| /* | 
 |  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. | 
 |  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License | 
 |  * as published by the Free Software Foundation; either version 2 | 
 |  * of the License, or (at your option) any later version. | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, | 
 |  * MA 02110-1301, USA. | 
 |  */ | 
 |  | 
 | #include <linux/delay.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mtd/mtd.h> | 
 | #include <linux/mtd/nand.h> | 
 | #include <linux/mtd/partitions.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/device.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/err.h> | 
 | #include <linux/io.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/completion.h> | 
 |  | 
 | #include <asm/mach/flash.h> | 
 | #include <mach/mxc_nand.h> | 
 | #include <mach/hardware.h> | 
 |  | 
 | #define DRIVER_NAME "mxc_nand" | 
 |  | 
 | #define nfc_is_v21()		(cpu_is_mx25() || cpu_is_mx35()) | 
 | #define nfc_is_v1()		(cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21()) | 
 | #define nfc_is_v3_2()		cpu_is_mx51() | 
 | #define nfc_is_v3()		nfc_is_v3_2() | 
 |  | 
 | /* Addresses for NFC registers */ | 
 | #define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00) | 
 | #define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04) | 
 | #define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06) | 
 | #define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08) | 
 | #define NFC_V1_V2_CONFIG		(host->regs + 0x0a) | 
 | #define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c) | 
 | #define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e) | 
 | #define NFC_V1_V2_RSLTSPARE_AREA	(host->regs + 0x10) | 
 | #define NFC_V1_V2_WRPROT		(host->regs + 0x12) | 
 | #define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14) | 
 | #define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16) | 
 | #define NFC_V21_UNLOCKSTART_BLKADDR	(host->regs + 0x20) | 
 | #define NFC_V21_UNLOCKEND_BLKADDR	(host->regs + 0x22) | 
 | #define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18) | 
 | #define NFC_V1_V2_CONFIG1		(host->regs + 0x1a) | 
 | #define NFC_V1_V2_CONFIG2		(host->regs + 0x1c) | 
 |  | 
 | #define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0) | 
 | #define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2) | 
 | #define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3) | 
 | #define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4) | 
 | #define NFC_V1_V2_CONFIG1_BIG		(1 << 5) | 
 | #define NFC_V1_V2_CONFIG1_RST		(1 << 6) | 
 | #define NFC_V1_V2_CONFIG1_CE		(1 << 7) | 
 | #define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8) | 
 | #define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9) | 
 | #define NFC_V2_CONFIG1_FP_INT		(1 << 11) | 
 |  | 
 | #define NFC_V1_V2_CONFIG2_INT		(1 << 15) | 
 |  | 
 | /* | 
 |  * Operation modes for the NFC. Valid for v1, v2 and v3 | 
 |  * type controllers. | 
 |  */ | 
 | #define NFC_CMD				(1 << 0) | 
 | #define NFC_ADDR			(1 << 1) | 
 | #define NFC_INPUT			(1 << 2) | 
 | #define NFC_OUTPUT			(1 << 3) | 
 | #define NFC_ID				(1 << 4) | 
 | #define NFC_STATUS			(1 << 5) | 
 |  | 
 | #define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00) | 
 | #define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04) | 
 |  | 
 | #define NFC_V3_CONFIG1			(host->regs_axi + 0x34) | 
 | #define NFC_V3_CONFIG1_SP_EN		(1 << 0) | 
 | #define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4) | 
 |  | 
 | #define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38) | 
 |  | 
 | #define NFC_V3_LAUNCH			(host->regs_axi + 0x40) | 
 |  | 
 | #define NFC_V3_WRPROT			(host->regs_ip + 0x0) | 
 | #define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0) | 
 | #define NFC_V3_WRPROT_LOCK		(1 << 1) | 
 | #define NFC_V3_WRPROT_UNLOCK		(1 << 2) | 
 | #define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6) | 
 |  | 
 | #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04) | 
 |  | 
 | #define NFC_V3_CONFIG2			(host->regs_ip + 0x24) | 
 | #define NFC_V3_CONFIG2_PS_512			(0 << 0) | 
 | #define NFC_V3_CONFIG2_PS_2048			(1 << 0) | 
 | #define NFC_V3_CONFIG2_PS_4096			(2 << 0) | 
 | #define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2) | 
 | #define NFC_V3_CONFIG2_ECC_EN			(1 << 3) | 
 | #define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4) | 
 | #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5) | 
 | #define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6) | 
 | #define NFC_V3_CONFIG2_PPB(x)			(((x) & 0x3) << 7) | 
 | #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12) | 
 | #define NFC_V3_CONFIG2_INT_MSK			(1 << 15) | 
 | #define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24) | 
 | #define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16) | 
 |  | 
 | #define NFC_V3_CONFIG3				(host->regs_ip + 0x28) | 
 | #define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0) | 
 | #define NFC_V3_CONFIG3_FW8			(1 << 3) | 
 | #define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8) | 
 | #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12) | 
 | #define NFC_V3_CONFIG3_RBB_MODE			(1 << 15) | 
 | #define NFC_V3_CONFIG3_NO_SDMA			(1 << 20) | 
 |  | 
 | #define NFC_V3_IPC			(host->regs_ip + 0x2C) | 
 | #define NFC_V3_IPC_CREQ			(1 << 0) | 
 | #define NFC_V3_IPC_INT			(1 << 31) | 
 |  | 
 | #define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34) | 
 |  | 
 | struct mxc_nand_host { | 
 | 	struct mtd_info		mtd; | 
 | 	struct nand_chip	nand; | 
 | 	struct mtd_partition	*parts; | 
 | 	struct device		*dev; | 
 |  | 
 | 	void			*spare0; | 
 | 	void			*main_area0; | 
 |  | 
 | 	void __iomem		*base; | 
 | 	void __iomem		*regs; | 
 | 	void __iomem		*regs_axi; | 
 | 	void __iomem		*regs_ip; | 
 | 	int			status_request; | 
 | 	struct clk		*clk; | 
 | 	int			clk_act; | 
 | 	int			irq; | 
 | 	int			eccsize; | 
 |  | 
 | 	struct completion	op_completion; | 
 |  | 
 | 	uint8_t			*data_buf; | 
 | 	unsigned int		buf_start; | 
 | 	int			spare_len; | 
 |  | 
 | 	void			(*preset)(struct mtd_info *); | 
 | 	void			(*send_cmd)(struct mxc_nand_host *, uint16_t, int); | 
 | 	void			(*send_addr)(struct mxc_nand_host *, uint16_t, int); | 
 | 	void			(*send_page)(struct mtd_info *, unsigned int); | 
 | 	void			(*send_read_id)(struct mxc_nand_host *); | 
 | 	uint16_t		(*get_dev_status)(struct mxc_nand_host *); | 
 | 	int			(*check_int)(struct mxc_nand_host *); | 
 | 	void			(*irq_control)(struct mxc_nand_host *, int); | 
 | }; | 
 |  | 
 | /* OOB placement block for use with hardware ecc generation */ | 
 | static struct nand_ecclayout nandv1_hw_eccoob_smallpage = { | 
 | 	.eccbytes = 5, | 
 | 	.eccpos = {6, 7, 8, 9, 10}, | 
 | 	.oobfree = {{0, 5}, {12, 4}, } | 
 | }; | 
 |  | 
 | static struct nand_ecclayout nandv1_hw_eccoob_largepage = { | 
 | 	.eccbytes = 20, | 
 | 	.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26, | 
 | 		   38, 39, 40, 41, 42, 54, 55, 56, 57, 58}, | 
 | 	.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, } | 
 | }; | 
 |  | 
 | /* OOB description for 512 byte pages with 16 byte OOB */ | 
 | static struct nand_ecclayout nandv2_hw_eccoob_smallpage = { | 
 | 	.eccbytes = 1 * 9, | 
 | 	.eccpos = { | 
 | 		 7,  8,  9, 10, 11, 12, 13, 14, 15 | 
 | 	}, | 
 | 	.oobfree = { | 
 | 		{.offset = 0, .length = 5} | 
 | 	} | 
 | }; | 
 |  | 
 | /* OOB description for 2048 byte pages with 64 byte OOB */ | 
 | static struct nand_ecclayout nandv2_hw_eccoob_largepage = { | 
 | 	.eccbytes = 4 * 9, | 
 | 	.eccpos = { | 
 | 		 7,  8,  9, 10, 11, 12, 13, 14, 15, | 
 | 		23, 24, 25, 26, 27, 28, 29, 30, 31, | 
 | 		39, 40, 41, 42, 43, 44, 45, 46, 47, | 
 | 		55, 56, 57, 58, 59, 60, 61, 62, 63 | 
 | 	}, | 
 | 	.oobfree = { | 
 | 		{.offset = 2, .length = 4}, | 
 | 		{.offset = 16, .length = 7}, | 
 | 		{.offset = 32, .length = 7}, | 
 | 		{.offset = 48, .length = 7} | 
 | 	} | 
 | }; | 
 |  | 
 | #ifdef CONFIG_MTD_PARTITIONS | 
 | static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL }; | 
 | #endif | 
 |  | 
 | static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) | 
 | { | 
 | 	struct mxc_nand_host *host = dev_id; | 
 |  | 
 | 	if (!host->check_int(host)) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	host->irq_control(host, 0); | 
 |  | 
 | 	complete(&host->op_completion); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int check_int_v3(struct mxc_nand_host *host) | 
 | { | 
 | 	uint32_t tmp; | 
 |  | 
 | 	tmp = readl(NFC_V3_IPC); | 
 | 	if (!(tmp & NFC_V3_IPC_INT)) | 
 | 		return 0; | 
 |  | 
 | 	tmp &= ~NFC_V3_IPC_INT; | 
 | 	writel(tmp, NFC_V3_IPC); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int check_int_v1_v2(struct mxc_nand_host *host) | 
 | { | 
 | 	uint32_t tmp; | 
 |  | 
 | 	tmp = readw(NFC_V1_V2_CONFIG2); | 
 | 	if (!(tmp & NFC_V1_V2_CONFIG2_INT)) | 
 | 		return 0; | 
 |  | 
 | 	if (!cpu_is_mx21()) | 
 | 		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * It has been observed that the i.MX21 cannot read the CONFIG2:INT bit | 
 |  * if interrupts are masked (CONFIG1:INT_MSK is set). To handle this, the | 
 |  * driver can enable/disable the irq line rather than simply masking the | 
 |  * interrupts. | 
 |  */ | 
 | static void irq_control_mx21(struct mxc_nand_host *host, int activate) | 
 | { | 
 | 	if (activate) | 
 | 		enable_irq(host->irq); | 
 | 	else | 
 | 		disable_irq_nosync(host->irq); | 
 | } | 
 |  | 
 | static void irq_control_v1_v2(struct mxc_nand_host *host, int activate) | 
 | { | 
 | 	uint16_t tmp; | 
 |  | 
 | 	tmp = readw(NFC_V1_V2_CONFIG1); | 
 |  | 
 | 	if (activate) | 
 | 		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK; | 
 | 	else | 
 | 		tmp |= NFC_V1_V2_CONFIG1_INT_MSK; | 
 |  | 
 | 	writew(tmp, NFC_V1_V2_CONFIG1); | 
 | } | 
 |  | 
 | static void irq_control_v3(struct mxc_nand_host *host, int activate) | 
 | { | 
 | 	uint32_t tmp; | 
 |  | 
 | 	tmp = readl(NFC_V3_CONFIG2); | 
 |  | 
 | 	if (activate) | 
 | 		tmp &= ~NFC_V3_CONFIG2_INT_MSK; | 
 | 	else | 
 | 		tmp |= NFC_V3_CONFIG2_INT_MSK; | 
 |  | 
 | 	writel(tmp, NFC_V3_CONFIG2); | 
 | } | 
 |  | 
 | /* This function polls the NANDFC to wait for the basic operation to | 
 |  * complete by checking the INT bit of config2 register. | 
 |  */ | 
 | static void wait_op_done(struct mxc_nand_host *host, int useirq) | 
 | { | 
 | 	int max_retries = 8000; | 
 |  | 
 | 	if (useirq) { | 
 | 		if (!host->check_int(host)) { | 
 | 			INIT_COMPLETION(host->op_completion); | 
 | 			host->irq_control(host, 1); | 
 | 			wait_for_completion(&host->op_completion); | 
 | 		} | 
 | 	} else { | 
 | 		while (max_retries-- > 0) { | 
 | 			if (host->check_int(host)) | 
 | 				break; | 
 |  | 
 | 			udelay(1); | 
 | 		} | 
 | 		if (max_retries < 0) | 
 | 			DEBUG(MTD_DEBUG_LEVEL0, "%s: INT not set\n", | 
 | 			      __func__); | 
 | 	} | 
 | } | 
 |  | 
 | static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq) | 
 | { | 
 | 	/* fill command */ | 
 | 	writel(cmd, NFC_V3_FLASH_CMD); | 
 |  | 
 | 	/* send out command */ | 
 | 	writel(NFC_CMD, NFC_V3_LAUNCH); | 
 |  | 
 | 	/* Wait for operation to complete */ | 
 | 	wait_op_done(host, useirq); | 
 | } | 
 |  | 
 | /* This function issues the specified command to the NAND device and | 
 |  * waits for completion. */ | 
 | static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq) | 
 | { | 
 | 	DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); | 
 |  | 
 | 	writew(cmd, NFC_V1_V2_FLASH_CMD); | 
 | 	writew(NFC_CMD, NFC_V1_V2_CONFIG2); | 
 |  | 
 | 	if (cpu_is_mx21() && (cmd == NAND_CMD_RESET)) { | 
 | 		int max_retries = 100; | 
 | 		/* Reset completion is indicated by NFC_CONFIG2 */ | 
 | 		/* being set to 0 */ | 
 | 		while (max_retries-- > 0) { | 
 | 			if (readw(NFC_V1_V2_CONFIG2) == 0) { | 
 | 				break; | 
 | 			} | 
 | 			udelay(1); | 
 | 		} | 
 | 		if (max_retries < 0) | 
 | 			DEBUG(MTD_DEBUG_LEVEL0, "%s: RESET failed\n", | 
 | 			      __func__); | 
 | 	} else { | 
 | 		/* Wait for operation to complete */ | 
 | 		wait_op_done(host, useirq); | 
 | 	} | 
 | } | 
 |  | 
 | static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast) | 
 | { | 
 | 	/* fill address */ | 
 | 	writel(addr, NFC_V3_FLASH_ADDR0); | 
 |  | 
 | 	/* send out address */ | 
 | 	writel(NFC_ADDR, NFC_V3_LAUNCH); | 
 |  | 
 | 	wait_op_done(host, 0); | 
 | } | 
 |  | 
 | /* This function sends an address (or partial address) to the | 
 |  * NAND device. The address is used to select the source/destination for | 
 |  * a NAND command. */ | 
 | static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast) | 
 | { | 
 | 	DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast); | 
 |  | 
 | 	writew(addr, NFC_V1_V2_FLASH_ADDR); | 
 | 	writew(NFC_ADDR, NFC_V1_V2_CONFIG2); | 
 |  | 
 | 	/* Wait for operation to complete */ | 
 | 	wait_op_done(host, islast); | 
 | } | 
 |  | 
 | static void send_page_v3(struct mtd_info *mtd, unsigned int ops) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = nand_chip->priv; | 
 | 	uint32_t tmp; | 
 |  | 
 | 	tmp = readl(NFC_V3_CONFIG1); | 
 | 	tmp &= ~(7 << 4); | 
 | 	writel(tmp, NFC_V3_CONFIG1); | 
 |  | 
 | 	/* transfer data from NFC ram to nand */ | 
 | 	writel(ops, NFC_V3_LAUNCH); | 
 |  | 
 | 	wait_op_done(host, false); | 
 | } | 
 |  | 
 | static void send_page_v1_v2(struct mtd_info *mtd, unsigned int ops) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = nand_chip->priv; | 
 | 	int bufs, i; | 
 |  | 
 | 	if (nfc_is_v1() && mtd->writesize > 512) | 
 | 		bufs = 4; | 
 | 	else | 
 | 		bufs = 1; | 
 |  | 
 | 	for (i = 0; i < bufs; i++) { | 
 |  | 
 | 		/* NANDFC buffer 0 is used for page read/write */ | 
 | 		writew(i, NFC_V1_V2_BUF_ADDR); | 
 |  | 
 | 		writew(ops, NFC_V1_V2_CONFIG2); | 
 |  | 
 | 		/* Wait for operation to complete */ | 
 | 		wait_op_done(host, true); | 
 | 	} | 
 | } | 
 |  | 
 | static void send_read_id_v3(struct mxc_nand_host *host) | 
 | { | 
 | 	/* Read ID into main buffer */ | 
 | 	writel(NFC_ID, NFC_V3_LAUNCH); | 
 |  | 
 | 	wait_op_done(host, true); | 
 |  | 
 | 	memcpy(host->data_buf, host->main_area0, 16); | 
 | } | 
 |  | 
 | /* Request the NANDFC to perform a read of the NAND device ID. */ | 
 | static void send_read_id_v1_v2(struct mxc_nand_host *host) | 
 | { | 
 | 	struct nand_chip *this = &host->nand; | 
 |  | 
 | 	/* NANDFC buffer 0 is used for device ID output */ | 
 | 	writew(0x0, NFC_V1_V2_BUF_ADDR); | 
 |  | 
 | 	writew(NFC_ID, NFC_V1_V2_CONFIG2); | 
 |  | 
 | 	/* Wait for operation to complete */ | 
 | 	wait_op_done(host, true); | 
 |  | 
 | 	memcpy(host->data_buf, host->main_area0, 16); | 
 |  | 
 | 	if (this->options & NAND_BUSWIDTH_16) { | 
 | 		/* compress the ID info */ | 
 | 		host->data_buf[1] = host->data_buf[2]; | 
 | 		host->data_buf[2] = host->data_buf[4]; | 
 | 		host->data_buf[3] = host->data_buf[6]; | 
 | 		host->data_buf[4] = host->data_buf[8]; | 
 | 		host->data_buf[5] = host->data_buf[10]; | 
 | 	} | 
 | } | 
 |  | 
 | static uint16_t get_dev_status_v3(struct mxc_nand_host *host) | 
 | { | 
 | 	writew(NFC_STATUS, NFC_V3_LAUNCH); | 
 | 	wait_op_done(host, true); | 
 |  | 
 | 	return readl(NFC_V3_CONFIG1) >> 16; | 
 | } | 
 |  | 
 | /* This function requests the NANDFC to perform a read of the | 
 |  * NAND device status and returns the current status. */ | 
 | static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host) | 
 | { | 
 | 	void __iomem *main_buf = host->main_area0; | 
 | 	uint32_t store; | 
 | 	uint16_t ret; | 
 |  | 
 | 	writew(0x0, NFC_V1_V2_BUF_ADDR); | 
 |  | 
 | 	/* | 
 | 	 * The device status is stored in main_area0. To | 
 | 	 * prevent corruption of the buffer save the value | 
 | 	 * and restore it afterwards. | 
 | 	 */ | 
 | 	store = readl(main_buf); | 
 |  | 
 | 	writew(NFC_STATUS, NFC_V1_V2_CONFIG2); | 
 | 	wait_op_done(host, true); | 
 |  | 
 | 	ret = readw(main_buf); | 
 |  | 
 | 	writel(store, main_buf); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* This functions is used by upper layer to checks if device is ready */ | 
 | static int mxc_nand_dev_ready(struct mtd_info *mtd) | 
 | { | 
 | 	/* | 
 | 	 * NFC handles R/B internally. Therefore, this function | 
 | 	 * always returns status as ready. | 
 | 	 */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) | 
 | { | 
 | 	/* | 
 | 	 * If HW ECC is enabled, we turn it on during init. There is | 
 | 	 * no need to enable again here. | 
 | 	 */ | 
 | } | 
 |  | 
 | static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat, | 
 | 				 u_char *read_ecc, u_char *calc_ecc) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = nand_chip->priv; | 
 |  | 
 | 	/* | 
 | 	 * 1-Bit errors are automatically corrected in HW.  No need for | 
 | 	 * additional correction.  2-Bit errors cannot be corrected by | 
 | 	 * HW ECC, so we need to return failure | 
 | 	 */ | 
 | 	uint16_t ecc_status = readw(NFC_V1_V2_ECC_STATUS_RESULT); | 
 |  | 
 | 	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { | 
 | 		DEBUG(MTD_DEBUG_LEVEL0, | 
 | 		      "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat, | 
 | 				 u_char *read_ecc, u_char *calc_ecc) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = nand_chip->priv; | 
 | 	u32 ecc_stat, err; | 
 | 	int no_subpages = 1; | 
 | 	int ret = 0; | 
 | 	u8 ecc_bit_mask, err_limit; | 
 |  | 
 | 	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf; | 
 | 	err_limit = (host->eccsize == 4) ? 0x4 : 0x8; | 
 |  | 
 | 	no_subpages = mtd->writesize >> 9; | 
 |  | 
 | 	if (nfc_is_v21()) | 
 | 		ecc_stat = readl(NFC_V1_V2_ECC_STATUS_RESULT); | 
 | 	else | 
 | 		ecc_stat = readl(NFC_V3_ECC_STATUS_RESULT); | 
 |  | 
 | 	do { | 
 | 		err = ecc_stat & ecc_bit_mask; | 
 | 		if (err > err_limit) { | 
 | 			printk(KERN_WARNING "UnCorrectable RS-ECC Error\n"); | 
 | 			return -1; | 
 | 		} else { | 
 | 			ret += err; | 
 | 		} | 
 | 		ecc_stat >>= 4; | 
 | 	} while (--no_subpages); | 
 |  | 
 | 	mtd->ecc_stats.corrected += ret; | 
 | 	pr_debug("%d Symbol Correctable RS-ECC Error\n", ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, | 
 | 				  u_char *ecc_code) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u_char mxc_nand_read_byte(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = nand_chip->priv; | 
 | 	uint8_t ret; | 
 |  | 
 | 	/* Check for status request */ | 
 | 	if (host->status_request) | 
 | 		return host->get_dev_status(host) & 0xFF; | 
 |  | 
 | 	ret = *(uint8_t *)(host->data_buf + host->buf_start); | 
 | 	host->buf_start++; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static uint16_t mxc_nand_read_word(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = nand_chip->priv; | 
 | 	uint16_t ret; | 
 |  | 
 | 	ret = *(uint16_t *)(host->data_buf + host->buf_start); | 
 | 	host->buf_start += 2; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Write data of length len to buffer buf. The data to be | 
 |  * written on NAND Flash is first copied to RAMbuffer. After the Data Input | 
 |  * Operation by the NFC, the data is written to NAND Flash */ | 
 | static void mxc_nand_write_buf(struct mtd_info *mtd, | 
 | 				const u_char *buf, int len) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = nand_chip->priv; | 
 | 	u16 col = host->buf_start; | 
 | 	int n = mtd->oobsize + mtd->writesize - col; | 
 |  | 
 | 	n = min(n, len); | 
 |  | 
 | 	memcpy(host->data_buf + col, buf, n); | 
 |  | 
 | 	host->buf_start += n; | 
 | } | 
 |  | 
 | /* Read the data buffer from the NAND Flash. To read the data from NAND | 
 |  * Flash first the data output cycle is initiated by the NFC, which copies | 
 |  * the data to RAMbuffer. This data of length len is then copied to buffer buf. | 
 |  */ | 
 | static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = nand_chip->priv; | 
 | 	u16 col = host->buf_start; | 
 | 	int n = mtd->oobsize + mtd->writesize - col; | 
 |  | 
 | 	n = min(n, len); | 
 |  | 
 | 	memcpy(buf, host->data_buf + col, len); | 
 |  | 
 | 	host->buf_start += len; | 
 | } | 
 |  | 
 | /* Used by the upper layer to verify the data in NAND Flash | 
 |  * with the data in the buf. */ | 
 | static int mxc_nand_verify_buf(struct mtd_info *mtd, | 
 | 				const u_char *buf, int len) | 
 | { | 
 | 	return -EFAULT; | 
 | } | 
 |  | 
 | /* This function is used by upper layer for select and | 
 |  * deselect of the NAND chip */ | 
 | static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = nand_chip->priv; | 
 |  | 
 | 	switch (chip) { | 
 | 	case -1: | 
 | 		/* Disable the NFC clock */ | 
 | 		if (host->clk_act) { | 
 | 			clk_disable(host->clk); | 
 | 			host->clk_act = 0; | 
 | 		} | 
 | 		break; | 
 | 	case 0: | 
 | 		/* Enable the NFC clock */ | 
 | 		if (!host->clk_act) { | 
 | 			clk_enable(host->clk); | 
 | 			host->clk_act = 1; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Function to transfer data to/from spare area. | 
 |  */ | 
 | static void copy_spare(struct mtd_info *mtd, bool bfrom) | 
 | { | 
 | 	struct nand_chip *this = mtd->priv; | 
 | 	struct mxc_nand_host *host = this->priv; | 
 | 	u16 i, j; | 
 | 	u16 n = mtd->writesize >> 9; | 
 | 	u8 *d = host->data_buf + mtd->writesize; | 
 | 	u8 *s = host->spare0; | 
 | 	u16 t = host->spare_len; | 
 |  | 
 | 	j = (mtd->oobsize / n >> 1) << 1; | 
 |  | 
 | 	if (bfrom) { | 
 | 		for (i = 0; i < n - 1; i++) | 
 | 			memcpy(d + i * j, s + i * t, j); | 
 |  | 
 | 		/* the last section */ | 
 | 		memcpy(d + i * j, s + i * t, mtd->oobsize - i * j); | 
 | 	} else { | 
 | 		for (i = 0; i < n - 1; i++) | 
 | 			memcpy(&s[i * t], &d[i * j], j); | 
 |  | 
 | 		/* the last section */ | 
 | 		memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j); | 
 | 	} | 
 | } | 
 |  | 
 | static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = nand_chip->priv; | 
 |  | 
 | 	/* Write out column address, if necessary */ | 
 | 	if (column != -1) { | 
 | 		/* | 
 | 		 * MXC NANDFC can only perform full page+spare or | 
 | 		 * spare-only read/write.  When the upper layers | 
 | 		 * layers perform a read/write buf operation, | 
 | 		 * we will used the saved column address to index into | 
 | 		 * the full page. | 
 | 		 */ | 
 | 		host->send_addr(host, 0, page_addr == -1); | 
 | 		if (mtd->writesize > 512) | 
 | 			/* another col addr cycle for 2k page */ | 
 | 			host->send_addr(host, 0, false); | 
 | 	} | 
 |  | 
 | 	/* Write out page address, if necessary */ | 
 | 	if (page_addr != -1) { | 
 | 		/* paddr_0 - p_addr_7 */ | 
 | 		host->send_addr(host, (page_addr & 0xff), false); | 
 |  | 
 | 		if (mtd->writesize > 512) { | 
 | 			if (mtd->size >= 0x10000000) { | 
 | 				/* paddr_8 - paddr_15 */ | 
 | 				host->send_addr(host, (page_addr >> 8) & 0xff, false); | 
 | 				host->send_addr(host, (page_addr >> 16) & 0xff, true); | 
 | 			} else | 
 | 				/* paddr_8 - paddr_15 */ | 
 | 				host->send_addr(host, (page_addr >> 8) & 0xff, true); | 
 | 		} else { | 
 | 			/* One more address cycle for higher density devices */ | 
 | 			if (mtd->size >= 0x4000000) { | 
 | 				/* paddr_8 - paddr_15 */ | 
 | 				host->send_addr(host, (page_addr >> 8) & 0xff, false); | 
 | 				host->send_addr(host, (page_addr >> 16) & 0xff, true); | 
 | 			} else | 
 | 				/* paddr_8 - paddr_15 */ | 
 | 				host->send_addr(host, (page_addr >> 8) & 0xff, true); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * v2 and v3 type controllers can do 4bit or 8bit ecc depending | 
 |  * on how much oob the nand chip has. For 8bit ecc we need at least | 
 |  * 26 bytes of oob data per 512 byte block. | 
 |  */ | 
 | static int get_eccsize(struct mtd_info *mtd) | 
 | { | 
 | 	int oobbytes_per_512 = 0; | 
 |  | 
 | 	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize; | 
 |  | 
 | 	if (oobbytes_per_512 < 26) | 
 | 		return 4; | 
 | 	else | 
 | 		return 8; | 
 | } | 
 |  | 
 | static void preset_v1_v2(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = nand_chip->priv; | 
 | 	uint16_t config1 = 0; | 
 |  | 
 | 	if (nand_chip->ecc.mode == NAND_ECC_HW) | 
 | 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN; | 
 |  | 
 | 	if (nfc_is_v21()) | 
 | 		config1 |= NFC_V2_CONFIG1_FP_INT; | 
 |  | 
 | 	if (!cpu_is_mx21()) | 
 | 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK; | 
 |  | 
 | 	if (nfc_is_v21() && mtd->writesize) { | 
 | 		uint16_t pages_per_block = mtd->erasesize / mtd->writesize; | 
 |  | 
 | 		host->eccsize = get_eccsize(mtd); | 
 | 		if (host->eccsize == 4) | 
 | 			config1 |= NFC_V2_CONFIG1_ECC_MODE_4; | 
 |  | 
 | 		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6); | 
 | 	} else { | 
 | 		host->eccsize = 1; | 
 | 	} | 
 |  | 
 | 	writew(config1, NFC_V1_V2_CONFIG1); | 
 | 	/* preset operation */ | 
 |  | 
 | 	/* Unlock the internal RAM Buffer */ | 
 | 	writew(0x2, NFC_V1_V2_CONFIG); | 
 |  | 
 | 	/* Blocks to be unlocked */ | 
 | 	if (nfc_is_v21()) { | 
 | 		writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR); | 
 | 		writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR); | 
 | 	} else if (nfc_is_v1()) { | 
 | 		writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR); | 
 | 		writew(0x4000, NFC_V1_UNLOCKEND_BLKADDR); | 
 | 	} else | 
 | 		BUG(); | 
 |  | 
 | 	/* Unlock Block Command for given address range */ | 
 | 	writew(0x4, NFC_V1_V2_WRPROT); | 
 | } | 
 |  | 
 | static void preset_v3(struct mtd_info *mtd) | 
 | { | 
 | 	struct nand_chip *chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = chip->priv; | 
 | 	uint32_t config2, config3; | 
 | 	int i, addr_phases; | 
 |  | 
 | 	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1); | 
 | 	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC); | 
 |  | 
 | 	/* Unlock the internal RAM Buffer */ | 
 | 	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, | 
 | 			NFC_V3_WRPROT); | 
 |  | 
 | 	/* Blocks to be unlocked */ | 
 | 	for (i = 0; i < NAND_MAX_CHIPS; i++) | 
 | 		writel(0x0 |	(0xffff << 16), | 
 | 				NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2)); | 
 |  | 
 | 	writel(0, NFC_V3_IPC); | 
 |  | 
 | 	config2 = NFC_V3_CONFIG2_ONE_CYCLE | | 
 | 		NFC_V3_CONFIG2_2CMD_PHASES | | 
 | 		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) | | 
 | 		NFC_V3_CONFIG2_ST_CMD(0x70) | | 
 | 		NFC_V3_CONFIG2_INT_MSK | | 
 | 		NFC_V3_CONFIG2_NUM_ADDR_PHASE0; | 
 |  | 
 | 	if (chip->ecc.mode == NAND_ECC_HW) | 
 | 		config2 |= NFC_V3_CONFIG2_ECC_EN; | 
 |  | 
 | 	addr_phases = fls(chip->pagemask) >> 3; | 
 |  | 
 | 	if (mtd->writesize == 2048) { | 
 | 		config2 |= NFC_V3_CONFIG2_PS_2048; | 
 | 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); | 
 | 	} else if (mtd->writesize == 4096) { | 
 | 		config2 |= NFC_V3_CONFIG2_PS_4096; | 
 | 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); | 
 | 	} else { | 
 | 		config2 |= NFC_V3_CONFIG2_PS_512; | 
 | 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1); | 
 | 	} | 
 |  | 
 | 	if (mtd->writesize) { | 
 | 		config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6); | 
 | 		host->eccsize = get_eccsize(mtd); | 
 | 		if (host->eccsize == 8) | 
 | 			config2 |= NFC_V3_CONFIG2_ECC_MODE_8; | 
 | 	} | 
 |  | 
 | 	writel(config2, NFC_V3_CONFIG2); | 
 |  | 
 | 	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) | | 
 | 			NFC_V3_CONFIG3_NO_SDMA | | 
 | 			NFC_V3_CONFIG3_RBB_MODE | | 
 | 			NFC_V3_CONFIG3_SBB(6) | /* Reset default */ | 
 | 			NFC_V3_CONFIG3_ADD_OP(0); | 
 |  | 
 | 	if (!(chip->options & NAND_BUSWIDTH_16)) | 
 | 		config3 |= NFC_V3_CONFIG3_FW8; | 
 |  | 
 | 	writel(config3, NFC_V3_CONFIG3); | 
 |  | 
 | 	writel(0, NFC_V3_DELAY_LINE); | 
 | } | 
 |  | 
 | /* Used by the upper layer to write command to NAND Flash for | 
 |  * different operations to be carried out on NAND Flash */ | 
 | static void mxc_nand_command(struct mtd_info *mtd, unsigned command, | 
 | 				int column, int page_addr) | 
 | { | 
 | 	struct nand_chip *nand_chip = mtd->priv; | 
 | 	struct mxc_nand_host *host = nand_chip->priv; | 
 |  | 
 | 	DEBUG(MTD_DEBUG_LEVEL3, | 
 | 	      "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", | 
 | 	      command, column, page_addr); | 
 |  | 
 | 	/* Reset command state information */ | 
 | 	host->status_request = false; | 
 |  | 
 | 	/* Command pre-processing step */ | 
 | 	switch (command) { | 
 | 	case NAND_CMD_RESET: | 
 | 		host->preset(mtd); | 
 | 		host->send_cmd(host, command, false); | 
 | 		break; | 
 |  | 
 | 	case NAND_CMD_STATUS: | 
 | 		host->buf_start = 0; | 
 | 		host->status_request = true; | 
 |  | 
 | 		host->send_cmd(host, command, true); | 
 | 		mxc_do_addr_cycle(mtd, column, page_addr); | 
 | 		break; | 
 |  | 
 | 	case NAND_CMD_READ0: | 
 | 	case NAND_CMD_READOOB: | 
 | 		if (command == NAND_CMD_READ0) | 
 | 			host->buf_start = column; | 
 | 		else | 
 | 			host->buf_start = column + mtd->writesize; | 
 |  | 
 | 		command = NAND_CMD_READ0; /* only READ0 is valid */ | 
 |  | 
 | 		host->send_cmd(host, command, false); | 
 | 		mxc_do_addr_cycle(mtd, column, page_addr); | 
 |  | 
 | 		if (mtd->writesize > 512) | 
 | 			host->send_cmd(host, NAND_CMD_READSTART, true); | 
 |  | 
 | 		host->send_page(mtd, NFC_OUTPUT); | 
 |  | 
 | 		memcpy(host->data_buf, host->main_area0, mtd->writesize); | 
 | 		copy_spare(mtd, true); | 
 | 		break; | 
 |  | 
 | 	case NAND_CMD_SEQIN: | 
 | 		if (column >= mtd->writesize) | 
 | 			/* call ourself to read a page */ | 
 | 			mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr); | 
 |  | 
 | 		host->buf_start = column; | 
 |  | 
 | 		host->send_cmd(host, command, false); | 
 | 		mxc_do_addr_cycle(mtd, column, page_addr); | 
 | 		break; | 
 |  | 
 | 	case NAND_CMD_PAGEPROG: | 
 | 		memcpy(host->main_area0, host->data_buf, mtd->writesize); | 
 | 		copy_spare(mtd, false); | 
 | 		host->send_page(mtd, NFC_INPUT); | 
 | 		host->send_cmd(host, command, true); | 
 | 		mxc_do_addr_cycle(mtd, column, page_addr); | 
 | 		break; | 
 |  | 
 | 	case NAND_CMD_READID: | 
 | 		host->send_cmd(host, command, true); | 
 | 		mxc_do_addr_cycle(mtd, column, page_addr); | 
 | 		host->send_read_id(host); | 
 | 		host->buf_start = column; | 
 | 		break; | 
 |  | 
 | 	case NAND_CMD_ERASE1: | 
 | 	case NAND_CMD_ERASE2: | 
 | 		host->send_cmd(host, command, false); | 
 | 		mxc_do_addr_cycle(mtd, column, page_addr); | 
 |  | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The generic flash bbt decriptors overlap with our ecc | 
 |  * hardware, so define some i.MX specific ones. | 
 |  */ | 
 | static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; | 
 | static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; | 
 |  | 
 | static struct nand_bbt_descr bbt_main_descr = { | 
 | 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
 | 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
 | 	.offs = 0, | 
 | 	.len = 4, | 
 | 	.veroffs = 4, | 
 | 	.maxblocks = 4, | 
 | 	.pattern = bbt_pattern, | 
 | }; | 
 |  | 
 | static struct nand_bbt_descr bbt_mirror_descr = { | 
 | 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
 | 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
 | 	.offs = 0, | 
 | 	.len = 4, | 
 | 	.veroffs = 4, | 
 | 	.maxblocks = 4, | 
 | 	.pattern = mirror_pattern, | 
 | }; | 
 |  | 
 | static int __init mxcnd_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct nand_chip *this; | 
 | 	struct mtd_info *mtd; | 
 | 	struct mxc_nand_platform_data *pdata = pdev->dev.platform_data; | 
 | 	struct mxc_nand_host *host; | 
 | 	struct resource *res; | 
 | 	int err = 0, __maybe_unused nr_parts = 0; | 
 | 	struct nand_ecclayout *oob_smallpage, *oob_largepage; | 
 |  | 
 | 	/* Allocate memory for MTD device structure and private data */ | 
 | 	host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE + | 
 | 			NAND_MAX_OOBSIZE, GFP_KERNEL); | 
 | 	if (!host) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	host->data_buf = (uint8_t *)(host + 1); | 
 |  | 
 | 	host->dev = &pdev->dev; | 
 | 	/* structures must be linked */ | 
 | 	this = &host->nand; | 
 | 	mtd = &host->mtd; | 
 | 	mtd->priv = this; | 
 | 	mtd->owner = THIS_MODULE; | 
 | 	mtd->dev.parent = &pdev->dev; | 
 | 	mtd->name = DRIVER_NAME; | 
 |  | 
 | 	/* 50 us command delay time */ | 
 | 	this->chip_delay = 5; | 
 |  | 
 | 	this->priv = host; | 
 | 	this->dev_ready = mxc_nand_dev_ready; | 
 | 	this->cmdfunc = mxc_nand_command; | 
 | 	this->select_chip = mxc_nand_select_chip; | 
 | 	this->read_byte = mxc_nand_read_byte; | 
 | 	this->read_word = mxc_nand_read_word; | 
 | 	this->write_buf = mxc_nand_write_buf; | 
 | 	this->read_buf = mxc_nand_read_buf; | 
 | 	this->verify_buf = mxc_nand_verify_buf; | 
 |  | 
 | 	host->clk = clk_get(&pdev->dev, "nfc"); | 
 | 	if (IS_ERR(host->clk)) { | 
 | 		err = PTR_ERR(host->clk); | 
 | 		goto eclk; | 
 | 	} | 
 |  | 
 | 	clk_enable(host->clk); | 
 | 	host->clk_act = 1; | 
 |  | 
 | 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	if (!res) { | 
 | 		err = -ENODEV; | 
 | 		goto eres; | 
 | 	} | 
 |  | 
 | 	host->base = ioremap(res->start, resource_size(res)); | 
 | 	if (!host->base) { | 
 | 		err = -ENOMEM; | 
 | 		goto eres; | 
 | 	} | 
 |  | 
 | 	host->main_area0 = host->base; | 
 |  | 
 | 	if (nfc_is_v1() || nfc_is_v21()) { | 
 | 		host->preset = preset_v1_v2; | 
 | 		host->send_cmd = send_cmd_v1_v2; | 
 | 		host->send_addr = send_addr_v1_v2; | 
 | 		host->send_page = send_page_v1_v2; | 
 | 		host->send_read_id = send_read_id_v1_v2; | 
 | 		host->get_dev_status = get_dev_status_v1_v2; | 
 | 		host->check_int = check_int_v1_v2; | 
 | 		if (cpu_is_mx21()) | 
 | 			host->irq_control = irq_control_mx21; | 
 | 		else | 
 | 			host->irq_control = irq_control_v1_v2; | 
 | 	} | 
 |  | 
 | 	if (nfc_is_v21()) { | 
 | 		host->regs = host->base + 0x1e00; | 
 | 		host->spare0 = host->base + 0x1000; | 
 | 		host->spare_len = 64; | 
 | 		oob_smallpage = &nandv2_hw_eccoob_smallpage; | 
 | 		oob_largepage = &nandv2_hw_eccoob_largepage; | 
 | 		this->ecc.bytes = 9; | 
 | 	} else if (nfc_is_v1()) { | 
 | 		host->regs = host->base + 0xe00; | 
 | 		host->spare0 = host->base + 0x800; | 
 | 		host->spare_len = 16; | 
 | 		oob_smallpage = &nandv1_hw_eccoob_smallpage; | 
 | 		oob_largepage = &nandv1_hw_eccoob_largepage; | 
 | 		this->ecc.bytes = 3; | 
 | 		host->eccsize = 1; | 
 | 	} else if (nfc_is_v3_2()) { | 
 | 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1); | 
 | 		if (!res) { | 
 | 			err = -ENODEV; | 
 | 			goto eirq; | 
 | 		} | 
 | 		host->regs_ip = ioremap(res->start, resource_size(res)); | 
 | 		if (!host->regs_ip) { | 
 | 			err = -ENOMEM; | 
 | 			goto eirq; | 
 | 		} | 
 | 		host->regs_axi = host->base + 0x1e00; | 
 | 		host->spare0 = host->base + 0x1000; | 
 | 		host->spare_len = 64; | 
 | 		host->preset = preset_v3; | 
 | 		host->send_cmd = send_cmd_v3; | 
 | 		host->send_addr = send_addr_v3; | 
 | 		host->send_page = send_page_v3; | 
 | 		host->send_read_id = send_read_id_v3; | 
 | 		host->check_int = check_int_v3; | 
 | 		host->get_dev_status = get_dev_status_v3; | 
 | 		host->irq_control = irq_control_v3; | 
 | 		oob_smallpage = &nandv2_hw_eccoob_smallpage; | 
 | 		oob_largepage = &nandv2_hw_eccoob_largepage; | 
 | 	} else | 
 | 		BUG(); | 
 |  | 
 | 	this->ecc.size = 512; | 
 | 	this->ecc.layout = oob_smallpage; | 
 |  | 
 | 	if (pdata->hw_ecc) { | 
 | 		this->ecc.calculate = mxc_nand_calculate_ecc; | 
 | 		this->ecc.hwctl = mxc_nand_enable_hwecc; | 
 | 		if (nfc_is_v1()) | 
 | 			this->ecc.correct = mxc_nand_correct_data_v1; | 
 | 		else | 
 | 			this->ecc.correct = mxc_nand_correct_data_v2_v3; | 
 | 		this->ecc.mode = NAND_ECC_HW; | 
 | 	} else { | 
 | 		this->ecc.mode = NAND_ECC_SOFT; | 
 | 	} | 
 |  | 
 | 	/* NAND bus width determines access funtions used by upper layer */ | 
 | 	if (pdata->width == 2) | 
 | 		this->options |= NAND_BUSWIDTH_16; | 
 |  | 
 | 	if (pdata->flash_bbt) { | 
 | 		this->bbt_td = &bbt_main_descr; | 
 | 		this->bbt_md = &bbt_mirror_descr; | 
 | 		/* update flash based bbt */ | 
 | 		this->options |= NAND_USE_FLASH_BBT; | 
 | 	} | 
 |  | 
 | 	init_completion(&host->op_completion); | 
 |  | 
 | 	host->irq = platform_get_irq(pdev, 0); | 
 |  | 
 | 	/* | 
 | 	 * mask the interrupt. For i.MX21 explicitely call | 
 | 	 * irq_control_v1_v2 to use the mask bit. We can't call | 
 | 	 * disable_irq_nosync() for an interrupt we do not own yet. | 
 | 	 */ | 
 | 	if (cpu_is_mx21()) | 
 | 		irq_control_v1_v2(host, 0); | 
 | 	else | 
 | 		host->irq_control(host, 0); | 
 |  | 
 | 	err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host); | 
 | 	if (err) | 
 | 		goto eirq; | 
 |  | 
 | 	host->irq_control(host, 0); | 
 |  | 
 | 	/* | 
 | 	 * Now that the interrupt is disabled make sure the interrupt | 
 | 	 * mask bit is cleared on i.MX21. Otherwise we can't read | 
 | 	 * the interrupt status bit on this machine. | 
 | 	 */ | 
 | 	if (cpu_is_mx21()) | 
 | 		irq_control_v1_v2(host, 1); | 
 |  | 
 | 	/* first scan to find the device and get the page size */ | 
 | 	if (nand_scan_ident(mtd, 1, NULL)) { | 
 | 		err = -ENXIO; | 
 | 		goto escan; | 
 | 	} | 
 |  | 
 | 	/* Call preset again, with correct writesize this time */ | 
 | 	host->preset(mtd); | 
 |  | 
 | 	if (mtd->writesize == 2048) | 
 | 		this->ecc.layout = oob_largepage; | 
 |  | 
 | 	/* second phase scan */ | 
 | 	if (nand_scan_tail(mtd)) { | 
 | 		err = -ENXIO; | 
 | 		goto escan; | 
 | 	} | 
 |  | 
 | 	/* Register the partitions */ | 
 | #ifdef CONFIG_MTD_PARTITIONS | 
 | 	nr_parts = | 
 | 	    parse_mtd_partitions(mtd, part_probes, &host->parts, 0); | 
 | 	if (nr_parts > 0) | 
 | 		add_mtd_partitions(mtd, host->parts, nr_parts); | 
 | 	else if (pdata->parts) | 
 | 		add_mtd_partitions(mtd, pdata->parts, pdata->nr_parts); | 
 | 	else | 
 | #endif | 
 | 	{ | 
 | 		pr_info("Registering %s as whole device\n", mtd->name); | 
 | 		add_mtd_device(mtd); | 
 | 	} | 
 |  | 
 | 	platform_set_drvdata(pdev, host); | 
 |  | 
 | 	return 0; | 
 |  | 
 | escan: | 
 | 	free_irq(host->irq, host); | 
 | eirq: | 
 | 	if (host->regs_ip) | 
 | 		iounmap(host->regs_ip); | 
 | 	iounmap(host->base); | 
 | eres: | 
 | 	clk_put(host->clk); | 
 | eclk: | 
 | 	kfree(host); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __devexit mxcnd_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct mxc_nand_host *host = platform_get_drvdata(pdev); | 
 |  | 
 | 	clk_put(host->clk); | 
 |  | 
 | 	platform_set_drvdata(pdev, NULL); | 
 |  | 
 | 	nand_release(&host->mtd); | 
 | 	free_irq(host->irq, host); | 
 | 	if (host->regs_ip) | 
 | 		iounmap(host->regs_ip); | 
 | 	iounmap(host->base); | 
 | 	kfree(host); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct platform_driver mxcnd_driver = { | 
 | 	.driver = { | 
 | 		   .name = DRIVER_NAME, | 
 | 	}, | 
 | 	.remove = __devexit_p(mxcnd_remove), | 
 | }; | 
 |  | 
 | static int __init mxc_nd_init(void) | 
 | { | 
 | 	return platform_driver_probe(&mxcnd_driver, mxcnd_probe); | 
 | } | 
 |  | 
 | static void __exit mxc_nd_cleanup(void) | 
 | { | 
 | 	/* Unregister the device structure */ | 
 | 	platform_driver_unregister(&mxcnd_driver); | 
 | } | 
 |  | 
 | module_init(mxc_nd_init); | 
 | module_exit(mxc_nd_cleanup); | 
 |  | 
 | MODULE_AUTHOR("Freescale Semiconductor, Inc."); | 
 | MODULE_DESCRIPTION("MXC NAND MTD driver"); | 
 | MODULE_LICENSE("GPL"); |