one_message() for | 
|  | * drivers which impelment a transfer_one() operation.  It provides | 
|  | * standard handling of delays and chip select management. | 
|  | */ | 
|  | static int spi_transfer_one_message(struct spi_master *master, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | struct spi_transfer *xfer; | 
|  | bool keep_cs = false; | 
|  | int ret = 0; | 
|  | int ms = 1; | 
|  |  | 
|  | spi_set_cs(msg->spi, true); | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | trace_spi_transfer_start(msg, xfer); | 
|  |  | 
|  | reinit_completion(&master->xfer_completion); | 
|  |  | 
|  | ret = master->transfer_one(master, msg->spi, xfer); | 
|  | if (ret < 0) { | 
|  | dev_err(&msg->spi->dev, | 
|  | "SPI transfer failed: %d\n", ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | ms = xfer->len * 8 * 1000 / xfer->speed_hz; | 
|  | ms += ms + 100; /* some tolerance */ | 
|  |  | 
|  | ms = wait_for_completion_timeout(&master->xfer_completion, | 
|  | msecs_to_jiffies(ms)); | 
|  | } | 
|  |  | 
|  | if (ms == 0) { | 
|  | dev_err(&msg->spi->dev, "SPI transfer timed out\n"); | 
|  | msg->status = -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | trace_spi_transfer_stop(msg, xfer); | 
|  |  | 
|  | if (msg->status != -EINPROGRESS) | 
|  | goto out; | 
|  |  | 
|  | if (xfer->delay_usecs) | 
|  | udelay(xfer->delay_usecs); | 
|  |  | 
|  | if (xfer->cs_change) { | 
|  | if (list_is_last(&xfer->transfer_list, | 
|  | &msg->transfers)) { | 
|  | keep_cs = true; | 
|  | } else { | 
|  | spi_set_cs(msg->spi, false); | 
|  | udelay(10); | 
|  | spi_set_cs(msg->spi, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | msg->actual_length += xfer->len; | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (ret != 0 || !keep_cs) | 
|  | spi_set_cs(msg->spi, false); | 
|  |  | 
|  | if (msg->status == -EINPROGRESS) | 
|  | msg->status = ret; | 
|  |  | 
|  | spi_finalize_current_message(master); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_finalize_current_transfer - report completion of a transfer | 
|  | * | 
|  | * Called by SPI drivers using the core transfer_one_message() | 
|  | * implementation to notify it that the current interrupt driven | 
|  | * transfer has finished and the next one may be scheduled. | 
|  | */ | 
|  | void spi_finalize_current_transfer(struct spi_master *master) | 
|  | { | 
|  | complete(&master->xfer_completion); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); | 
|  |  | 
|  | /** | 
|  | * spi_pump_messages - kthread work function which processes spi message queue | 
|  | * @work: pointer to kthread work struct contained in the master struct | 
|  | * | 
|  | * This function checks if there is any spi message in the queue that | 
|  | * needs processing and if so call out to the driver to initialize hardware | 
|  | * and transfer each message. | 
|  | * | 
|  | */ | 
|  | static void spi_pump_messages(struct kthread_work *work) | 
|  | { | 
|  | struct spi_master *master = | 
|  | container_of(work, struct spi_master, pump_messages); | 
|  | unsigned long flags; | 
|  | bool was_busy = false; | 
|  | int ret; | 
|  |  | 
|  | /* Lock queue and check for queue work */ | 
|  | spin_lock_irqsave(&master->queue_lock, flags); | 
|  | if (list_empty(&master->queue) || !master->running) { | 
|  | if (!master->busy) { | 
|  | spin_unlock_irqrestore(&master->queue_lock, flags); | 
|  | return; | 
|  | } | 
|  | master->busy = false; | 
|  | spin_unlock_irqrestore(&master->queue_lock, flags); | 
|  | kfree(master->dummy_rx); | 
|  | master->dummy_rx = NULL; | 
|  | kfree(master->dummy_tx); | 
|  | master->dummy_tx = NULL; | 
|  | if (master->unprepare_transfer_hardware && | 
|  | master->unprepare_transfer_hardware(master)) | 
|  | dev_err(&master->dev, | 
|  | "failed to unprepare transfer hardware\n"); | 
|  | if (master->auto_runtime_pm) { | 
|  | pm_runtime_mark_last_busy(master->dev.parent); | 
|  | pm_runtime_put_autosuspend(master->dev.parent); | 
|  | } | 
|  | trace_spi_master_idle(master); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Make sure we are not already running a message */ | 
|  | if (master->cur_msg) { | 
|  | spin_unlock_irqrestore(&master->queue_lock, flags); | 
|  | return; | 
|  | } | 
|  | /* Extract head of queue */ | 
|  | master->cur_msg = | 
|  | list_first_entry(&master->queue, struct spi_message, queue); | 
|  |  | 
|  | list_del_init(&master->cur_msg->queue); | 
|  | if (master->busy) | 
|  | was_busy = true; | 
|  | else | 
|  | master->busy = true; | 
|  | spin_unlock_irqrestore(&master->queue_lock, flags); | 
|  |  | 
|  | if (!was_busy && master->auto_runtime_pm) { | 
|  | ret = pm_runtime_get_sync(master->dev.parent); | 
|  | if (ret < 0) { | 
|  | dev_err(&master->dev, "Failed to power device: %d\n", | 
|  | ret); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!was_busy) | 
|  | trace_spi_master_busy(master); | 
|  |  | 
|  | if (!was_busy && master->prepare_transfer_hardware) { | 
|  | ret = master->prepare_transfer_hardware(master); | 
|  | if (ret) { | 
|  | dev_err(&master->dev, | 
|  | "failed to prepare transfer hardware\n"); | 
|  |  | 
|  | if (master->auto_runtime_pm) | 
|  | pm_runtime_put(master->dev.parent); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_spi_message_start(master->cur_msg); | 
|  |  | 
|  | if (master->prepare_message) { | 
|  | ret = master->prepare_message(master, master->cur_msg); | 
|  | if (ret) { | 
|  | dev_err(&master->dev, | 
|  | "failed to prepare message: %d\n", ret); | 
|  | master->cur_msg->status = ret; | 
|  | spi_finalize_current_message(master); | 
|  | return; | 
|  | } | 
|  | master->cur_msg_prepared = true; | 
|  | } | 
|  |  | 
|  | ret = spi_map_msg(master, master->cur_msg); | 
|  | if (ret) { | 
|  | master->cur_msg->status = ret; | 
|  | spi_finalize_current_message(master); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = master->transfer_one_message(master, master->cur_msg); | 
|  | if (ret) { | 
|  | dev_err(&master->dev, | 
|  | "failed to transfer one message from queue\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int spi_init_queue(struct spi_master *master) | 
|  | { | 
|  | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; | 
|  |  | 
|  | INIT_LIST_HEAD(&master->queue); | 
|  | spin_lock_init(&master->queue_lock); | 
|  |  | 
|  | master->running = false; | 
|  | master->busy = false; | 
|  |  | 
|  | init_kthread_worker(&master->kworker); | 
|  | master->kworker_task = kthread_run(kthread_worker_fn, | 
|  | &master->kworker, "%s", | 
|  | dev_name(&master->dev)); | 
|  | if (IS_ERR(master->kworker_task)) { | 
|  | dev_err(&master->dev, "failed to create message pump task\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | init_kthread_work(&master->pump_messages, spi_pump_messages); | 
|  |  | 
|  | /* | 
|  | * Master config will indicate if this controller should run the | 
|  | * message pump with high (realtime) priority to reduce the transfer | 
|  | * latency on the bus by minimising the delay between a transfer | 
|  | * request and the scheduling of the message pump thread. Without this | 
|  | * setting the message pump thread will remain at default priority. | 
|  | */ | 
|  | if (master->rt) { | 
|  | dev_info(&master->dev, | 
|  | "will run message pump with realtime priority\n"); | 
|  | sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_get_next_queued_message() - called by driver to check for queued | 
|  | * messages | 
|  | * @master: the master to check for queued messages | 
|  | * | 
|  | * If there are more messages in the queue, the next message is returned from | 
|  | * this call. | 
|  | */ | 
|  | struct spi_message *spi_get_next_queued_message(struct spi_master *master) | 
|  | { | 
|  | struct spi_message *next; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* get a pointer to the next message, if any */ | 
|  | spin_lock_irqsave(&master->queue_lock, flags); | 
|  | next = list_first_entry_or_null(&master->queue, struct spi_message, | 
|  | queue); | 
|  | spin_unlock_irqrestore(&master->queue_lock, flags); | 
|  |  | 
|  | return next; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_get_next_queued_message); | 
|  |  | 
|  | /** | 
|  | * spi_finalize_current_message() - the current message is complete | 
|  | * @master: the master to return the message to | 
|  | * | 
|  | * Called by the driver to notify the core that the message in the front of the | 
|  | * queue is complete and can be removed from the queue. | 
|  | */ | 
|  | void spi_finalize_current_message(struct spi_master *master) | 
|  | { | 
|  | struct spi_message *mesg; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | spin_lock_irqsave(&master->queue_lock, flags); | 
|  | mesg = master->cur_msg; | 
|  | master->cur_msg = NULL; | 
|  |  | 
|  | queue_kthread_work(&master->kworker, &master->pump_messages); | 
|  | spin_unlock_irqrestore(&master->queue_lock, flags); | 
|  |  | 
|  | spi_unmap_msg(master, mesg); | 
|  |  | 
|  | if (master->cur_msg_prepared && master->unprepare_message) { | 
|  | ret = master->unprepare_message(master, mesg); | 
|  | if (ret) { | 
|  | dev_err(&master->dev, | 
|  | "failed to unprepare message: %d\n", ret); | 
|  | } | 
|  | } | 
|  | master->cur_msg_prepared = false; | 
|  |  | 
|  | mesg->state = NULL; | 
|  | if (mesg->complete) | 
|  | mesg->complete(mesg->context); | 
|  |  | 
|  | trace_spi_message_done(mesg); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_finalize_current_message); | 
|  |  | 
|  | static int spi_start_queue(struct spi_master *master) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&master->queue_lock, flags); | 
|  |  | 
|  | if (master->running || master->busy) { | 
|  | spin_unlock_irqrestore(&master->queue_lock, flags); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | master->running = true; | 
|  | master->cur_msg = NULL; | 
|  | spin_unlock_irqrestore(&master->queue_lock, flags); | 
|  |  | 
|  | queue_kthread_work(&master->kworker, &master->pump_messages); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spi_stop_queue(struct spi_master *master) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned limit = 500; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock_irqsave(&master->queue_lock, flags); | 
|  |  | 
|  | /* | 
|  | * This is a bit lame, but is optimized for the common execution path. | 
|  | * A wait_queue on the master->busy could be used, but then the common | 
|  | * execution path (pump_messages) would be required to call wake_up or | 
|  | * friends on every SPI message. Do this instead. | 
|  | */ | 
|  | while ((!list_empty(&master->queue) || master->busy) && limit--) { | 
|  | spin_unlock_irqrestore(&master->queue_lock, flags); | 
|  | usleep_range(10000, 11000); | 
|  | spin_lock_irqsave(&master->queue_lock, flags); | 
|  | } | 
|  |  | 
|  | if (!list_empty(&master->queue) || master->busy) | 
|  | ret = -EBUSY; | 
|  | else | 
|  | master->running = false; | 
|  |  | 
|  | spin_unlock_irqrestore(&master->queue_lock, flags); | 
|  |  | 
|  | if (ret) { | 
|  | dev_warn(&master->dev, | 
|  | "could not stop message queue\n"); | 
|  | return ret; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spi_destroy_queue(struct spi_master *master) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = spi_stop_queue(master); | 
|  |  | 
|  | /* | 
|  | * flush_kthread_worker will block until all work is done. | 
|  | * If the reason that stop_queue timed out is that the work will never | 
|  | * finish, then it does no good to call flush/stop thread, so | 
|  | * return anyway. | 
|  | */ | 
|  | if (ret) { | 
|  | dev_err(&master->dev, "problem destroying queue\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | flush_kthread_worker(&master->kworker); | 
|  | kthread_stop(master->kworker_task); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_queued_transfer - transfer function for queued transfers | 
|  | * @spi: spi device which is requesting transfer | 
|  | * @msg: spi message which is to handled is queued to driver queue | 
|  | */ | 
|  | static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) | 
|  | { | 
|  | struct spi_master *master = spi->master; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&master->queue_lock, flags); | 
|  |  | 
|  | if (!master->running) { | 
|  | spin_unlock_irqrestore(&master->queue_lock, flags); | 
|  | return -ESHUTDOWN; | 
|  | } | 
|  | msg->actual_length = 0; | 
|  | msg->status = -EINPROGRESS; | 
|  |  | 
|  | list_add_tail(&msg->queue, &master->queue); | 
|  | if (!master->busy) | 
|  | queue_kthread_work(&master->kworker, &master->pump_messages); | 
|  |  | 
|  | spin_unlock_irqrestore(&master->queue_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spi_master_initialize_queue(struct spi_master *master) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | master->transfer = spi_queued_transfer; | 
|  | if (!master->transfer_one_message) | 
|  | master->transfer_one_message = spi_transfer_one_message; | 
|  |  | 
|  | /* Initialize and start queue */ | 
|  | ret = spi_init_queue(master); | 
|  | if (ret) { | 
|  | dev_err(&master->dev, "problem initializing queue\n"); | 
|  | goto err_init_queue; | 
|  | } | 
|  | master->queued = true; | 
|  | ret = spi_start_queue(master); | 
|  | if (ret) { | 
|  | dev_err(&master->dev, "problem starting queue\n"); | 
|  | goto err_start_queue; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_start_queue: | 
|  | spi_destroy_queue(master); | 
|  | err_init_queue: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | #if defined(CONFIG_OF) | 
|  | /** | 
|  | * of_register_spi_devices() - Register child devices onto the SPI bus | 
|  | * @master:	Pointer to spi_master device | 
|  | * | 
|  | * Registers an spi_device for each child node of master node which has a 'reg' | 
|  | * property. | 
|  | */ | 
|  | static void of_register_spi_devices(struct spi_master *master) | 
|  | { | 
|  | struct spi_device *spi; | 
|  | struct device_node *nc; | 
|  | int rc; | 
|  | u32 value; | 
|  |  | 
|  | if (!master->dev.of_node) | 
|  | return; | 
|  |  | 
|  | for_each_available_child_of_node(master->dev.of_node, nc) { | 
|  | /* Alloc an spi_device */ | 
|  | spi = spi_alloc_device(master); | 
|  | if (!spi) { | 
|  | dev_err(&master->dev, "spi_device alloc error for %s\n", | 
|  | nc->full_name); | 
|  | spi_dev_put(spi); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Select device driver */ | 
|  | if (of_modalias_node(nc, spi->modalias, | 
|  | sizeof(spi->modalias)) < 0) { | 
|  | dev_err(&master->dev, "cannot find modalias for %s\n", | 
|  | nc->full_name); | 
|  | spi_dev_put(spi); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Device address */ | 
|  | rc = of_property_read_u32(nc, "reg", &value); | 
|  | if (rc) { | 
|  | dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n", | 
|  | nc->full_name, rc); | 
|  | spi_dev_put(spi); | 
|  | continue; | 
|  | } | 
|  | spi->chip_select = value; | 
|  |  | 
|  | /* Mode (clock phase/polarity/etc.) */ | 
|  | if (of_find_property(nc, "spi-cpha", NULL)) | 
|  | spi->mode |= SPI_CPHA; | 
|  | if (of_find_property(nc, "spi-cpol", NULL)) | 
|  | spi->mode |= SPI_CPOL; | 
|  | if (of_find_property(nc, "spi-cs-high", NULL)) | 
|  | spi->mode |= SPI_CS_HIGH; | 
|  | if (of_find_property(nc, "spi-3wire", NULL)) | 
|  | spi->mode |= SPI_3WIRE; | 
|  | if (of_find_property(nc, "spi-lsb-first", NULL)) | 
|  | spi->mode |= SPI_LSB_FIRST; | 
|  |  | 
|  | /* Device DUAL/QUAD mode */ | 
|  | if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { | 
|  | switch (value) { | 
|  | case 1: | 
|  | break; | 
|  | case 2: | 
|  | spi->mode |= SPI_TX_DUAL; | 
|  | break; | 
|  | case 4: | 
|  | spi->mode |= SPI_TX_QUAD; | 
|  | break; | 
|  | default: | 
|  | dev_warn(&master->dev, | 
|  | "spi-tx-bus-width %d not supported\n", | 
|  | value); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { | 
|  | switch (value) { | 
|  | case 1: | 
|  | break; | 
|  | case 2: | 
|  | spi->mode |= SPI_RX_DUAL; | 
|  | break; | 
|  | case 4: | 
|  | spi->mode |= SPI_RX_QUAD; | 
|  | break; | 
|  | default: | 
|  | dev_warn(&master->dev, | 
|  | "spi-rx-bus-width %d not supported\n", | 
|  | value); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Device speed */ | 
|  | rc = of_property_read_u32(nc, "spi-max-frequency", &value); | 
|  | if (rc) { | 
|  | dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", | 
|  | nc->full_name, rc); | 
|  | spi_dev_put(spi); | 
|  | continue; | 
|  | } | 
|  | spi->max_speed_hz = value; | 
|  |  | 
|  | /* IRQ */ | 
|  | spi->irq = irq_of_parse_and_map(nc, 0); | 
|  |  | 
|  | /* Store a pointer to the node in the device structure */ | 
|  | of_node_get(nc); | 
|  | spi->dev.of_node = nc; | 
|  |  | 
|  | /* Register the new device */ | 
|  | request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias); | 
|  | rc = spi_add_device(spi); | 
|  | if (rc) { | 
|  | dev_err(&master->dev, "spi_device register error %s\n", | 
|  | nc->full_name); | 
|  | spi_dev_put(spi); | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void of_register_spi_devices(struct spi_master *master) { } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) | 
|  | { | 
|  | struct spi_device *spi = data; | 
|  |  | 
|  | if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { | 
|  | struct acpi_resource_spi_serialbus *sb; | 
|  |  | 
|  | sb = &ares->data.spi_serial_bus; | 
|  | if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { | 
|  | spi->chip_select = sb->device_selection; | 
|  | spi->max_speed_hz = sb->connection_speed; | 
|  |  | 
|  | if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) | 
|  | spi->mode |= SPI_CPHA; | 
|  | if (sb->clock_polarity == ACPI_SPI_START_HIGH) | 
|  | spi->mode |= SPI_CPOL; | 
|  | if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) | 
|  | spi->mode |= SPI_CS_HIGH; | 
|  | } | 
|  | } else if (spi->irq < 0) { | 
|  | struct resource r; | 
|  |  | 
|  | if (acpi_dev_resource_interrupt(ares, 0, &r)) | 
|  | spi->irq = r.start; | 
|  | } | 
|  |  | 
|  | /* Always tell the ACPI core to skip this resource */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, | 
|  | void *data, void **return_value) | 
|  | { | 
|  | struct spi_master *master = data; | 
|  | struct list_head resource_list; | 
|  | struct acpi_device *adev; | 
|  | struct spi_device *spi; | 
|  | int ret; | 
|  |  | 
|  | if (acpi_bus_get_device(handle, &adev)) | 
|  | return AE_OK; | 
|  | if (acpi_bus_get_status(adev) || !adev->status.present) | 
|  | return AE_OK; | 
|  |  | 
|  | spi = spi_alloc_device(master); | 
|  | if (!spi) { | 
|  | dev_err(&master->dev, "failed to allocate SPI device for %s\n", | 
|  | dev_name(&adev->dev)); | 
|  | return AE_NO_MEMORY; | 
|  | } | 
|  |  | 
|  | ACPI_COMPANION_SET(&spi->dev, adev); | 
|  | spi->irq = -1; | 
|  |  | 
|  | INIT_LIST_HEAD(&resource_list); | 
|  | ret = acpi_dev_get_resources(adev, &resource_list, | 
|  | acpi_spi_add_resource, spi); | 
|  | acpi_dev_free_resource_list(&resource_list); | 
|  |  | 
|  | if (ret < 0 || !spi->max_speed_hz) { | 
|  | spi_dev_put(spi); | 
|  | return AE_OK; | 
|  | } | 
|  |  | 
|  | adev->power.flags.ignore_parent = true; | 
|  | strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias)); | 
|  | if (spi_add_device(spi)) { | 
|  | adev->power.flags.ignore_parent = false; | 
|  | dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", | 
|  | dev_name(&adev->dev)); | 
|  | spi_dev_put(spi); | 
|  | } | 
|  |  | 
|  | return AE_OK; | 
|  | } | 
|  |  | 
|  | static void acpi_register_spi_devices(struct spi_master *master) | 
|  | { | 
|  | acpi_status status; | 
|  | acpi_handle handle; | 
|  |  | 
|  | handle = ACPI_HANDLE(master->dev.parent); | 
|  | if (!handle) | 
|  | return; | 
|  |  | 
|  | status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, | 
|  | acpi_spi_add_device, NULL, | 
|  | master, NULL); | 
|  | if (ACPI_FAILURE(status)) | 
|  | dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); | 
|  | } | 
|  | #else | 
|  | static inline void acpi_register_spi_devices(struct spi_master *master) {} | 
|  | #endif /* CONFIG_ACPI */ | 
|  |  | 
|  | static void spi_master_release(struct device *dev) | 
|  | { | 
|  | struct spi_master *master; | 
|  |  | 
|  | master = container_of(dev, struct spi_master, dev); | 
|  | kfree(master); | 
|  | } | 
|  |  | 
|  | static struct class spi_master_class = { | 
|  | .name		= "spi_master", | 
|  | .owner		= THIS_MODULE, | 
|  | .dev_release	= spi_master_release, | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | /** | 
|  | * spi_alloc_master - allocate SPI master controller | 
|  | * @dev: the controller, possibly using the platform_bus | 
|  | * @size: how much zeroed driver-private data to allocate; the pointer to this | 
|  | *	memory is in the driver_data field of the returned device, | 
|  | *	accessible with spi_master_get_devdata(). | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call is used only by SPI master controller drivers, which are the | 
|  | * only ones directly touching chip registers.  It's how they allocate | 
|  | * an spi_master structure, prior to calling spi_register_master(). | 
|  | * | 
|  | * This must be called from context that can sleep.  It returns the SPI | 
|  | * master structure on success, else NULL. | 
|  | * | 
|  | * The caller is responsible for assigning the bus number and initializing | 
|  | * the master's methods before calling spi_register_master(); and (after errors | 
|  | * adding the device) calling spi_master_put() and kfree() to prevent a memory | 
|  | * leak. | 
|  | */ | 
|  | struct spi_master *spi_alloc_master(struct device *dev, unsigned size) | 
|  | { | 
|  | struct spi_master	*master; | 
|  |  | 
|  | if (!dev) | 
|  | return NULL; | 
|  |  | 
|  | master = kzalloc(size + sizeof(*master), GFP_KERNEL); | 
|  | if (!master) | 
|  | return NULL; | 
|  |  | 
|  | device_initialize(&master->dev); | 
|  | master->bus_num = -1; | 
|  | master->num_chipselect = 1; | 
|  | master->dev.class = &spi_master_class; | 
|  | master->dev.parent = get_device(dev); | 
|  | spi_master_set_devdata(master, &master[1]); | 
|  |  | 
|  | return master; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_alloc_master); | 
|  |  | 
|  | #ifdef CONFIG_OF | 
|  | static int of_spi_register_master(struct spi_master *master) | 
|  | { | 
|  | int nb, i, *cs; | 
|  | struct device_node *np = master->dev.of_node; | 
|  |  | 
|  | if (!np) | 
|  | return 0; | 
|  |  | 
|  | nb = of_gpio_named_count(np, "cs-gpios"); | 
|  | master->num_chipselect = max_t(int, nb, master->num_chipselect); | 
|  |  | 
|  | /* Return error only for an incorrectly formed cs-gpios property */ | 
|  | if (nb == 0 || nb == -ENOENT) | 
|  | return 0; | 
|  | else if (nb < 0) | 
|  | return nb; | 
|  |  | 
|  | cs = devm_kzalloc(&master->dev, | 
|  | sizeof(int) * master->num_chipselect, | 
|  | GFP_KERNEL); | 
|  | master->cs_gpios = cs; | 
|  |  | 
|  | if (!master->cs_gpios) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < master->num_chipselect; i++) | 
|  | cs[i] = -ENOENT; | 
|  |  | 
|  | for (i = 0; i < nb; i++) | 
|  | cs[i] = of_get_named_gpio(np, "cs-gpios", i); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static int of_spi_register_master(struct spi_master *master) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * spi_register_master - register SPI master controller | 
|  | * @master: initialized master, originally from spi_alloc_master() | 
|  | * Context: can sleep | 
|  | * | 
|  | * SPI master controllers connect to their drivers using some non-SPI bus, | 
|  | * such as the platform bus.  The final stage of probe() in that code | 
|  | * includes calling spi_register_master() to hook up to this SPI bus glue. | 
|  | * | 
|  | * SPI controllers use board specific (often SOC specific) bus numbers, | 
|  | * and board-specific addressing for SPI devices combines those numbers | 
|  | * with chip select numbers.  Since SPI does not directly support dynamic | 
|  | * device identification, boards need configuration tables telling which | 
|  | * chip is at which address. | 
|  | * | 
|  | * This must be called from context that can sleep.  It returns zero on | 
|  | * success, else a negative error code (dropping the master's refcount). | 
|  | * After a successful return, the caller is responsible for calling | 
|  | * spi_unregister_master(). | 
|  | */ | 
|  | int spi_register_master(struct spi_master *master) | 
|  | { | 
|  | static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1); | 
|  | struct device		*dev = master->dev.parent; | 
|  | struct boardinfo	*bi; | 
|  | int			status = -ENODEV; | 
|  | int			dynamic = 0; | 
|  |  | 
|  | if (!dev) | 
|  | return -ENODEV; | 
|  |  | 
|  | status = of_spi_register_master(master); | 
|  | if (status) | 
|  | return status; | 
|  |  | 
|  | /* even if it's just one always-selected device, there must | 
|  | * be at least one chipselect | 
|  | */ | 
|  | if (master->num_chipselect == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((master->bus_num < 0) && master->dev.of_node) | 
|  | master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); | 
|  |  | 
|  | /* convention:  dynamically assigned bus IDs count down from the max */ | 
|  | if (master->bus_num < 0) { | 
|  | /* FIXME switch to an IDR based scheme, something like | 
|  | * I2C now uses, so we can't run out of "dynamic" IDs | 
|  | */ | 
|  | master->bus_num = atomic_dec_return(&dyn_bus_id); | 
|  | dynamic = 1; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&master->bus_lock_spinlock); | 
|  | mutex_init(&master->bus_lock_mutex); | 
|  | master->bus_lock_flag = 0; | 
|  | init_completion(&master->xfer_completion); | 
|  | if (!master->max_dma_len) | 
|  | master->max_dma_len = INT_MAX; | 
|  |  | 
|  | /* register the device, then userspace will see it. | 
|  | * registration fails if the bus ID is in use. | 
|  | */ | 
|  | dev_set_name(&master->dev, "spi%u", master->bus_num); | 
|  | status = device_add(&master->dev); | 
|  | if (status < 0) | 
|  | goto done; | 
|  | dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), | 
|  | dynamic ? " (dynamic)" : ""); | 
|  |  | 
|  | /* If we're using a queued driver, start the queue */ | 
|  | if (master->transfer) | 
|  | dev_info(dev, "master is unqueued, this is deprecated\n"); | 
|  | else { | 
|  | status = spi_master_initialize_queue(master); | 
|  | if (status) { | 
|  | device_del(&master->dev); | 
|  | goto done; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_lock(&board_lock); | 
|  | list_add_tail(&master->list, &spi_master_list); | 
|  | list_for_each_entry(bi, &board_list, list) | 
|  | spi_match_master_to_boardinfo(master, &bi->board_info); | 
|  | mutex_unlock(&board_lock); | 
|  |  | 
|  | /* Register devices from the device tree and ACPI */ | 
|  | of_register_spi_devices(master); | 
|  | acpi_register_spi_devices(master); | 
|  | done: | 
|  | return status; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_register_master); | 
|  |  | 
|  | static void devm_spi_unregister(struct device *dev, void *res) | 
|  | { | 
|  | spi_unregister_master(*(struct spi_master **)res); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dev_spi_register_master - register managed SPI master controller | 
|  | * @dev:    device managing SPI master | 
|  | * @master: initialized master, originally from spi_alloc_master() | 
|  | * Context: can sleep | 
|  | * | 
|  | * Register a SPI device as with spi_register_master() which will | 
|  | * automatically be unregister | 
|  | */ | 
|  | int devm_spi_register_master(struct device *dev, struct spi_master *master) | 
|  | { | 
|  | struct spi_master **ptr; | 
|  | int ret; | 
|  |  | 
|  | ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); | 
|  | if (!ptr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = spi_register_master(master); | 
|  | if (!ret) { | 
|  | *ptr = master; | 
|  | devres_add(dev, ptr); | 
|  | } else { | 
|  | devres_free(ptr); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(devm_spi_register_master); | 
|  |  | 
|  | static int __unregister(struct device *dev, void *null) | 
|  | { | 
|  | spi_unregister_device(to_spi_device(dev)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_unregister_master - unregister SPI master controller | 
|  | * @master: the master being unregistered | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call is used only by SPI master controller drivers, which are the | 
|  | * only ones directly touching chip registers. | 
|  | * | 
|  | * This must be called from context that can sleep. | 
|  | */ | 
|  | void spi_unregister_master(struct spi_master *master) | 
|  | { | 
|  | int dummy; | 
|  |  | 
|  | if (master->queued) { | 
|  | if (spi_destroy_queue(master)) | 
|  | dev_err(&master->dev, "queue remove failed\n"); | 
|  | } | 
|  |  | 
|  | mutex_lock(&board_lock); | 
|  | list_del(&master->list); | 
|  | mutex_unlock(&board_lock); | 
|  |  | 
|  | dummy = device_for_each_child(&master->dev, NULL, __unregister); | 
|  | device_unregister(&master->dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_unregister_master); | 
|  |  | 
|  | int spi_master_suspend(struct spi_master *master) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Basically no-ops for non-queued masters */ | 
|  | if (!master->queued) | 
|  | return 0; | 
|  |  | 
|  | ret = spi_stop_queue(master); | 
|  | if (ret) | 
|  | dev_err(&master->dev, "queue stop failed\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_master_suspend); | 
|  |  | 
|  | int spi_master_resume(struct spi_master *master) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!master->queued) | 
|  | return 0; | 
|  |  | 
|  | ret = spi_start_queue(master); | 
|  | if (ret) | 
|  | dev_err(&master->dev, "queue restart failed\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_master_resume); | 
|  |  | 
|  | static int __spi_master_match(struct device *dev, const void *data) | 
|  | { | 
|  | struct spi_master *m; | 
|  | const u16 *bus_num = data; | 
|  |  | 
|  | m = container_of(dev, struct spi_master, dev); | 
|  | return m->bus_num == *bus_num; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_busnum_to_master - look up master associated with bus_num | 
|  | * @bus_num: the master's bus number | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call may be used with devices that are registered after | 
|  | * arch init time.  It returns a refcounted pointer to the relevant | 
|  | * spi_master (which the caller must release), or NULL if there is | 
|  | * no such master registered. | 
|  | */ | 
|  | struct spi_master *spi_busnum_to_master(u16 bus_num) | 
|  | { | 
|  | struct device		*dev; | 
|  | struct spi_master	*master = NULL; | 
|  |  | 
|  | dev = class_find_device(&spi_master_class, NULL, &bus_num, | 
|  | __spi_master_match); | 
|  | if (dev) | 
|  | master = container_of(dev, struct spi_master, dev); | 
|  | /* reference got in class_find_device */ | 
|  | return master; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_busnum_to_master); | 
|  |  | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Core methods for SPI master protocol drivers.  Some of the | 
|  | * other core methods are currently defined as inline functions. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * spi_setup - setup SPI mode and clock rate | 
|  | * @spi: the device whose settings are being modified | 
|  | * Context: can sleep, and no requests are queued to the device | 
|  | * | 
|  | * SPI protocol drivers may need to update the transfer mode if the | 
|  | * device doesn't work with its default.  They may likewise need | 
|  | * to update clock rates or word sizes from initial values.  This function | 
|  | * changes those settings, and must be called from a context that can sleep. | 
|  | * Except for SPI_CS_HIGH, which takes effect immediately, the changes take | 
|  | * effect the next time the device is selected and data is transferred to | 
|  | * or from it.  When this function returns, the spi device is deselected. | 
|  | * | 
|  | * Note that this call will fail if the protocol driver specifies an option | 
|  | * that the underlying controller or its driver does not support.  For | 
|  | * example, not all hardware supports wire transfers using nine bit words, | 
|  | * LSB-first wire encoding, or active-high chipselects. | 
|  | */ | 
|  | int spi_setup(struct spi_device *spi) | 
|  | { | 
|  | unsigned	bad_bits, ugly_bits; | 
|  | int		status = 0; | 
|  |  | 
|  | /* check mode to prevent that DUAL and QUAD set at the same time | 
|  | */ | 
|  | if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || | 
|  | ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { | 
|  | dev_err(&spi->dev, | 
|  | "setup: can not select dual and quad at the same time\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden | 
|  | */ | 
|  | if ((spi->mode & SPI_3WIRE) && (spi->mode & | 
|  | (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) | 
|  | return -EINVAL; | 
|  | /* help drivers fail *cleanly* when they need options | 
|  | * that aren't supported with their current master | 
|  | */ | 
|  | bad_bits = spi->mode & ~spi->master->mode_bits; | 
|  | ugly_bits = bad_bits & | 
|  | (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); | 
|  | if (ugly_bits) { | 
|  | dev_warn(&spi->dev, | 
|  | "setup: ignoring unsupported mode bits %x\n", | 
|  | ugly_bits); | 
|  | spi->mode &= ~ugly_bits; | 
|  | bad_bits &= ~ugly_bits; | 
|  | } | 
|  | if (bad_bits) { | 
|  | dev_err(&spi->dev, "setup: unsupported mode bits %x\n", | 
|  | bad_bits); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!spi->bits_per_word) | 
|  | spi->bits_per_word = 8; | 
|  |  | 
|  | if (!spi->max_speed_hz) | 
|  | spi->max_speed_hz = spi->master->max_speed_hz; | 
|  |  | 
|  | if (spi->master->setup) | 
|  | status = spi->master->setup(spi); | 
|  |  | 
|  | dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", | 
|  | (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), | 
|  | (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", | 
|  | (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", | 
|  | (spi->mode & SPI_3WIRE) ? "3wire, " : "", | 
|  | (spi->mode & SPI_LOOP) ? "loopback, " : "", | 
|  | spi->bits_per_word, spi->max_speed_hz, | 
|  | status); | 
|  |  | 
|  | return status; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_setup); | 
|  |  | 
|  | static int __spi_validate(struct spi_device *spi, struct spi_message *message) | 
|  | { | 
|  | struct spi_master *master = spi->master; | 
|  | struct spi_transfer *xfer; | 
|  | int w_size; | 
|  |  | 
|  | if (list_empty(&message->transfers)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Half-duplex links include original MicroWire, and ones with | 
|  | * only one data pin like SPI_3WIRE (switches direction) or where | 
|  | * either MOSI or MISO is missing.  They can also be caused by | 
|  | * software limitations. | 
|  | */ | 
|  | if ((master->flags & SPI_MASTER_HALF_DUPLEX) | 
|  | || (spi->mode & SPI_3WIRE)) { | 
|  | unsigned flags = master->flags; | 
|  |  | 
|  | list_for_each_entry(xfer, &message->transfers, transfer_list) { | 
|  | if (xfer->rx_buf && xfer->tx_buf) | 
|  | return -EINVAL; | 
|  | if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) | 
|  | return -EINVAL; | 
|  | if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Set transfer bits_per_word and max speed as spi device default if | 
|  | * it is not set for this transfer. | 
|  | * Set transfer tx_nbits and rx_nbits as single transfer default | 
|  | * (SPI_NBITS_SINGLE) if it is not set for this transfer. | 
|  | */ | 
|  | list_for_each_entry(xfer, &message->transfers, transfer_list) { | 
|  | message->frame_length += xfer->len; | 
|  | if (!xfer->bits_per_word) | 
|  | xfer->bits_per_word = spi->bits_per_word; | 
|  |  | 
|  | if (!xfer->speed_hz) | 
|  | xfer->speed_hz = spi->max_speed_hz; | 
|  |  | 
|  | if (master->max_speed_hz && | 
|  | xfer->speed_hz > master->max_speed_hz) | 
|  | xfer->speed_hz = master->max_speed_hz; | 
|  |  | 
|  | if (master->bits_per_word_mask) { | 
|  | /* Only 32 bits fit in the mask */ | 
|  | if (xfer->bits_per_word > 32) | 
|  | return -EINVAL; | 
|  | if (!(master->bits_per_word_mask & | 
|  | BIT(xfer->bits_per_word - 1))) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SPI transfer length should be multiple of SPI word size | 
|  | * where SPI word size should be power-of-two multiple | 
|  | */ | 
|  | if (xfer->bits_per_word <= 8) | 
|  | w_size = 1; | 
|  | else if (xfer->bits_per_word <= 16) | 
|  | w_size = 2; | 
|  | else | 
|  | w_size = 4; | 
|  |  | 
|  | /* No partial transfers accepted */ | 
|  | if (xfer->len % w_size) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (xfer->speed_hz && master->min_speed_hz && | 
|  | xfer->speed_hz < master->min_speed_hz) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (xfer->tx_buf && !xfer->tx_nbits) | 
|  | xfer->tx_nbits = SPI_NBITS_SINGLE; | 
|  | if (xfer->rx_buf && !xfer->rx_nbits) | 
|  | xfer->rx_nbits = SPI_NBITS_SINGLE; | 
|  | /* check transfer tx/rx_nbits: | 
|  | * 1. check the value matches one of single, dual and quad | 
|  | * 2. check tx/rx_nbits match the mode in spi_device | 
|  | */ | 
|  | if (xfer->tx_buf) { | 
|  | if (xfer->tx_nbits != SPI_NBITS_SINGLE && | 
|  | xfer->tx_nbits != SPI_NBITS_DUAL && | 
|  | xfer->tx_nbits != SPI_NBITS_QUAD) | 
|  | return -EINVAL; | 
|  | if ((xfer->tx_nbits == SPI_NBITS_DUAL) && | 
|  | !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) | 
|  | return -EINVAL; | 
|  | if ((xfer->tx_nbits == SPI_NBITS_QUAD) && | 
|  | !(spi->mode & SPI_TX_QUAD)) | 
|  | return -EINVAL; | 
|  | } | 
|  | /* check transfer rx_nbits */ | 
|  | if (xfer->rx_buf) { | 
|  | if (xfer->rx_nbits != SPI_NBITS_SINGLE && | 
|  | xfer->rx_nbits != SPI_NBITS_DUAL && | 
|  | xfer->rx_nbits != SPI_NBITS_QUAD) | 
|  | return -EINVAL; | 
|  | if ((xfer->rx_nbits == SPI_NBITS_DUAL) && | 
|  | !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) | 
|  | return -EINVAL; | 
|  | if ((xfer->rx_nbits == SPI_NBITS_QUAD) && | 
|  | !(spi->mode & SPI_RX_QUAD)) | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | message->status = -EINPROGRESS; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __spi_async(struct spi_device *spi, struct spi_message *message) | 
|  | { | 
|  | struct spi_master *master = spi->master; | 
|  |  | 
|  | message->spi = spi; | 
|  |  | 
|  | trace_spi_message_submit(message); | 
|  |  | 
|  | return master->transfer(spi, message); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_async - asynchronous SPI transfer | 
|  | * @spi: device with which data will be exchanged | 
|  | * @message: describes the data transfers, including completion callback | 
|  | * Context: any (irqs may be blocked, etc) | 
|  | * | 
|  | * This call may be used in_irq and other contexts which can't sleep, | 
|  | * as well as from task contexts which can sleep. | 
|  | * | 
|  | * The completion callback is invoked in a context which can't sleep. | 
|  | * Before that invocation, the value of message->status is undefined. | 
|  | * When the callback is issued, message->status holds either zero (to | 
|  | * indicate complete success) or a negative error code.  After that | 
|  | * callback returns, the driver which issued the transfer request may | 
|  | * deallocate the associated memory; it's no longer in use by any SPI | 
|  | * core or controller driver code. | 
|  | * | 
|  | * Note that although all messages to a spi_device are handled in | 
|  | * FIFO order, messages may go to different devices in other orders. | 
|  | * Some device might be higher priority, or have various "hard" access | 
|  | * time requirements, for example. | 
|  | * | 
|  | * On detection of any fault during the transfer, processing of | 
|  | * the entire message is aborted, and the device is deselected. | 
|  | * Until returning from the associated message completion callback, | 
|  | * no other spi_message queued to that device will be processed. | 
|  | * (This rule applies equally to all the synchronous transfer calls, | 
|  | * which are wrappers around this core asynchronous primitive.) | 
|  | */ | 
|  | int spi_async(struct spi_device *spi, struct spi_message *message) | 
|  | { | 
|  | struct spi_master *master = spi->master; | 
|  | int ret; | 
|  | unsigned long flags; | 
|  |  | 
|  | ret = __spi_validate(spi, message); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | spin_lock_irqsave(&master->bus_lock_spinlock, flags); | 
|  |  | 
|  | if (master->bus_lock_flag) | 
|  | ret = -EBUSY; | 
|  | else | 
|  | ret = __spi_async(spi, message); | 
|  |  | 
|  | spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_async); | 
|  |  | 
|  | /** | 
|  | * spi_async_locked - version of spi_async with exclusive bus usage | 
|  | * @spi: device with which data will be exchanged | 
|  | * @message: describes the data transfers, including completion callback | 
|  | * Context: any (irqs may be blocked, etc) | 
|  | * | 
|  | * This call may be used in_irq and other contexts which can't sleep, | 
|  | * as well as from task contexts which can sleep. | 
|  | * | 
|  | * The completion callback is invoked in a context which can't sleep. | 
|  | * Before that invocation, the value of message->status is undefined. | 
|  | * When the callback is issued, message->status holds either zero (to | 
|  | * indicate complete success) or a negative error code.  After that | 
|  | * callback returns, the driver which issued the transfer request may | 
|  | * deallocate the associated memory; it's no longer in use by any SPI | 
|  | * core or controller driver code. | 
|  | * | 
|  | * Note that although all messages to a spi_device are handled in | 
|  | * FIFO order, messages may go to different devices in other orders. | 
|  | * Some device might be higher priority, or have various "hard" access | 
|  | * time requirements, for example. | 
|  | * | 
|  | * On detection of any fault during the transfer, processing of | 
|  | * the entire message is aborted, and the device is deselected. | 
|  | * Until returning from the associated message completion callback, | 
|  | * no other spi_message queued to that device will be processed. | 
|  | * (This rule applies equally to all the synchronous transfer calls, | 
|  | * which are wrappers around this core asynchronous primitive.) | 
|  | */ | 
|  | int spi_async_locked(struct spi_device *spi, struct spi_message *message) | 
|  | { | 
|  | struct spi_master *master = spi->master; | 
|  | int ret; | 
|  | unsigned long flags; | 
|  |  | 
|  | ret = __spi_validate(spi, message); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | spin_lock_irqsave(&master->bus_lock_spinlock, flags); | 
|  |  | 
|  | ret = __spi_async(spi, message); | 
|  |  | 
|  | spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_async_locked); | 
|  |  | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Utility methods for SPI master protocol drivers, layered on | 
|  | * top of the core.  Some other utility methods are defined as | 
|  | * inline functions. | 
|  | */ | 
|  |  | 
|  | static void spi_complete(void *arg) | 
|  | { | 
|  | complete(arg); | 
|  | } | 
|  |  | 
|  | static int __spi_sync(struct spi_device *spi, struct spi_message *message, | 
|  | int bus_locked) | 
|  | { | 
|  | DECLARE_COMPLETION_ONSTACK(done); | 
|  | int status; | 
|  | struct spi_master *master = spi->master; | 
|  |  | 
|  | message->complete = spi_complete; | 
|  | message->context = &done; | 
|  |  | 
|  | if (!bus_locked) | 
|  | mutex_lock(&master->bus_lock_mutex); | 
|  |  | 
|  | status = spi_async_locked(spi, message); | 
|  |  | 
|  | if (!bus_locked) | 
|  | mutex_unlock(&master->bus_lock_mutex); | 
|  |  | 
|  | if (status == 0) { | 
|  | wait_for_completion(&done); | 
|  | status = message->status; | 
|  | } | 
|  | message->context = NULL; | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * spi_sync - blocking/synchronous SPI data transfers | 
|  | * @spi: device with which data will be exchanged | 
|  | * @message: describes the data transfers | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call may only be used from a context that may sleep.  The sleep | 
|  | * is non-interruptible, and has no timeout.  Low-overhead controller | 
|  | * drivers may DMA directly into and out of the message buffers. | 
|  | * | 
|  | * Note that the SPI device's chip select is active during the message, | 
|  | * and then is normally disabled between messages.  Drivers for some | 
|  | * frequently-used devices may want to minimize costs of selecting a chip, | 
|  | * by leaving it selected in anticipation that the next message will go | 
|  | * to the same chip.  (That may increase power usage.) | 
|  | * | 
|  | * Also, the caller is guaranteeing that the memory associated with the | 
|  | * message will not be freed before this call returns. | 
|  | * | 
|  | * It returns zero on success, else a negative error code. | 
|  | */ | 
|  | int spi_sync(struct spi_device *spi, struct spi_message *message) | 
|  | { | 
|  | return __spi_sync(spi, message, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_sync); | 
|  |  | 
|  | /** | 
|  | * spi_sync_locked - version of spi_sync with exclusive bus usage | 
|  | * @spi: device with which data will be exchanged | 
|  | * @message: describes the data transfers | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call may only be used from a context that may sleep.  The sleep | 
|  | * is non-interruptible, and has no timeout.  Low-overhead controller | 
|  | * drivers may DMA directly into and out of the message buffers. | 
|  | * | 
|  | * This call should be used by drivers that require exclusive access to the | 
|  | * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must | 
|  | * be released by a spi_bus_unlock call when the exclusive access is over. | 
|  | * | 
|  | * It returns zero on success, else a negative error code. | 
|  | */ | 
|  | int spi_sync_locked(struct spi_device *spi, struct spi_message *message) | 
|  | { | 
|  | return __spi_sync(spi, message, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_sync_locked); | 
|  |  | 
|  | /** | 
|  | * spi_bus_lock - obtain a lock for exclusive SPI bus usage | 
|  | * @master: SPI bus master that should be locked for exclusive bus access | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call may only be used from a context that may sleep.  The sleep | 
|  | * is non-interruptible, and has no timeout. | 
|  | * | 
|  | * This call should be used by drivers that require exclusive access to the | 
|  | * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the | 
|  | * exclusive access is over. Data transfer must be done by spi_sync_locked | 
|  | * and spi_async_locked calls when the SPI bus lock is held. | 
|  | * | 
|  | * It returns zero on success, else a negative error code. | 
|  | */ | 
|  | int spi_bus_lock(struct spi_master *master) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | mutex_lock(&master->bus_lock_mutex); | 
|  |  | 
|  | spin_lock_irqsave(&master->bus_lock_spinlock, flags); | 
|  | master->bus_lock_flag = 1; | 
|  | spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); | 
|  |  | 
|  | /* mutex remains locked until spi_bus_unlock is called */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_bus_lock); | 
|  |  | 
|  | /** | 
|  | * spi_bus_unlock - release the lock for exclusive SPI bus usage | 
|  | * @master: SPI bus master that was locked for exclusive bus access | 
|  | * Context: can sleep | 
|  | * | 
|  | * This call may only be used from a context that may sleep.  The sleep | 
|  | * is non-interruptible, and has no timeout. | 
|  | * | 
|  | * This call releases an SPI bus lock previously obtained by an spi_bus_lock | 
|  | * call. | 
|  | * | 
|  | * It returns zero on success, else a negative error code. | 
|  | */ | 
|  | int spi_bus_unlock(struct spi_master *master) | 
|  | { | 
|  | master->bus_lock_flag = 0; | 
|  |  | 
|  | mutex_unlock(&master->bus_lock_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_bus_unlock); | 
|  |  | 
|  | /* portable code must never pass more than 32 bytes */ | 
|  | #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES) | 
|  |  | 
|  | static u8	*buf; | 
|  |  | 
|  | /** | 
|  | * spi_write_then_read - SPI synchronous write followed by read | 
|  | * @spi: device with which data will be exchanged | 
|  | * @txbuf: data to be written (need not be dma-safe) | 
|  | * @n_tx: size of txbuf, in bytes | 
|  | * @rxbuf: buffer into which data will be read (need not be dma-safe) | 
|  | * @n_rx: size of rxbuf, in bytes | 
|  | * Context: can sleep | 
|  | * | 
|  | * This performs a half duplex MicroWire style transaction with the | 
|  | * device, sending txbuf and then reading rxbuf.  The return value | 
|  | * is zero for success, else a negative errno status code. | 
|  | * This call may only be used from a context that may sleep. | 
|  | * | 
|  | * Parameters to this routine are always copied using a small buffer; | 
|  | * portable code should never use this for more than 32 bytes. | 
|  | * Performance-sensitive or bulk transfer code should instead use | 
|  | * spi_{async,sync}() calls with dma-safe buffers. | 
|  | */ | 
|  | int spi_write_then_read(struct spi_device *spi, | 
|  | const void *txbuf, unsigned n_tx, | 
|  | void *rxbuf, unsigned n_rx) | 
|  | { | 
|  | static DEFINE_MUTEX(lock); | 
|  |  | 
|  | int			status; | 
|  | struct spi_message	message; | 
|  | struct spi_transfer	x[2]; | 
|  | u8			*local_buf; | 
|  |  | 
|  | /* Use preallocated DMA-safe buffer if we can.  We can't avoid | 
|  | * copying here, (as a pure convenience thing), but we can | 
|  | * keep heap costs out of the hot path unless someone else is | 
|  | * using the pre-allocated buffer or the transfer is too large. | 
|  | */ | 
|  | if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { | 
|  | local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), | 
|  | GFP_KERNEL | GFP_DMA); | 
|  | if (!local_buf) | 
|  | return -ENOMEM; | 
|  | } else { | 
|  | local_buf = buf; | 
|  | } | 
|  |  | 
|  | spi_message_init(&message); | 
|  | memset(x, 0, sizeof(x)); | 
|  | if (n_tx) { | 
|  | x[0].len = n_tx; | 
|  | spi_message_add_tail(&x[0], &message); | 
|  | } | 
|  | if (n_rx) { | 
|  | x[1].len = n_rx; | 
|  | spi_message_add_tail(&x[1], &message); | 
|  | } | 
|  |  | 
|  | memcpy(local_buf, txbuf, n_tx); | 
|  | x[0].tx_buf = local_buf; | 
|  | x[1].rx_buf = local_buf + n_tx; | 
|  |  | 
|  | /* do the i/o */ | 
|  | status = spi_sync(spi, &message); | 
|  | if (status == 0) | 
|  | memcpy(rxbuf, x[1].rx_buf, n_rx); | 
|  |  | 
|  | if (x[0].tx_buf == buf) | 
|  | mutex_unlock(&lock); | 
|  | else | 
|  | kfree(local_buf); | 
|  |  | 
|  | return status; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(spi_write_then_read); | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static int __init spi_init(void) | 
|  | { | 
|  | int	status; | 
|  |  | 
|  | buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); | 
|  | if (!buf) { | 
|  | status = -ENOMEM; | 
|  | goto err0; | 
|  | } | 
|  |  | 
|  | status = bus_register(&spi_bus_type); | 
|  | if (status < 0) | 
|  | goto err1; | 
|  |  | 
|  | status = class_register(&spi_master_class); | 
|  | if (status < 0) | 
|  | goto err2; | 
|  | return 0; | 
|  |  | 
|  | err2: | 
|  | bus_unregister(&spi_bus_type); | 
|  | err1: | 
|  | kfree(buf); | 
|  | buf = NULL; | 
|  | err0: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* board_info is normally registered in arch_initcall(), | 
|  | * but even essential drivers wait till later | 
|  | * | 
|  | * REVISIT only boardinfo really needs static linking. the rest (device and | 
|  | * driver registration) _could_ be dynamically linked (modular) ... costs | 
|  | * include needing to have boardinfo data structures be much more public. | 
|  | */ | 
|  | postcore_initcall(spi_init); | 
|  |  |