| /* | 
 |  *  drivers/cpufreq/cpufreq_ondemand.c | 
 |  * | 
 |  *  Copyright (C)  2001 Russell King | 
 |  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. | 
 |  *                      Jun Nakajima <jun.nakajima@intel.com> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/cpufreq.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/kobject.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/percpu-defs.h> | 
 | #include <linux/sysfs.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/types.h> | 
 |  | 
 | #include "cpufreq_governor.h" | 
 |  | 
 | /* On-demand governor macros */ | 
 | #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10) | 
 | #define DEF_FREQUENCY_UP_THRESHOLD		(80) | 
 | #define DEF_SAMPLING_DOWN_FACTOR		(1) | 
 | #define MAX_SAMPLING_DOWN_FACTOR		(100000) | 
 | #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3) | 
 | #define MICRO_FREQUENCY_UP_THRESHOLD		(95) | 
 | #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000) | 
 | #define MIN_FREQUENCY_UP_THRESHOLD		(11) | 
 | #define MAX_FREQUENCY_UP_THRESHOLD		(100) | 
 |  | 
 | static struct dbs_data od_dbs_data; | 
 | static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info); | 
 |  | 
 | #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND | 
 | static struct cpufreq_governor cpufreq_gov_ondemand; | 
 | #endif | 
 |  | 
 | static struct od_dbs_tuners od_tuners = { | 
 | 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD, | 
 | 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, | 
 | 	.adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD - | 
 | 			    DEF_FREQUENCY_DOWN_DIFFERENTIAL, | 
 | 	.ignore_nice = 0, | 
 | 	.powersave_bias = 0, | 
 | }; | 
 |  | 
 | static void ondemand_powersave_bias_init_cpu(int cpu) | 
 | { | 
 | 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); | 
 |  | 
 | 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu); | 
 | 	dbs_info->freq_lo = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Not all CPUs want IO time to be accounted as busy; this depends on how | 
 |  * efficient idling at a higher frequency/voltage is. | 
 |  * Pavel Machek says this is not so for various generations of AMD and old | 
 |  * Intel systems. | 
 |  * Mike Chan (android.com) claims this is also not true for ARM. | 
 |  * Because of this, whitelist specific known (series) of CPUs by default, and | 
 |  * leave all others up to the user. | 
 |  */ | 
 | static int should_io_be_busy(void) | 
 | { | 
 | #if defined(CONFIG_X86) | 
 | 	/* | 
 | 	 * For Intel, Core 2 (model 15) and later have an efficient idle. | 
 | 	 */ | 
 | 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && | 
 | 			boot_cpu_data.x86 == 6 && | 
 | 			boot_cpu_data.x86_model >= 15) | 
 | 		return 1; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Find right freq to be set now with powersave_bias on. | 
 |  * Returns the freq_hi to be used right now and will set freq_hi_jiffies, | 
 |  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. | 
 |  */ | 
 | static unsigned int powersave_bias_target(struct cpufreq_policy *policy, | 
 | 		unsigned int freq_next, unsigned int relation) | 
 | { | 
 | 	unsigned int freq_req, freq_reduc, freq_avg; | 
 | 	unsigned int freq_hi, freq_lo; | 
 | 	unsigned int index = 0; | 
 | 	unsigned int jiffies_total, jiffies_hi, jiffies_lo; | 
 | 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, | 
 | 						   policy->cpu); | 
 |  | 
 | 	if (!dbs_info->freq_table) { | 
 | 		dbs_info->freq_lo = 0; | 
 | 		dbs_info->freq_lo_jiffies = 0; | 
 | 		return freq_next; | 
 | 	} | 
 |  | 
 | 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, | 
 | 			relation, &index); | 
 | 	freq_req = dbs_info->freq_table[index].frequency; | 
 | 	freq_reduc = freq_req * od_tuners.powersave_bias / 1000; | 
 | 	freq_avg = freq_req - freq_reduc; | 
 |  | 
 | 	/* Find freq bounds for freq_avg in freq_table */ | 
 | 	index = 0; | 
 | 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, | 
 | 			CPUFREQ_RELATION_H, &index); | 
 | 	freq_lo = dbs_info->freq_table[index].frequency; | 
 | 	index = 0; | 
 | 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, | 
 | 			CPUFREQ_RELATION_L, &index); | 
 | 	freq_hi = dbs_info->freq_table[index].frequency; | 
 |  | 
 | 	/* Find out how long we have to be in hi and lo freqs */ | 
 | 	if (freq_hi == freq_lo) { | 
 | 		dbs_info->freq_lo = 0; | 
 | 		dbs_info->freq_lo_jiffies = 0; | 
 | 		return freq_lo; | 
 | 	} | 
 | 	jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate); | 
 | 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total; | 
 | 	jiffies_hi += ((freq_hi - freq_lo) / 2); | 
 | 	jiffies_hi /= (freq_hi - freq_lo); | 
 | 	jiffies_lo = jiffies_total - jiffies_hi; | 
 | 	dbs_info->freq_lo = freq_lo; | 
 | 	dbs_info->freq_lo_jiffies = jiffies_lo; | 
 | 	dbs_info->freq_hi_jiffies = jiffies_hi; | 
 | 	return freq_hi; | 
 | } | 
 |  | 
 | static void ondemand_powersave_bias_init(void) | 
 | { | 
 | 	int i; | 
 | 	for_each_online_cpu(i) { | 
 | 		ondemand_powersave_bias_init_cpu(i); | 
 | 	} | 
 | } | 
 |  | 
 | static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq) | 
 | { | 
 | 	if (od_tuners.powersave_bias) | 
 | 		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H); | 
 | 	else if (p->cur == p->max) | 
 | 		return; | 
 |  | 
 | 	__cpufreq_driver_target(p, freq, od_tuners.powersave_bias ? | 
 | 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H); | 
 | } | 
 |  | 
 | /* | 
 |  * Every sampling_rate, we check, if current idle time is less than 20% | 
 |  * (default), then we try to increase frequency. Every sampling_rate, we look | 
 |  * for the lowest frequency which can sustain the load while keeping idle time | 
 |  * over 30%. If such a frequency exist, we try to decrease to this frequency. | 
 |  * | 
 |  * Any frequency increase takes it to the maximum frequency. Frequency reduction | 
 |  * happens at minimum steps of 5% (default) of current frequency | 
 |  */ | 
 | static void od_check_cpu(int cpu, unsigned int load_freq) | 
 | { | 
 | 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); | 
 | 	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy; | 
 |  | 
 | 	dbs_info->freq_lo = 0; | 
 |  | 
 | 	/* Check for frequency increase */ | 
 | 	if (load_freq > od_tuners.up_threshold * policy->cur) { | 
 | 		/* If switching to max speed, apply sampling_down_factor */ | 
 | 		if (policy->cur < policy->max) | 
 | 			dbs_info->rate_mult = | 
 | 				od_tuners.sampling_down_factor; | 
 | 		dbs_freq_increase(policy, policy->max); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Check for frequency decrease */ | 
 | 	/* if we cannot reduce the frequency anymore, break out early */ | 
 | 	if (policy->cur == policy->min) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * The optimal frequency is the frequency that is the lowest that can | 
 | 	 * support the current CPU usage without triggering the up policy. To be | 
 | 	 * safe, we focus 10 points under the threshold. | 
 | 	 */ | 
 | 	if (load_freq < od_tuners.adj_up_threshold * policy->cur) { | 
 | 		unsigned int freq_next; | 
 | 		freq_next = load_freq / od_tuners.adj_up_threshold; | 
 |  | 
 | 		/* No longer fully busy, reset rate_mult */ | 
 | 		dbs_info->rate_mult = 1; | 
 |  | 
 | 		if (freq_next < policy->min) | 
 | 			freq_next = policy->min; | 
 |  | 
 | 		if (!od_tuners.powersave_bias) { | 
 | 			__cpufreq_driver_target(policy, freq_next, | 
 | 					CPUFREQ_RELATION_L); | 
 | 		} else { | 
 | 			int freq = powersave_bias_target(policy, freq_next, | 
 | 					CPUFREQ_RELATION_L); | 
 | 			__cpufreq_driver_target(policy, freq, | 
 | 					CPUFREQ_RELATION_L); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void od_dbs_timer(struct work_struct *work) | 
 | { | 
 | 	struct delayed_work *dw = to_delayed_work(work); | 
 | 	struct od_cpu_dbs_info_s *dbs_info = | 
 | 		container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work); | 
 | 	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu; | 
 | 	struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info, | 
 | 			cpu); | 
 | 	int delay, sample_type = core_dbs_info->sample_type; | 
 | 	bool eval_load; | 
 |  | 
 | 	mutex_lock(&core_dbs_info->cdbs.timer_mutex); | 
 | 	eval_load = need_load_eval(&core_dbs_info->cdbs, | 
 | 			od_tuners.sampling_rate); | 
 |  | 
 | 	/* Common NORMAL_SAMPLE setup */ | 
 | 	core_dbs_info->sample_type = OD_NORMAL_SAMPLE; | 
 | 	if (sample_type == OD_SUB_SAMPLE) { | 
 | 		delay = core_dbs_info->freq_lo_jiffies; | 
 | 		if (eval_load) | 
 | 			__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy, | 
 | 						core_dbs_info->freq_lo, | 
 | 						CPUFREQ_RELATION_H); | 
 | 	} else { | 
 | 		if (eval_load) | 
 | 			dbs_check_cpu(&od_dbs_data, cpu); | 
 | 		if (core_dbs_info->freq_lo) { | 
 | 			/* Setup timer for SUB_SAMPLE */ | 
 | 			core_dbs_info->sample_type = OD_SUB_SAMPLE; | 
 | 			delay = core_dbs_info->freq_hi_jiffies; | 
 | 		} else { | 
 | 			delay = delay_for_sampling_rate(od_tuners.sampling_rate | 
 | 						* core_dbs_info->rate_mult); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	schedule_delayed_work_on(smp_processor_id(), dw, delay); | 
 | 	mutex_unlock(&core_dbs_info->cdbs.timer_mutex); | 
 | } | 
 |  | 
 | /************************** sysfs interface ************************/ | 
 |  | 
 | static ssize_t show_sampling_rate_min(struct kobject *kobj, | 
 | 				      struct attribute *attr, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate); | 
 | } | 
 |  | 
 | /** | 
 |  * update_sampling_rate - update sampling rate effective immediately if needed. | 
 |  * @new_rate: new sampling rate | 
 |  * | 
 |  * If new rate is smaller than the old, simply updating | 
 |  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the | 
 |  * original sampling_rate was 1 second and the requested new sampling rate is 10 | 
 |  * ms because the user needs immediate reaction from ondemand governor, but not | 
 |  * sure if higher frequency will be required or not, then, the governor may | 
 |  * change the sampling rate too late; up to 1 second later. Thus, if we are | 
 |  * reducing the sampling rate, we need to make the new value effective | 
 |  * immediately. | 
 |  */ | 
 | static void update_sampling_rate(unsigned int new_rate) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	od_tuners.sampling_rate = new_rate = max(new_rate, | 
 | 			od_dbs_data.min_sampling_rate); | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct cpufreq_policy *policy; | 
 | 		struct od_cpu_dbs_info_s *dbs_info; | 
 | 		unsigned long next_sampling, appointed_at; | 
 |  | 
 | 		policy = cpufreq_cpu_get(cpu); | 
 | 		if (!policy) | 
 | 			continue; | 
 | 		if (policy->governor != &cpufreq_gov_ondemand) { | 
 | 			cpufreq_cpu_put(policy); | 
 | 			continue; | 
 | 		} | 
 | 		dbs_info = &per_cpu(od_cpu_dbs_info, cpu); | 
 | 		cpufreq_cpu_put(policy); | 
 |  | 
 | 		mutex_lock(&dbs_info->cdbs.timer_mutex); | 
 |  | 
 | 		if (!delayed_work_pending(&dbs_info->cdbs.work)) { | 
 | 			mutex_unlock(&dbs_info->cdbs.timer_mutex); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		next_sampling = jiffies + usecs_to_jiffies(new_rate); | 
 | 		appointed_at = dbs_info->cdbs.work.timer.expires; | 
 |  | 
 | 		if (time_before(next_sampling, appointed_at)) { | 
 |  | 
 | 			mutex_unlock(&dbs_info->cdbs.timer_mutex); | 
 | 			cancel_delayed_work_sync(&dbs_info->cdbs.work); | 
 | 			mutex_lock(&dbs_info->cdbs.timer_mutex); | 
 |  | 
 | 			schedule_delayed_work_on(cpu, &dbs_info->cdbs.work, | 
 | 					usecs_to_jiffies(new_rate)); | 
 |  | 
 | 		} | 
 | 		mutex_unlock(&dbs_info->cdbs.timer_mutex); | 
 | 	} | 
 | } | 
 |  | 
 | static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b, | 
 | 				   const char *buf, size_t count) | 
 | { | 
 | 	unsigned int input; | 
 | 	int ret; | 
 | 	ret = sscanf(buf, "%u", &input); | 
 | 	if (ret != 1) | 
 | 		return -EINVAL; | 
 | 	update_sampling_rate(input); | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b, | 
 | 				   const char *buf, size_t count) | 
 | { | 
 | 	unsigned int input; | 
 | 	int ret; | 
 |  | 
 | 	ret = sscanf(buf, "%u", &input); | 
 | 	if (ret != 1) | 
 | 		return -EINVAL; | 
 | 	od_tuners.io_is_busy = !!input; | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t store_up_threshold(struct kobject *a, struct attribute *b, | 
 | 				  const char *buf, size_t count) | 
 | { | 
 | 	unsigned int input; | 
 | 	int ret; | 
 | 	ret = sscanf(buf, "%u", &input); | 
 |  | 
 | 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || | 
 | 			input < MIN_FREQUENCY_UP_THRESHOLD) { | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	/* Calculate the new adj_up_threshold */ | 
 | 	od_tuners.adj_up_threshold += input; | 
 | 	od_tuners.adj_up_threshold -= od_tuners.up_threshold; | 
 |  | 
 | 	od_tuners.up_threshold = input; | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t store_sampling_down_factor(struct kobject *a, | 
 | 			struct attribute *b, const char *buf, size_t count) | 
 | { | 
 | 	unsigned int input, j; | 
 | 	int ret; | 
 | 	ret = sscanf(buf, "%u", &input); | 
 |  | 
 | 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) | 
 | 		return -EINVAL; | 
 | 	od_tuners.sampling_down_factor = input; | 
 |  | 
 | 	/* Reset down sampling multiplier in case it was active */ | 
 | 	for_each_online_cpu(j) { | 
 | 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, | 
 | 				j); | 
 | 		dbs_info->rate_mult = 1; | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b, | 
 | 				      const char *buf, size_t count) | 
 | { | 
 | 	unsigned int input; | 
 | 	int ret; | 
 |  | 
 | 	unsigned int j; | 
 |  | 
 | 	ret = sscanf(buf, "%u", &input); | 
 | 	if (ret != 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (input > 1) | 
 | 		input = 1; | 
 |  | 
 | 	if (input == od_tuners.ignore_nice) { /* nothing to do */ | 
 | 		return count; | 
 | 	} | 
 | 	od_tuners.ignore_nice = input; | 
 |  | 
 | 	/* we need to re-evaluate prev_cpu_idle */ | 
 | 	for_each_online_cpu(j) { | 
 | 		struct od_cpu_dbs_info_s *dbs_info; | 
 | 		dbs_info = &per_cpu(od_cpu_dbs_info, j); | 
 | 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j, | 
 | 						&dbs_info->cdbs.prev_cpu_wall); | 
 | 		if (od_tuners.ignore_nice) | 
 | 			dbs_info->cdbs.prev_cpu_nice = | 
 | 				kcpustat_cpu(j).cpustat[CPUTIME_NICE]; | 
 |  | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b, | 
 | 				    const char *buf, size_t count) | 
 | { | 
 | 	unsigned int input; | 
 | 	int ret; | 
 | 	ret = sscanf(buf, "%u", &input); | 
 |  | 
 | 	if (ret != 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (input > 1000) | 
 | 		input = 1000; | 
 |  | 
 | 	od_tuners.powersave_bias = input; | 
 | 	ondemand_powersave_bias_init(); | 
 | 	return count; | 
 | } | 
 |  | 
 | show_one(od, sampling_rate, sampling_rate); | 
 | show_one(od, io_is_busy, io_is_busy); | 
 | show_one(od, up_threshold, up_threshold); | 
 | show_one(od, sampling_down_factor, sampling_down_factor); | 
 | show_one(od, ignore_nice_load, ignore_nice); | 
 | show_one(od, powersave_bias, powersave_bias); | 
 |  | 
 | define_one_global_rw(sampling_rate); | 
 | define_one_global_rw(io_is_busy); | 
 | define_one_global_rw(up_threshold); | 
 | define_one_global_rw(sampling_down_factor); | 
 | define_one_global_rw(ignore_nice_load); | 
 | define_one_global_rw(powersave_bias); | 
 | define_one_global_ro(sampling_rate_min); | 
 |  | 
 | static struct attribute *dbs_attributes[] = { | 
 | 	&sampling_rate_min.attr, | 
 | 	&sampling_rate.attr, | 
 | 	&up_threshold.attr, | 
 | 	&sampling_down_factor.attr, | 
 | 	&ignore_nice_load.attr, | 
 | 	&powersave_bias.attr, | 
 | 	&io_is_busy.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static struct attribute_group od_attr_group = { | 
 | 	.attrs = dbs_attributes, | 
 | 	.name = "ondemand", | 
 | }; | 
 |  | 
 | /************************** sysfs end ************************/ | 
 |  | 
 | define_get_cpu_dbs_routines(od_cpu_dbs_info); | 
 |  | 
 | static struct od_ops od_ops = { | 
 | 	.io_busy = should_io_be_busy, | 
 | 	.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu, | 
 | 	.powersave_bias_target = powersave_bias_target, | 
 | 	.freq_increase = dbs_freq_increase, | 
 | }; | 
 |  | 
 | static struct dbs_data od_dbs_data = { | 
 | 	.governor = GOV_ONDEMAND, | 
 | 	.attr_group = &od_attr_group, | 
 | 	.tuners = &od_tuners, | 
 | 	.get_cpu_cdbs = get_cpu_cdbs, | 
 | 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s, | 
 | 	.gov_dbs_timer = od_dbs_timer, | 
 | 	.gov_check_cpu = od_check_cpu, | 
 | 	.gov_ops = &od_ops, | 
 | }; | 
 |  | 
 | static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy, | 
 | 		unsigned int event) | 
 | { | 
 | 	return cpufreq_governor_dbs(&od_dbs_data, policy, event); | 
 | } | 
 |  | 
 | #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND | 
 | static | 
 | #endif | 
 | struct cpufreq_governor cpufreq_gov_ondemand = { | 
 | 	.name			= "ondemand", | 
 | 	.governor		= od_cpufreq_governor_dbs, | 
 | 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT, | 
 | 	.owner			= THIS_MODULE, | 
 | }; | 
 |  | 
 | static int __init cpufreq_gov_dbs_init(void) | 
 | { | 
 | 	u64 idle_time; | 
 | 	int cpu = get_cpu(); | 
 |  | 
 | 	mutex_init(&od_dbs_data.mutex); | 
 | 	idle_time = get_cpu_idle_time_us(cpu, NULL); | 
 | 	put_cpu(); | 
 | 	if (idle_time != -1ULL) { | 
 | 		/* Idle micro accounting is supported. Use finer thresholds */ | 
 | 		od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD; | 
 | 		od_tuners.adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD - | 
 | 					     MICRO_FREQUENCY_DOWN_DIFFERENTIAL; | 
 | 		/* | 
 | 		 * In nohz/micro accounting case we set the minimum frequency | 
 | 		 * not depending on HZ, but fixed (very low). The deferred | 
 | 		 * timer might skip some samples if idle/sleeping as needed. | 
 | 		*/ | 
 | 		od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE; | 
 | 	} else { | 
 | 		/* For correct statistics, we need 10 ticks for each measure */ | 
 | 		od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO * | 
 | 			jiffies_to_usecs(10); | 
 | 	} | 
 |  | 
 | 	return cpufreq_register_governor(&cpufreq_gov_ondemand); | 
 | } | 
 |  | 
 | static void __exit cpufreq_gov_dbs_exit(void) | 
 | { | 
 | 	cpufreq_unregister_governor(&cpufreq_gov_ondemand); | 
 | } | 
 |  | 
 | MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); | 
 | MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>"); | 
 | MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " | 
 | 	"Low Latency Frequency Transition capable processors"); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND | 
 | fs_initcall(cpufreq_gov_dbs_init); | 
 | #else | 
 | module_init(cpufreq_gov_dbs_init); | 
 | #endif | 
 | module_exit(cpufreq_gov_dbs_exit); |